
Resolving Ambiguities in Confused Online Tamil Characters with Post 

Processing Algorithms 
 

A G Ramakrishnan, Suresh Sundaram 
Medical Intelligence and Language Laboratory 

Indian Institute of Science, Bangalore, India 

ramkiag@ee.iisc.ernet.in, suresh@ee.iisc.ernet.in 

 

 
Abstract.  This paper addresses the problem of resolving ambiguities in frequently confused online Tamil character 

pairs by employing script specific algorithms as a post classification step. Robust structural cues and temporal 

information of the preprocessed character are extensively utilized in the design of these algorithms. The methods are 

quite robust in automatically extracting the discriminative substrokes of confused characters for further analysis. 

Experimental validation on the IWFHR Database indicates error rates of less than 3 % for the confused characters. 

Thus, these post processing steps have a good potential to improve the performance of online Tamil handwritten 

character recognition. 
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1   Introduction 
 

    Tamil is a popular classical language spoken by a significant population in South East Asian countries. 

There are 156 distinct symbols in Tamil [1].  As far as earlier work on recognition of online Tamil 

characters is concerned, Deepu et al. [2] generate class specific subspaces using principal component 

analysis, while Niranjan et al. [1] have employed dynamic time warping for matching unequal length 

feature sequences. Hidden Markov models for recognition have also been reported in [3] [4]. In a recent 

work, we have studied the performance of the 2DPCA Algorithm [5], which was originally proposed for 

face recognition. 

   Each of the above schemes is found to give nearly similar generalization performances on a given test 

data. Most of the misclassifications of the given data, in general, are attributed to the fact that Tamil has 

many symbols that look visually similar. Any classifier that works on features at a global level fails to 

capture finer nuances that make these symbols distinct. One way to circumvent this drawback would be to 

incorporate a post processing step that employs local features to reduce the degree of confusion between 

frequently confused characters, and thereby improves the overall performance of the recognition.  

Specifically, this paper proposes algorithms for disambiguating frequently confused symbols. The 

approaches are developed, taking into account, the popular writing / lexemic styles of modern Tamil script. 

They can be applied irrespective of the nature of the classifier used for the recognition. 

   In a system that deals with recognition at the word level one could use language models. However, when 

recognizing isolated characters, one is devoid of any such additional information that can be used to correct 

errors. Thus, we resort to the use of robust structural features for post recognition disambiguation. 

 

2   Confusion Pair Analysis 
 

   A careful analysis of the confusion matrices, obtained with different classifier frameworks, suggests that 

the   frequently confused Tamil characters can be manually grouped into two categories A and B as shown 

in Table 1. Accordingly, we propose appropriate post-processing techniques to each group of the confusion 

pairs.  The confusions in Group A appear between pairs of Tamil consonant-vowel combinations sharing 

the same base consonant but different vowel modifiers. The confused strokes contributing to errors are   ¤  

and    ¦.  These correspond to the modifiers of the vowels  Þ and   ß   respectively. 

    Apart from Group A pairs, there exist other pairs that differ predominantly in the end such as (ä ü) 
and (è ²). The structure to be analyzed for these pairs is strikingly different from those belonging to 

Group A.  Consequently, these pairs are placed in Group B.  Also, there exist certain character pairs that 



differ only at the start and middle of the trace such as (ã ó), (÷ ù) and (º ¿). These are also 

incorporated in Group B.  As stated before, the spatial and temporal information provided by the online 

data is extensively utilized for the design of the algorithms. Prior to designing the appropriate post 

processing technique, the raw Tamil character is subject to pre processing modules [2] such as smoothing, 

size normalization and resampling.  
 

 
Table 1.  List of commonly confused online Tamil character pairs.  

 

Group  

 A 

(A,W) (B,X) (C,Y) (D,Z) (E,a) (F,b) (G,c) (L,h) 
(M,i) (O,k) (Q,m) (T,p)  
 

Group  

B 
 

(ã,ó) (ä,ü) (è,²) (ô,õ) (÷,ù) (º,Í) (´,Ç) (¸,³) 
(Ë,Æ) 

 

3   Disambiguation of Group A  Confusion Pairs 
 

   In this section, we outline the post processing algorithm for disambiguating the vowel modifiers   ¤   and  

 ¦   for a given base consonant.  Popular writing styles of modern Tamil script suggest that the vowel 

modifiers   ¤  and   ¦   always form the last stroke in any multistroke consonant-vowel combination 

character. However, for CV combinations written as a single stroke (where the vowel modifiers are written 

as a continuation of the  base consonant), a subset of sample points, carefully chosen before the final PEN 

UP  signal, is taken  to be the vowel modifier. It is worth re-emphasizing that the confused pairs in Group A 

correspond to CV combinations sharing the same base consonant (BC). Let 1ω  and 2ω  denote the class 

labels of  BC+  ¤    and  BC+  ¦  combinations, respectively. We outline below the algorithm proposed for 

distinguishing  1ω  and 2ω . Note that as soon as any ‘If’ condition in the algorithm is satisfied, the 

corresponding class label is assigned to the CV combination and we terminate. 

    For the preprocessed CV combination resampled to N  points, let 
N

biii yxS
=

= )},{(   denote the pen 

coordinates of the extracted vowel modifier.  Here (xb, yb) denotes the starting sample point of the vowel 

modifier. A point ( , )
i i

x y   in  S  is said to be an ‘interest point’ if the following two conditions are 

satisfied. 
 

    (i)    1i i
y y

−
<  and   1i i

y y
+

<  .       

   (ii)    1i i
x x

+
<  .                                                                                      (1) 

 

Using  the aforementioned condition, compute the number of interest points  I. 
 

Find the sample point ( , )
s s

x y  satisfying   the relation max
i bs i

y y
>=

=  . 

 

        If  )( ss yx  corresponds to the last sample point of the modifier, 

Accept  class  2ω  if  I >0   and  1ω  if   I =0.   

End 

 

       If I > 0  

          Assign  character to class  2ω   (Fig. 1(a)). 

      End 

    

    Locate the sample point  m m( , )x y   satisfying the relation m max
i s i

x x
>

= .  



   Define the quantity          Nm xxr −=                                                                    (2)   

   If   r ≥ε   and bN yy >    

     Assign the character to class 2ω   (Fig. 1(b));  

  else 

     Assign it to class 1ω  (Fig.1(c)). 

End 

 

 Here ε  is a threshold, empirically set to 0.07. 
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        Fig.  1. Disambiguation of   (Group A) confused pairs by structural features. 

 

                   (a)  This sample is assigned to class W   (by Step 2).   Here I = 1.    

                   (b)  This sample is assigned to W (by Step 3).  Here  r  > ε , bN yy >   and   I = 0. 

                  (c)   This sample is assigned to A (by Step 3).  Here  r >ε  , bN yy <   and   I = 0. 

 

4   Disambiguation of Group B Confusion Pairs 
 

                 The discriminative substrokes of confused pairs in Group B may fall in any region of the trace. 

Hence, the post processing algorithms for this group must be able enough to automatically extract and 

analyze parts of strokes that differ. Unlike in Group A, where a single algorithm is used for disambiguation, 

separate post processing algorithms are generated for each confusion pair in Group B. The need for using 

dedicated post processing scheme to disambiguate a specific confusion pair arises mainly due to the 

structural characteristics of the pair under consideration.  For example, the post processing scheme for 

extracting the discriminative substroke of the (÷ ù) pair will be different from that used for extracting 

the substroke in (º  ¿) pair. Note that, however, in both these pairs, the finer nuance that makes the 

confused characters distinct is at the middle of the trace. So, for a given pair, the proposed algorithms for 



Group B take into consideration the temporal information, writing styles and structural cues of the confused 

characters. The illustrations that follow will throw light on the effectiveness of the methods in both 

substroke extraction and analysis.   
 

 A)  Consider the characters ä and ü. Instead of feeding the (x,y) coordinates of these characters as a 

whole to the post processing module, we focus on the shape of substrokes forming the tails of these 

characters and extract Fourier descriptors from them. In order to extract the shape of interest, we 

compute the length of the character and divide it to 4 equal segments. Sample points that lie in the last 

segment form the tail of the character and are resampled to 30 points before deriving the features. The 

number of Fourier coefficients chosen is set empirically to 10. A nearest neighbor classifier is used to 

obtain the final recognition label of a test character.  
 

B)    As a next illustration, consider the characters ÷ and ù. Since the subtle difference in these 

characters is observed in the middle of the trace, Fourier descriptors do not form a robust feature for 

discrimination. Our post processing algorithm first automatically extracts the substroke of interest as 

follows. Let 
N

iii yx 1)},{(
=

  be the sample points of preprocessed character (÷ or  ù). Locate the 

first minimum (xc ,yc)   that satisfies the condition.  
  

                         y c < yc-1  and  yc < yc+1 .                                           (3) 
 

Starting from (xc, yc), move along the trace and locate the point (xb, yb) whose x coordinate just 

exceeds xc.  A substroke is extracted with (xb, yb) as the starting point.  The extracted substroke can 

thus be described as 
 

                                
N

biii yxS
=

= )},{( .                                                      (4) 

   

   Having extracted the substroke S, we shift our focus to analyzing the same. Let (xint, yint) be the 

first encountered minimum in  S   for which 
 

                                   y int-1 < yint  < yint+1.                                                      (5) 

 

        Fig.  2 illustrates the aforementioned explanation. 
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Fig.  2.  Illustration of how (xint, yint )  is located in the character ù . 

 

    The following conditions are applied to the point (xint, yint)  for finalizing our decision.  

 



1)   If   x int-1 < xint+1,   assign symbol to ÷.  (Fig. 3 (a)) 

 

2) If the angle θ  between successive pen directions defined  at   (xint, yint )  is greater than 150 deg,    

       assign the symbol to ÷. (Fig. 3 (b)). θ  is the angle formed by the vectors  
int int 1 int int 1

( )x x y y
− −

− −  

       and   
int 1 int int 1 int( )x x y y

+ +
− − . 

 

3) If points in the neighborhood of   (xint, yint ) are sufficiently close to each other (less than a threshold), 

the character is assigned to ÷. (Fig. 3 (c)) 

The ‘closeness’ condition is defined as follows:  Let 
int 3

int 3{( , )}
i i i

W x y
+

= −
=   be a window size of 7 

centered at (xint, yint).  Using this window, compute three distances  D1,  D2  and D3   as defined 

below. 

 

                            Dj = dist ((x int-j   y int-j) , (xint+j   yint+j))         j= 1, 2, 3             (6) 

         

        Our final decision for the label of the character can be formulated as follows: 

 

       Assign   character to    ÷   if   2 2 2

1 2 3 0.1D D D+ + < .                              (7) 

 

4)    If neither condition holds good, character is assigned to ù. (Fig. 3 (d)) 
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Fig.  3.   (a) (b) (c) indicate samples of  ÷ that satisfy conditions (1) (2) and (3) respectively.  Fig.  3 (d) 

    depicts the sample   ù   that violates the above conditions.  

 

C)   As a final illustration, we describe the strategy proposed to reduce the confusion between the 

symbols (º  ¿).  The rationale for   segmenting the substroke of interest  S  is as follows. 

Locate the first sample point (xb, yb) for which the following 2 conditions are simultaneously 

satisfied. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(xint,yint)



 

(i)  y b+1 < yb and  yb-1 < yb . 

(ii) x b+1 < xb < xb-1 .                                                                             (8) 
 

(xb, yb) serves as the starting point for our substroke. The minimum y coordinate of the symbol,     

ymin ,  is the end point.  Stated in another way, 
 

                         
min{( , )}

i i i b
S x y

=
=  .                                                                       (9) 

 

  Snapshots of º  (Fig. 4  (a) ) and ¿  (Fig. 4  (c) ) with the extracted substrokes  are shown in  Figs. 

4  (b)  and  (d) respectively. 
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                   Fig.  4.  (a) (c).   Samples of  º and  ¿ with the desired substrokes in Figs.  4. (b) and  (d) respectively.  
 

    We now proceed with analyzing the substroke S  as  follows.  Calculate the number of sample 

points,    f,  in  S  for which yi+1 > yi.  If f >0, the character is assigned to ¿. Otherwise º is selected. 

Using this condition, we see that the character in Fig. 4 (a) is assigned to º since f =0 for this sample. 
Fig. 4(c) provides a case for which  f =1. Hence, by our logic, it is assigned to ¿. 

 

      5    Experimental Results 
                 

     The aforementioned techniques are tested on the combined training and testing corpus of the 

IWFHR Competition dataset [6]. Table 2 depicts the recognition accuracies obtained by incorporating 

the post processing scheme for disambiguating confused characters. It can be noted that the ambiguity 

amongst the symbols has been resolved significantly, as indicated by the substantially high 

classification rates. The algorithms can also be extended to disambiguate confusion quadruples like 

(O k Q m). Here, we first invoke the Group A post processing algorithm to distinguish the 

vowel modifiers   ¤  and   ¦ , and then discriminate the base consonants ÷ and ù (Group B pair 

disambiguation). Employing the scheme to the quadruple gives a recognition rate of  96.2 %.  



    However, it is important mentioning here that the accuracies quoted in Table 2 are applicable only to 

the confused characters in the pair under consideration. Needless to say, the methods can be applied 

irrespective of the classifier used for the recognition, though the nature of the confusion matrix may 

slightly vary. 
    

Table 2.   Recognition accuracies after invoking appropriate post processing algorithms to confusion pairs. 
                                        

                                           GROUP A                                         GROUP B  
 

                        Confusion Pairs          Accuracy             Confusion Pairs              Accuracy 

 

 

       

 

 

 

 

 

 

 

 

 

 
 

   

   In this work, we have designed post processing algorithms to reduce the ambiguity between frequently 

confused Tamil characters. Structural cues are utilized in the design of these methods, which can be 

applied independent of the classifier used for the recognition. Future areas of research would involve 

improving these methods to handle characters, whose strokes have been broken due to unintentional 

lifting of the stylus. 
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