
Set theoretic line segmentation and graph based strategy
for bilingual Kannada-English OCR

Umesh R S, Peeta Basa Pati and A G Ramakrishnan

Department of Electrical Engineering, Indian Institute of Science, Bangalore, India - 560 012

1 Introduction

India is an inherently multilingual nation and most of its people rarely communicate in
a single language. There is always a mix of English or the neighbouring state language
with the local language. This is true with many printed documents too, such as forms,
school text books, certificates and official orders of the state or central Governments.
Thus, an OCR to be widely useful in any Indian state, must necessarily be at least bilin-
gual, capable of handling both the state language and English. Interestingly, many a
times, the script changes at the level of the word within the same sentence or a text
line in such printed documents. This paper, therefore, reports an approach for a bilin-
gual OCR that can recognize both Kannada and English words from the same printed
document.

In general, the design of a bilingual OCR might proceed by first segmenting the
words from the document image, after the necessary initial steps of noise cleaning,
page layout analysis and text segmentation. After identifying the script of a word, the
characters of the word may be recognized using a single OCR engine, that employs
two sets of training samples, one for English and the other for the Indian script. In our
case, the idea is to recognize the script of each word, and accordingly send it to the
Kannada or English recognition engine, as appropriate. This is because, the technology
of English OCR is well developed and one could easily use a commercially available
OCR for English. Figure 1 shows a schematic of our system.

Fig. 1: A schematic of the proposed bi-lingual Kannada-English OCR.

Here, we report an efficient script recognition scheme that is more than 99% accu-
rate in discriminating Kannada from Roman. We also propose a novel segmentation and
recognition scheme for Kannada, which could possibly be applied to many other Indian
languages as well.

2 Kannada Script

Kannada is the official language of the South Indian state of Karnataka. It has its own
script derived from Bramhi script. Modern Kannada alphabet has a base set of 52 char-
acters, comprising 16 vowels (called as swaragalu) and 36 consonants (vyanjanagalu).
There are 2 more consonants used in old Kannada, namely lla and rra, taking the to-
tal number of consonants to 38. Further, there are consonant modifiers (vattaksharas
or conjuncts) and vowel modifiers. The number of these modifiers is the same as that
of base characters, namely 52. Compound characters called aksharas are formed by
graphically combining the symbols corresponding to consonants, consonant modifiers
and/or vowel modifiers using well defined rules of combination. The script has its own
numerals too. In addition to the base set of characters and numerals, the script includes
special symbols used in poetry, shlokas (prayer chants), Kannada grammar, etc. Thus,
the number of possible consonant-vowel combination aksharas is 38 X 16 = 608. Sim-
ilarly, the number of possible consonant-consonant-vowel aksharas is 38 X 38 X 16 =
23104. While designing a character recognition system, if we consider each akshara as
a separate class, the number of classes becomes prohibitively high. However, in Kan-
nada, consonant-modifiers and some of the vowel modifiers are mostly printed sepa-
rately from the base character. So, if we treat each connected component as a different
class, the number of classes in recognition can be reduced by a great extent. Figure 2
shows the vowels, consonants, all the consonant-vowel combinations & some of the
consonant-consonant-vowel aksharas of the letter ka, all the conjuncts and the Kannada
numerals.

3 Segmentation

The task of segmenting a document image into text and non-text, lines, words and
eventually into individual characters is of fundamental importance for optical charac-
ter recognition. The current study does not address the problem of separation of text
from non-text. The input to this scheme is the bounding box information of various in-
dependent connected components in the skew-corrected, de-noised, component-labeled
image. We propose a set-theoretic approach based on the bounding-box information for
segmenting the text lines from the document image. This method is distinct from the
ones proposed by [1, 2] which are based on the horizontal projection profiles.

3.1 line segmentation based on conneced components

This can be seen as the task of identifying unique non-intersecting sets of image com-
ponents that form various text lines. Every component in the image needs to belong to
only one text line. Fig. 3 shows two text lines of a Kannada document using only the
bounding boxes of the connected components. Rows 1, 2, 3 and 4 denote particular rows
of pixels. Labels a, b, c, etc. denote bounding boxes of specific connected components.

To detect and delineate text lines, we consider all the connected components in-
tersected by each horizontal scan line. We compute the inter-component distances and
look for close neighbours. If the distances of close neighbours are below a predefined

Fig. 2: Kannada character set.

Fig. 3: Two text lines of a Kannada document. The bounding boxes of some of the connected
components of successive lines intersect the same scan line, preventing line segmentation using
horizontal projection.

Fig. 4: A schematic of the proposed line segmentation algorithm.

threshold, then the set of intersected components is considered to belong to the same
text line. Thus, the components intersected by scan lines 1 and 4 in Fig. 3 form distinct
text lines, while those intersected by scan line 2, namely a, b and c do not, since they lie
far spread apart. Similarly, scan line 3 also fails this test. At the end of this procedure,
we are left with disjoint sets of components, and their spans (heights) decide the extent
of these lines. A few isolated, left out components either fall within the span of one of
the lines already found, or are assigned to the line containing their nearest component.
Fig. 4 presents the proposed line segmentation algorithm, schematically. Let the labeled
image be denoted as Lm×n. Let the components in L be denoted by ci, i = 1 . . . p. Let
each pixel row of L be denoted by Rj , j = 1 . . .m. Then, set-theoretic segmentation
can be described by the following steps-

– Form Sj = {ci|ci ∩ Rj 6= φ}, j = 1 . . .m, i = 1 . . . p (form sets of components
intersected by each pixel row)

– If Sj ⊂ Sk, set Sj = φ, j, k = 1 . . .m, j 6= k (remove proper subsets of compo-
nents; their supersets contain the same information)

– ∀Sj 6= φ, j = 1 . . .m if F (Sj , γ) = FALSE, Sj = φ. F is a binary function based
on the inter-component distances of elements of Sj and a threshold γ.

– ∀Sj 6= φ if Sj ∩ Sk 6= φ, j, k = 1 . . .m, j 6= k, and (Sj − Sk) ∩ Si = φ, ∀i 6=
k, Sj = φ (merge sets that have some common components and the rest, unique
components)

– ∀ck ∈
{
{ci, i = 1 . . . p} − {

⋃m
j=1 Sj}

}
(components not associated with any of

the sets), find min‖ck − cl‖, cl ∈
{⋃m

j=1 Sj

}
. Let the minimum occur at cq. If

cq ∈ St, then ck ∈ St (associate the component with the set containing its nearest
connected component).

– Sk 6= φ, k = 1 . . .m will now be disjoint sets of components. Each set comprises
components that form a text line.

3.2 Word and character segmentation

Following line segmentation, one normally obtains information on the columns, which
do not pass through any bounding box on a given line. By studying the distribution
of the spacing information so obtained from all the lines of the document, one can
threshold the distances to obtain word and character separation information.

However, we propose an alternative weighted distance spacing measurement which
may give better results in case of documents containing multiple font sizes. Whenever
the font size increases, so do the word and character spacing. So, if the spacing between
any two adjacent components is weighted as a function of the sizes of the components
across the gap (average of heights), one may obtain a more meaningful information
about the spacing. This is effectively performed by using the bounding box information
we employed for line segmentation. Thus, it turns out to be an additional benefit of
using connected components to start with.

4 Script Recognition

Our recognition mechanism is based on separate engines for Kannada and English.
Thus, once the document is segmented into text lines, words and components, we per-
form script recognition. Lot of research has been reported on script recognition at a
paragraph/block or line level. While the former assumes that a full document page is
of the same script, the latter imagines documents to contain text from multiple scripts
but changing only at the level of the line. Though the latter is a realistic assumption in
some cases, many Indian language documents have the script changing from one word
to the next. In Fig. 5, we show a bi-script document, where the presence of interspersed
English words in a Kannada document is clearly seen.

Script identification acts as a preliminary level of filtering to reduce the search com-
plexity. Here, efficacy of various combinations of two different features and three dif-
ferent classifiers is evaluated for the bi-script recognition task. An initial design of a
filter-bank that generates good accuracy for various script identification tasks, followed
by a feature selection algorithm to choose the minimal best subset of these features to
deliver the best output is reported.

4.1 Gabor and DCT based identification

Pati [3] studied the structural properties of eleven Indian scripts before designing an
identifier for these scripts. Based on that study, we decided to employ features that are
both frequency and direction sensitive. This, in our opinion, would be best able to dis-
criminate between the scripts. Thus, we employ a multi-channel filter bank, using Gabor

Fig. 5: Sample bi-script document showing interspersed Kannada and English words, necessitat-
ing script recognition at the word level.

functions [4], [5]. We have used a radial frequency bandwidth of one octave. This is be-
cause, the cortical cells in the visual cortex V1 of primates are observed to have that
bandwidth and the coding of natural images is best attained at this bandwidth [6]. An
angular bandwidth of 30 degrees is chosen for this experiment. After a careful evalua-
tion of the various radial frequencies & angles for their usefulness for this application
[4], we decided to use three radial frequencies and 6 angles. The radial frequencies cho-
sen are 0.125, 0.25 and 0.5 radians, while 0, 30, 60, 90, 120 and 150 degrees are the
angles chosen.

Discrete Cosine Transform (DCT) concentrates the information content in relatively
fewer coefficients. For natural signals and images, the data compaction of DCT is close
to that of the optimal KL transform. But unlike KLT, DCT is not dependent on the data.
The symmetry of its transform matrix is exploited to obtain efficient hardware & soft-
ware implementations [7]. Most image and video coders employ DCT. It has also been
employed for other applications such as pitch modification for speech synthesis [8]. Pati
[9] has used DCT coefficients for machine recognition of printed Odiya characters.

For an image f(x,y), the DCT coefficient matrix F(u,v) is given by,

F (u, v) =
M−1∑
i=0

N−1∑
j=0

f(x, y) cos
(

πu(2x + 1)
2 M

)
cos

(
πv(2y + 1)

2 N

)
(1)

where M and N are the number of rows and columns of the image matrix; u and v
are the frequency indices along the x and y directions, respectively. Figures 6 (a) &
(b) demonstrate the feature extraction mechanisms using Gabor and DCT functions for
recognizing Roman from the Kannada script.

We have used three different classifiers to decide about the script of the test words:
(i) the nearest neighbor classifier (NNC), (ii) linear discriminant classifier (LDC), and
(iii) the support vector machines (SVM’s). Nearest neighbor has been a standard and
time tested classifier. This classifier has proven to deliver good output, when we have a
class representative training set. Here, Euclidean distance of the test pattern is evaluated
in the feature space, with each of the training patterns. The class value of the nearest

(a)

(b)

(c)

Fig. 6: Extraction of feature vectors from word images for script recognition. (a) shows the ex-
traction of Gabor features, while (b) demonstrates that of DCT features. (c) indicates those DCT
coefficients that are included as part of the feature vector, to make the dimension same as that of
Gabor.

neighbor is assigned to the test pattern. A linear discriminant function partitions the
feature space using a hyper-plane. The two sides of this plane represent the two classes.
The class value of the test pattern is decided based on which side of the plane it lies.

Among the discriminant approaches for classification, the most recent is the Support
Vector Machine [10], where the optimal hyper-plane decides the separation between in-
dividual classes of patterns. The creation of a unique model to represent a class, derived
by training the model with prototypes of each class, aids in maximization of the correct
classification rate. We have used the SVMTorch – II, a toolbox designed and developed
by Collobert and Bengio [11]. Of the various kernel functions this toolbox provides, we
have used the Gaussian function with the total variance of the dataset, in a case by case
basis, chosen as the standard deviation of the kernel function.

4.2 Results of script identification

Images are scanned from bi-script documents, such as books, newspapers and maga-
zines. Variation in printing style and size are ensured. About 100 scanned pages are
segmented by an automated process [9]. From this collection of word images, 20,000
distinct words each are selected for both Kannada and English. Of these, 7000 are used
for training and the balance 13,000 word images are used for testing.

The performance is presented in percentage (%), which gives the average recog-
nition accuracy for both the involved scripts. Table 1 presents the results separating
Roman from Kannada script with different feature-classifier combinations. The recog-
nition rate we have achieved equals or exceeds 99% with Gabor transform features for
any classifier. The best result of 99.9% is obtained with the nearest neighbour classifier.

Table 1: The recognition accuracies of the various feature-classifier combinations for the bi-script
case involving English and Kannada words.

GT-NNC GT-LDC GT-SVM DCT-NNC DCT-LDC DCT-SVM

99.9 99.0 99.7 98.2 90.3 97.5

5 Component Classification

5.1 Introduction

The problem of recognizing printed Kannada characters has been studied in [1, 2]. As
we find, it is one of being able to distinguish data from a large number of classes, typ-
ically around 450. This we find is the case with many Indian scripts [12]. The problem
of classifying data from a large number of classes has been studied in [13]. The study
shows a steep increase in computational costs with increase in the number of classes.
Hence, most attempted solutions reduce the classes one needs to distinguish, by break-
ing characters into smaller subunits, usually using a script dependent segmentation tech-
nique [1, 2]. Each subunit is individually recognized, and a conclusion is drawn about

the character based on the recognized subunits. However, the rules for segmenting the
characters are usually script specific, and entail many assumptions. This makes it hard
to adapt any such technique to other scripts. In what follows, we report a novel and ef-
fective strategy to solve this problem and discuss its merits and limitations. In Kannada
and many other Indian scripts, a character can contain more than one 8-connected in-
dependent image components (which we shall refer to as ‘components’). In this study,
we report only about component classification, since it plays a central role in the whole
recognition task. Recognition of characters from components is an important task that
may need considerable attention, but is not the focus of this study.

The proposed strategy is based on the fundamental observation that, distinct com-
ponent classes differ usually either in the number or kind of strokes or junctions they
are composed of, or in the nature of stroke interconnections. In this study, we cast this
inherent property into a graph-theoretic framework by associating thinned (single pixel
wide) form of each component with a planar graph. The strokes are mapped to the edges
of the graph, and the stroke junctions are mapped to vertices. A component can thus be
associated with the incidence matrix of its graph representation. We report here our
study on how this mapping can be used for the task of component classification.

We introduce our graph based processing of components through the illustration in
Fig. 7, which depicts a planar graph with {a, b, c, d} as vertices and {1, 2, 3, 4, 5, 6} as
edges. The signed incidence matrix for the graph is given by the center part of the table
in Fig. 7. We adopt a systematic way to assign directions to edges. If the edge has a
horizontal alignment, we assign the left end with a positive sign. Similarly, a vertically
aligned edge has a negative sign associated with the lower end. When an edge has a mix
of both the alignments, we give priority to the alignment that has a larger distance. In
case of equal alignments in both the directions, we give preference to the height over
width. Assigning directions to the loops is based on the relative position of the vertex
with respect to the loop (left/right or above/below etc.). The column named hp denotes
the sum of the entries of the corresponding row in incidence matrix. The final column
gives the sum of the absolute values of the row entries. Similarly, the row vp denotes
the sum of the corresponding column entries of the incidence matrix, whereas the last
row gives the degrees of the vertices (sum of absolute values of column entries). Later,
we use these entities to represent a component.

a

b

c

d

1 2 3

4

5

6

a b c d hp
1 1 0 -1 0 0 2
2 1 0 -1 0 0 2
3 -1 1 0 0 0 2
4 0 1 -1 0 0 2
5 0 -1 0 1 0 2
6 0 0 1 0 1 1
vp 1 1 -2 1

3 3 4 1

Fig. 7: A sample graph and its signed incidence matrix

5.2 Graph Representations for components

Some OCRs use thinned versions (single pixel width representations) of components in
classification, since it renders the task robust to font thickness and style variations. In
the proposed scheme, we use thinning to obtain information about junctions and strokes
in the character.

A 2D convolution of the binary image of a thinned component with a 3× 3 mask of
ones, yields different values at junctions and edges. Pixels anywhere on any edge get a
value of 3; pixels that define terminal vertices get a value of 2 and pixels that belong to
vertices of order 3 and higher get a value above 3. Thus, one can segregate edges from
vertices and map the component to a planar graph. We adopt a systematic way to assign
directions to edges and associate a signed incidence matrix with the component.

We can expect some of the components belonging to different classes to have same
incidence matrices. Also, due to font variations, we can expect a single component
class to have multiple graph representations. Besides, visually similar looking compo-
nents could end up having very different matrix representations. Before we proceed
further, we see whether the number of edges and vertices in the graph representation of
components alone can be used to subdivide the component classes.

This segregation leads to four important categories of character components, which
we call ‘Object kind i’, i = 1 . . . 4. These categories denote those components which
can be mapped to a point (i = 1), closed loops (i = 2), simple edges joining two
vertices (i = 3) and objects with more than one edge/vertex (i = 4), respectively. It is
interesting to know the prevalence of each of these categories in a general document of
a script. Such an analysis is shown for Kannada script in Table 2, wherein, the number
of components of various kinds found in 113 images obtained from 3 different books
scanned at 300 dpi is shown in relative and absolute terms. Observe that about 30% of
the samples were simple edges connecting two terminal vertices. It is interesting to note
that if we segregate the learning process into three distinct branches (excluding objects
which map to a single point), based on the kind of object we are dealing with, we would
have already achieved one level of simplification of the problem we started with (one
of classifying from about 450 classes). Thus, we begin to see the advantages of simple
graph based features that we have defined. However, this still leaves us with the major

Table 2: Statistics of various kinds of objects collected from 113 scanned Kannada document
pages.

Object Kind 1 2 3 4
Number of samples (%) 1781 (1.5) 4958 (4.3) 33806 (29.3) 74661 (64.8)

task of segregating complex objects of kind 4, which form the major chunk of the data
we get (nearly 65%). The rest of the chapter is dedicated to solve this problem.

Before obtaining incidence matrices, we need to order the edges and vertices in
a manner that remains invariant under normal font variations. However, since vectors
do not have a natural ordering, any spatial ordering scheme can produce a different
incidence matrix for very small changes in the position of the vertices or edges. To

circumvent this problem, we order the edges based on their relative lengths. However,
since vertices do not have such an attribute, we resort to the notion of “vertex signifi-
cance”, wherein we consider the sum of the lengths of the edges incident at a vertex as
an attribute to rank the vertex. i.e, a vertex at which longer and/or more edges are inci-
dent has a higher ranking than the vertex with fewer and/or shorter edges. An incident
matrix with edges and vertices ordered in this manner yields a robust representation
for a component under normal font variations. Ties can either be broken arbitrarily (as
we did), or systematically, based on factors like position etc. We next explore ways in
which we can use the incidence matrix information for the task of classification.

Every classification scheme inherently uses a distance measure to compare patterns
and this plays a decisive role in determining classification efficiency. We build such a
notion from the signed incidence matrices.

5.3 Distance Measures

The area of graph and sub-graph matching addresses the problem we are faced with,
and has been a subject of intense study [14]. However, we report a simple, yet useful
strategy for this purpose. We resort to a few discrete, qualitative notion of distance,
instead of quantitative ones. It is needless to say that this is not the best we can do with
the information we have.

Let I and Iu be the signed and the unsigned incidence matrices, respectively, of a
component. The rows of I are ordered in the descending order of relative edge lengths.
The columns of I are stored in the rank of “vertex significance”. From the graph, we
collect the information in four separate row vectors, which we call Ri, i = 1 . . . 4 and
define as follows:

– R1 = [no. of edges no. of vertices]
– R2 = [Euler no. no. of non zero elements in I]
– R3 = [vert. proj. of Iu horz. proj. of Iu]
– R4 = [vert. proj. of I horz. proj. of I]

where “vert proj” and “horz proj” stand for vertical and horizontal projections respec-
tively, as defined in the context of Fig. 7. Clearly, R1 and R2 contain information about
the gross features of the graph. R3 contains partial information from the unsigned inci-
dence matrix Iu and R4 contains partial information from the signed incidence matrix
in a condensed form.

Given two representations Rm
i and Rn

i i = 1 . . . 4, for samples numbered m and n,
we define the qualitative distance between them as follows-

– if Rm
i = Rn

i for i = 1 . . . j, then they are said to match at level j
– if Rm

1 6= Rn
1 , then they are said to be unrelated

Based on this notion of distance, we define the kinds of relationships the various
component classes may develop, from the observations of graph representations of the
training samples. Let the training samples belong to classes Ck, k = 1, 2 . . . w. Let
Ra,m

i ,m = 1 . . . , p and Rb,n
i , n = 1 . . . , q, i = 1 . . . 4 be the representations of training

samples (p and q in numbers) associated with classes Ca and Cb, respectively.

– for some samples r and s, if Ra,r
i = Rb,s

i ,∀i, and a 6= b, then, Ca and Cb are said
to be in conflict at level 4

– for some samples r and s, if Ra,r
i = Rb,s

i , i = 1, 2, 3 and i 6= 4, and a 6= b, then
Ca and Cb are said to be in conflict at level 3 (similarly, we can define conflicts at
levels 2 and 1)

– Classes in conflict are said to be related
– if for no samples r and s, Ra,r

1 = Rb,s
1 , then classes Ca and Cb are said to be

unrelated
– for some samples r and s, if Ra,r

i = Ra,s
i , i = 1 . . . j < 4 and Ra,r

j+1 6= Ra,s
j+1,

then r and s are equivalent representations of class Ca up to level j

Equipped with these qualitative distance measures between patterns and classes, we
proceed with the classification strategies we use.

5.4 Classification strategy

The classification strategy we have adopted combines both deterministic and proba-
bilistic decision making. First, using training samples, we try to learn the various con-
flicts among classes and equivalent representations for every class. After this learning,
given a test pattern, we use the graph features Ri to see if we can assign a unique class
label. In case of conflicts, this will not be possible. However, in this process of find-
ing a unique class label, the graph based features effectively narrow down the bigger
classification task into a smaller one of classifying a sample to one among the con-
flicting classes. From here, we use probabilistic classification to assign a label to the
test pattern. The important point to observe here is, the switch to conflict resolution
can happen at any level (from 1 to 4), since conflicts can be defined at various levels.
Usually this will be dictated by certain trade-offs between accuracy and computational
cost, as we show later. The classifier we use to resolve conflicts is the Support Vector
Machine (SVM) [15]. Though it is not mandatory to use SVMs, their utility in char-
acter recognition has been well documented [2, 13]. We have chosen RBF kernel, and
the SVM formulation “support vector classification” for multi-class classification, for
reasons elaborated in [13, 15].

5.5 Training

During learning, we build a table of representations that can guide us through the de-
terministic phase of classification. The table is grown by incrementally adding every
new representation that we come across in the training set. A representation here de-
notes values of Ri, i = 1 . . . 4 along with the class label. Every class will retain only
its unique representations in the table. All conflicts and equivalent representations will
be stored in the table. We also keep a count of repetitions of all representations. These
can be used to obtain estimates of prior probabilities of equivalent representations of a
particular class and also the prior probabilities of a particular representation belonging
to conflicting classes, which can be used later for prediction.

Also, we collect features (moment and 2d spline) of components belonging to dif-
ferent classes in different files. Thus, we generate as many feature files as the no. of

classes. For every conflict at every level, we use features from conflicting classes to
build a SVM classifier. e.g., Suppose we find components from 3 different classes are
in conflict at level one (share the same representation, say R1(m)). They can also be in
conflict again at level 1 with some other R1(n). Each of this is a distinct conflict. For
each such conflict at each level, we build a separate SVM classifier, leading to a huge
chest of classifiers. We maintain a table to help us pick the right classifier when a con-
flict arises during testing. We call this as classifier pointer table. We are now equipped
to tackle any conflict that arises during testing.

5.6 Prediction

Fig. 8 shows a schematic of the classification strategy for the components. Given a test
pattern, we obtain its graph representation and look up in the representation table to
find whether such a representation exists in it (a simple string comparison with existing
representations). If a unique match is found (no conflicts), we decide that the test pattern
belongs to the corresponding class. This classification is completely deterministic and
dictated by the graph structure.

In case of conflicts, we use the classifier specifically trained with samples from
the conflicting classes at the highest level of representation, to classify the pattern. e.g.,
given a test pattern, if it so happens that we do not find a match for R4 of the test pattern
in the representation table, but find that conflicts exist at level 3, then it is obvious that
conflict exists at levels 2 and 1 also (due to the very nature by which the representation
table is generated). Though we can choose a classifier trained to resolve conflicts at any
of the levels 1, 2 or 3, we choose the classifier trained to resolve conflicts at level 3, i.e.,
we narrow down the conflicts as much as possible using the graph based representation.
This, as we show later, reduces the computational complexity by a great extent, as
compared to trying to resolve conflicts at lower levels. When we do not find any match
based even at level 1, (i.e., the sample is unrelated to any training data), we can declare
that the test pattern does not belong to any of the given classes. Thus, this scheme
provides an opportunity for decision making at many levels.

5.7 Experiments, Results and Discussion

Data Sets

Synthetic Data Set- This data set contains computer generated character components,
digits and punctuations from 21 different Kannada fonts, including a few decorative
ones. The font size is varied in the range 50 − 100 in steps of 10 and the characters
are printed at 100 dpi. 446 component classes are found in the whole script, including
the ones in multiple-component characters. We have 33, 552 samples in all, providing,
on an average, about 75 samples for each class. The factors that influenced the choice
of this data set are font shape and size variations and the availability of samples from
all possible components in fairly uniform numbers. The size variation in the data set
mimics the usual sizes of components in documents scanned at 300 dpi and higher.

Ri(test) == Ri(table)?

test pattern

i = i + 1

yes

i == 5?

match at
x1, x2 . . . xp

no

no

yes

yes

class label = c(x1)

no

i == 1?

yes

test sample is unrelated
to training data

no

Classify using classifier trained
with data from

c(x1), c(x2) . . . c(xp)

class label

Representation
Table with prior

probabilities

Classifier
pointer
table

Chest of
classifiers

From Training

c(x1) == . . . == c(xp)?

c(x1) == . . . == c(xp)?

class label
= c(x1)

no

yes

Fig. 8: The strategy for classifying the connected components. xi denotes the ith entry in the
representation table. C(xi) denotes its class label.

Real Data Set- This data set contains 50, 316 objects of kind 4, obtained from three
different books with pages randomly chosen from scans performed at 300 and 600 dpi.
The components in this data set belong to 281 classes, leading to around 179 training
samples per class.

Table 3 shows the composition of the synthetic and real data sets. While the real
data set contains only objects of kind 4, the synthetic data set contains components of
every kind. However, Table 3 shows information regarding only the objects of kind 4 in
both the data sets, obtained after extracting bounding boxes of the components. As can
be observed, the real data set has fewer classes but more average samples per class than
the synthetic data set.

Fig. 9 shows the histogram of the number of classes as a function of the logarithm
of the number of samples per class. We observe that a large number of classes in the
synthetic data set (about 180) have more or less similar number of examples (about 90).
We can also observe that there are few classes which have less samples per class. But,
it is evident that the synthetic data set is better than the real data set in representing
various classes. From Fig. 9b, we see that there are huge variations in the number of
samples per class. This is substantiated by the figures in Table 3, where the standard
deviation is higher than the mean. We observe that more than half the classes have
far fewer samples per class than the synthetic data set, while a few classes had too
many, leading us to conclude that this real data set is biased. All the results that we
present in this section need to be interpreted taking into account this observed bias. For
this reason, we believe that the results from the synthetic data set better represent the
general properties of the proposed scheme.

Table 3: Statistics regarding objects of kind 4 in synthetic and real data sets. Values of component
height and width are given in number of pixels.

Synthetic Data set (406 classes, 26851 samples)
Comp. ht. Comp. wd. #test samples/class

mean 55.4 76.4 66
std 71.1 34.6 45

Real Data set (281 classes, 50316 samples)
Comp. ht. Comp. wd. #test samples/class

mean 48.9 47.6 179
std 14.0 18.0 579

Features for SVM classifiers We choose features that do not require image scaling.
Thus, we use normalized central moment features [16] and 2d least squared B-spline
features [17]. Though moment features have been extensively studied and used, the use
of 2d B-splines for this purpose has received relatively little attention. Since these are
solutions to sets of linear equations, they are not computationally very expensive. Our
limited comparative studies seem to show that 2d least squared B-spline coefficients
can be effectively used as features for component recognition. Fig. 10 shows the 8-fold

(a) Synthetic Data set (b) Real Data set

Fig. 9: Statistics on the number of samples per class in the data sets. x-axis:ln(#samples/class),
y-axis: No. of classes.

cross validation results on the synthetic data set obtained from libsvm [15] using an
RBF kernel with 25 B-spline features, on objects of kind 4.

Pre-processing Real OCR data can have holes in edge strokes as a result of noise
and binarization. Thinning is extremely sensitive to the presence of holes. If spurious
holes are not filled, they can lead to unwanted thinned characters, and thereby to wrong
graphs. This, by far, seems to be the biggest challenge to graph based representation
of noisy components. A good morphological pre-processing step can probably mitigate
this problem to a great extent. We found morphological majority, followed by spurring
to be sufficient to overcome most of these effects in synthetic data. However, we find
that this may not be sufficient to tackle effects of noise in real data. It is needless to say
that the efficacy of the proposed method would improve by adding more sophisticated
morphological preprocessing and script specific processing steps that can render graph
representations robust to noise and font variations.

Results and discussions We segregated the synthetic data set into the four kinds of
objects discussed in section 5.2. The first column of Table 4 gives details regarding the
components of various kinds in the synthetic database. The term without brackets is the
object kind. The first term in brackets is the no. of classes contributing to this object
kind and the second term in brackets is the no. of samples of the particular object kind
found in this database and the last term in brackets gives the proportion of the particular
kind of object in the database. Note that a single class can turn out to belong to different
object kinds due to variations in fonts.

Fig. 10: Cross-validation results obtained using a multiclass SVM (RBF kernel) for objects of
kind 4, with 25 2d-spline features. The log scales of the axes are in base 2.

These statistics differ from the statistics obtained from real data shown in Table 2,
since these were synthetically generated. We can observe that 14 classes contribute to
objects of kind 2 (closed loops) and 76 classes contribute to objects of kind 3 (simple
edges). The fact that we can efficiently classify objects of kind 2 and 3 using dedicated
classifiers is shown in column 4 of the same table.

However, objects of kind 4 have contributions from 414 classes. As we can observe,
the relative cost of computation rises steeply for classifying objects of kind 4. The table
shows that if we use 16 moment features, time to classify a pattern of kind 4 will be
about 66 times more than the time needed to classify an object of kind 2, and with 25
spline features, it could be nearly 106 times longer. This is the difficulty we encounter
when we try to classify objects of too many classes and particularly so, as the dimension
of the feature vector increases. Hence, objects of kind 4 will be the focus of our study
in the rest of this article. As can be seen from the last row of the same table, the spline
features outperform the moment features at nearly the same computational cost.

We have built two separate classifiers on the lines of the proposed scheme to segre-
gate objects of kind 4 in synthetic and real data sets. We have performed 8-fold cross-
validation on each of the data sets. During each cross-validation run, (7/8)th of the data
samples are used for training, using which, we build a representation table and derive
features to build models to classify conflicting classes at various levels using SVMs.
The rest of the data is used for testing. We have run two experiments, one with 16 mo-
ment features and the other with 25 spline features on the synthetic data set, while we
used only 16 moment features in the real data set, since we observed similar trends
with both features in the synthetic data set. We report results from both the classifiers
and corresponding features. Since the results from the deterministic part of the strategy

Table 4: Cross-validation results for synthetic data set, obtained using SVM (rbf kernel) alone.
mnts- Moment features, spl- 2d least squared spline features, Dim.- Dimensionality, (C,γ)- Values
of C and γ for best accuracy, Cost- Relative cost of classification.

Obj. kind features Dim. Best(%) Accu. C,γ SVs Cost
2 (14) mnts 16 98.35 16, 1 261 1.0

(977) (3.0%) spl 25 98.26 16, 0.0625 170 1.0
3 (76) mnts 16 98.67 64, 4 1701 6.5

(5178) (15.7%) spl 25 98.82 64, 0.0625 1927 11.5
4 (414) mnts 16 97.09 256, 16 17261 66.1

(26851) (81.4%) mnts 25 97.38 256, 4 17360 103.9
spl 25 98.51 256, 1 17669 105.8

are invariant to the chosen features (we used the same representation tables for both
the features), they are reported only once for each classifier. In our discussions, we
mostly quote results obtained with moment features from the synthetic data set and the
corresponding results from the real data set are quoted in brackets.

We have chosen a strategy to obtain useful C and γ for training the SVMs for every
conflict, since this is critical for obtaining good results. In order to achieve this, we have
performed 3-fold cross-validations across a wide range of C (20 − 26 in powers of two)
and γ (2−8− 22 in powers of two) values. If the peak performance occurred at a unique
pair of C, γ value, we have used the same for training the SVM. If many pairs of C,
γ give the same performance, we have used the average values, since, as we see from
Fig. 10, the regions of similar performance are nearly convex and hence, we expect the
means to lie within these regions. However, the values so obtained need not be optimal.
In reporting the results, for ease of reading, wherever appropriate, we have rounded the
mean values of no. of classes, support vectors and conflicts to the nearest integer.

Table 5 shows the statistics obtained from the 8 representation tables generated by
the cross-validation experiments. As expected, there are fewer unique strings at lower
levels of representations. A fact that is clearly evident from Table. 5, is the relatively
high variation observed in the real data set, in terms of graph representation. This is
borne out by the fact that the total number of representations in the table is on an aver-
age, nearly half the size of the training data, while for the synthetic data set, it was only
about a quarter. We believe that the main reason for this is that we have far few samples
for many classes, as seen in Fig. 9b, and invariably, nearly all of them have to end up in
the representation table, thereby increasing the table length. What is interesting is the
fact that nearly 62% (UR4/

∑
URi) (86% for real data set) of all the variations occur

only at level 4. i.e., if the representation table construction were to be truncated at level
3, on an average, the number of representations in our tables would be only about 12%
(8%) of the overall training samples. This could be a pointer to the fact that we might
not have had enough samples in both real and synthetic data sets for learning, especially
at levels 3 and 4.

Table 6 shows information about the conflicts found in the tables. It shows that con-
flicts increase as the level of representation increases. Though this may seem counter
intuitive, we need to observe that the no. of unique representations at every level also

Table 5: Statistics from the representation tables. # Tr. - No. of training samples, Reps. - Total
representations in the table. URi, i = 1 . . . 4 - “unique representations at level i” in the tables,
(% total) - The means as a percentage of # Tr.

Tr. Reps. UR1 UR2 UR3 UR4

Synthetic Data set (26851 samples)
mean 23550 6274 71 332 2356 4425

(% Tr.) 100.0 26.6 0.3 1.4 10.0 18.8
std 2.2 16.2 0.7 5.0 9.9 11.1

Real Data set (50316 samples)
mean 43924 24677 107 237 3275 21705

(% Tr.) 100.0 56.2 0.2 0.5 7.5 49.4
std 16.4 19.6 2.3 1.5 5.8 33.9

increases, as shown in Table. 5, thus bringing down the no. of classes per conflict. Ta-
ble 6 points to the important fact that we must expect the training times to be huge
if we want to use the proposed scheme. As described in section 5.4, each conflict is
eventually resolved using an SVM. We need to cross-validate and find optimal param-
eters for each of these SVMs. Thus, in total, we need to cross-validate and train on
an average about 1477 SVMs (61+233+618+565) for synthetic data and 2533 SVMs
(93+153+1148+1139) for real data. Although the number of training samples per SVM
goes down as we go to higher levels of representation (which we shall see shortly), it
still looks like a daunting task. However, given that the training is usually a one time
job in the case of OCR engines, the highest importance is accorded to the classification
time and accuracy. We shall shortly show that this exorbitant cost we incur in training
pays off well during testing, and hence should not be a matter of concern in developing
OCR engines on these lines.

The crucial information about what happens to computational costs is captured in
the number of classes per conflict, since this determines the no. of support vectors and
hence the cost of computation. Table. 6 shows this statistics too. As we can observe,
the no. of classes per conflict (hence classifier) varies drastically. e.g., for level 4, the
average no. of classes per conflict is 4 (3). But the maximum no. of classes is found
to be 50 (14) for a particular SVM, thereby hinting that there should be many SVMs
which distinguish only 3 or 2 classes. Hence, the average computational cost could be
much lower, than what we perceive from this table. Similar is the case with other levels
too.

Table 7 shows the average no. of support vectors per classifier, which is a better
estimate of how the computational need will go down, as we go to higher levels of
representations. It shows that classifying data at level 4 could be nearly 19 (32) times
quicker on an average (using moments), compared to classifying it at level 1. However,
as we could have guessed by the huge deviations in the no. of classes per classifier,
the no. of support vectors per classifier has a huge variance too. What is clear from the
results of Table 7 is that the computational cost of classification using the proposed
scheme at various levels is much lower than the cost of classification using a single
multi-class SVM (M-SVM), whose results are shown in Fig. 10. However, this gain
does not take into consideration the cost involved in searching the representation table

Table 6: Number of conflicts and classes per classifier at various levels.

Level 1 Level 2 Level 3 Level 4
Conflicts at each level

Synthetic Data set
mean 61 233 618 565
std 1.0 2.9 5.2 4.1

Real Data set
mean 93 153 1148 1139
std 1.0 2.5 8.0 12.3

Classes per classifier
Synthetic Data set

mean 46 16 5 4
std 48.7 22.5 8.6 4.7

max 182 123 119 50

Real Data set
mean 43 27 7 3
std 37.1 34.2 9.9 1.7

max 118 117 92 14

Table 7: No. of support vectors per classifier (denoted as SVs/Cfr) and mean relative compu-
tational cost (mean. rel. cost) at various levels. M-SVM stands for the single multi-class SVM
trained with samples from all classes.

SVs/Cfr M-SVM Level 1 Level 2 Level 3 Level 4

Synthetic Data set
Normalized central moments (16 features)

mean 15949 1598 445 99 84
std 33 2007 838 272 157

max 15983 8326 5218 4197 1883
mean. rel. cost 189.9 19.0 5.3 1.2 1.0

2d Least Squared splines (25 features)
mean 16178 1584 467 137 101
std 28 2023 878 319 176

max 16229 8324 5426 4449 1926
mean. rel. cost 160.2 15.7 4.6 1.4 1.0

Real Data set
Normalized central moments (16 features)

mean 9554 1978 1204 222 61
std 62 1951 1764 522 75

max 9596 6161 6074 5458 995
mean. rel. cost 157.2 32.6 19.8 3.7 1.0

2d Least Squared splines (25 features)
mean 8050 1762 971 199 61
std 59 1742 1518 470 68

max 8114 5607 5568 4803 617
mean. rel. cost 132.0 28.9 15.9 3.3 1.0

and obtaining graph based features, which we shall mention shortly. Assuming that
these costs are relatively small, we see that classifying a component using the proposed
scheme can give us acceleration factors of nearly 10 (5), 36 (8)), 162 (43) and 189 (157)
respectively, as we go to higher levels of representation using moments features. This
makes a huge difference to testing time, which is very crucial for OCR applications.
This can make a big difference in practically being able to use a classifier for the task.
Though results shown in Fig. 10 are very attractive, such a classifier can seldom be used
in real-life applications, due to this single factor.

The lower speed up factors for real data set, observed in Table 7, can be attributed
to the fact that far fewer classes are being classified in the real data set compared to the
synthetic one. We believe that a real data set with a large number of classes would show
results similar to the synthetic data set, since an increased number of classes would
relatively increase the support vectors in the single multiclass SVM by a huge margin,
as compared to the increase in support vectors in classifiers trained to resolve conflicts.

To know the true gain in speed, we must factor out the time spent on obtaining
graph based features and in traversing the deterministic path of the scheme, wherein we
employ string matching to narrow down to higher levels of representation. Some OCR
algorithms thin or skeletonize the data to remove certain font based dependencies. Get-
ting to graphs from this stage involves only binary morphological filtering, and simple
calculations which can be implemented efficiently. Thus, we can safely exclude the role
of this while estimating computational costs. In the deterministic part of the algorithm,
we perform exact binary string search over small strings (maximum length being around
150 bytes). The search can be made quicker by building a heap structure from the rep-
resentation table during training [18], leading to search times of θ(ln(n)), n being the
number of entries in the representation table. This computation is much smaller than
θ(s × d) multiplications, where s and d represent the no. of support vectors and their
dimension, respectively. This is especially true at lower levels of representations, where
the strings are only a few bytes in length, but the number of support vectors is relatively
large. The deterministic and probabilistic computational costs may become comparable
only at higher levels (3 and 4), in which case, we see that the acceleration factors are
above 100. Factoring out the computational needs for the deterministic part still leaves
us with huge acceleration factors. Hence, we see that the SVM classification is the only
major computational cost we incur at lower levels of representation. This behaviour be-
comes particularly useful when one would like to increase the number of features being
used by the SVMs to resolve conflicts.

Moreover, the total entries in the representation table should logically reach a satu-
ration limit as the number of training samples increases. Thus, as the size of the training
set increases, the string search part of the algorithm may need relatively less and less
time, as compared to SVM classification. In all, we can safely conclude that we can
indeed realize large acceleration factors by resorting to the proposed scheme.

Though the proposed scheme looks computationally attractive, the performance of
this scheme in terms of classification accuracy is also important. Table 8 shows the re-
sults obtained from the cross-validation study. The classification accuracy at a particular
level refers to the accuracy obtained by restricting conflict resolution to that level. e.g.,
if we do not use the representations beyond R1 and instead resolve conflicts by using

Table 8: Classification accuracies when classification is restricted to a particular level of graph
based features.

Classification
Accuracy (%)

Level 1 Level 2 Level 3 Level 4

Synthetic Data set
Normalized central moments (16 features)

mean 94.8 93.2 88.3 90.1
std 0.3 0.6 0.9 0.6
min 94.3 92.0 86.9 89.2
max 95.4 94.0 90.1 90.8

2d Least Squared splines (25 features)
mean 95.8 94.3 88.6 90.7
std 0.3 0.3 0.6 0.5
min 95.5 93.8 87.5 89.8
max 96.2 94.7 89.1 91.1

Real Data set
Normalized central moments (16 features)

mean 96.3 95.9 87.4 82.8
std 0.2 0.2 0.6 0.6
min 96.1 95.6 87.1 82.3
max 96.4 96.1 87.8 83.2

2d Least Squared splines (25 features)
mean 96.7 96.3 87.7 83.1
std 0.2 0.2 0.3 0.6
min 96.4 96.0 86.7 82.4
max 97.0 96.6 88.2 84.1

classifiers trained to resolve conflicts at level 1, we get results tabulated in the second
column of Table 8. However, if we let the algorithm use the full extent of representa-
tion, we get results up to level 4 (last column). Due to lack of matching representations
at higher levels, some decisions may have to be taken at lower levels. i.e, results at level
4 could have contained results obtained at lower levels. We observe that the classifica-
tion accuracies obtained at levels 1 and 2, though slightly lower, are comparable to the
ones shown in Fig. 10, thereby making a clear case in favour of this strategy by virtue
of its classification speed. Table 8 also shows that decision making at lower levels (1
and 2), irrespective of whether we could make decisions at higher levels, can yield bet-
ter accuracy. However, this comes at an increased computation cost, as shown in Table
7. We see a trade-off between accuracy and computational cost coming into picture at
this juncture. But classifying at level 2 is still about 36 (8) times faster than what we
would have done with a single SVM classifier, as we can infer from Table 7. Also, as
expected, we observe that the classification accuracies obtained with splines is better
than those obtained with moment features with both the synthetic and real data.

It is instructive to see what the contribution of each of the levels is, to the total clas-
sification. Table 9 shows such a break-up. We see that nearly 90% (63%) of the data can

Table 9: Contribution from each level for the total classification.

Contribution (%) Level 1 Level 2 Level 3 Level 4

Synthetic Data set
mean 0.12 3.98 4.97 90.07
std 0.05 0.50 0.45 0.61

Real Data set
mean 0.17 3.43 33.36 63.01
std 0.03 0.09 0.42 0.43

be classified at level 4, which is a very good prospect from the point of view of compu-
tational cost. However, from Table 8, we find that we may have to sacrifice accuracy in
this case. We observe that in the case of real data, about 30% of the components have
no match with existing representations at level 4, clearly indicating that the learning of
representations at level 4 is at its very early stages. As we find, it is better in the case of
synthetic data, where only 10% needs to be classified at the lower levels.

We now try to analyze the various errors leading to relatively poor performance at
higher levels of representation. It is also important to note the fact that in the proposed
graph based scheme, there are two kinds of errors that can be committed at each level.
First, the errors due to the deterministic part of the algorithm based on graph features.
Second, the errors committed by individual SVMs. It is instructive to know which of
these errors dominates at each level. This can provide insights to improve upon the
achievable classification accuracy. Table 10 shows such statistics. We can split the
errors that arise due to graph features into three types, referred to as Type 1, 2 and 3.
Type 1 errors are those for which no match could be found even at level 1. Type 2 errors
denote those instances where, though a unique string match is found, the label assigned

Table 10: Relative (%) errors when classification is restricted up to a particular level.

Rel. Errors (%) level 1 level 2 level 3 level 4

Synthetic Data set
Graph Normalized central moments (16 features)
Type 1 0.5 0.4 0.3 0.5
Type 2 2.1 3.2 42.8 36.7
Type 3 61.5 72.8 44.5 43.5
Total 64.1 76.4 87.6 80.7
SVM 35.9 23.6 12.4 19.3
Graph 2d Least Squared splines (25 features)
Type 1 0.7 0.5 0.3 0.6
Type 2 3.4 4.1 48.6 39.7
Type 3 74.9 82.4 44.0 48.5
Total 79.0 87.1 92.9 88.8
SVM 21.0 12.9 7.1 11.2

Real Data set
Graph Normalized central moments (16 features)
Type 1 0.7 0.6 0.2 0.4
Type 2 1.5 5.3 22.4 54.7
Type 3 69.0 68.4 71.1 43.0
Total 71.2 74.4 93.7 98.1
SVM 28.8 25.6 6.3 1.9

Graph 2d Least Squared splines (25 features)
Type 1 1.1 1.0 0.3 0.5
Type 2 3.0 6.0 23.9 55.1
Type 3 81.6 80.5 72.5 42.7
Total 85.7 87.5 96.7 98.3
SVM 14.3 12.5 3.3 1.7

based on graph features is wrong. Type 3 errors occur when the classifier pointer table
associates a wrong classifier for the test pattern.

As we find from Table 10, most of the errors are indeed due to reliance on the graph
based representation, especially of Type 2 and Type 3. We also observe that errors due
to SVMs is much less in the case of splines, than in the case of moment features. We
observe that at levels 1 and 2, most errors are of type 3, whereas errors of type 2 are
very low. This indicates that we have been able to learn the existence of conflicts, or
patterns that lead to conflicts, but have been unable to capture all the conflicting classes
for various representations.

This is in contrast to the case of levels 3 and 4, where we observe that errors of type
2 are significant, indicating that the learning is oblivious to the fact that multiple classes
share a common representation, let alone know which of them. This also explains the
large contribution of errors of type 3 at these levels. This indicates that the algorithm
has not seen enough training samples at these levels and is still at a very early stage
of learning. Theoretically, errors of type 2 and 3 should be absent (or saturate to some
value in practice) with larger training sets, since this is a deterministic strategy. Hence,
to realize the true value addition provided by the proposed graph based scheme, we may
need to use huge training sets.

Moreover, the representation of characters based on Ri is a very simple reduction of
the information actually present in the signed incidence matrix. We can employ graph
matching/comparison algorithms [14, 19], and/or other graph features, which may bet-
ter the performance of the deterministic part of the scheme.

We can see that there is scope for improvement on the SVM front too (especially in
the case of synthetic data). We attribute the errors committed by SVM to sub-optimal
parameter selection and training. As mentioned earlier, we train each SVM based on
an average of a set of best parameters obtained from three-fold cross-validation over a
coarsely sampled, wide range of parameters [15]. This we should expect by no means
to lead to best possible results with SVMs. Moreover, we had too few samples to train
the SVMs. An increase in the number of training samples might yield better classifica-
tion accuracy for each individual SVM. These observations make us believe that we can
improve the performance here too. So, a better parameter criterion to choose the train-
ing parameters combined with search on a much finer parameter grid should definitely
improve the results. A particular aspect that could perhaps be helping SVM classifica-
tion is the fact that a set of conflicting classes need not necessarily have components
that look visually alike, since the grouping is based on graph features. This can make
the classification task easier when features that capture visual information are chosen.
So, perhaps fewer and simpler features can suffice for the task on hand. We can even
probably choose a different set of features to classify at different levels.

We now analyze other possible causes for the observed poor performance at higher
levels. We believe the degradation in performance can be attributed to three main causes
apart from the size of the training data set. The first is the inherent variation in real
data. Perhaps we can try to alleviate this effect by using script-specific pre-processing
schemes. e.g., discarding very small terminal edges, closing looping edges and coalesc-
ing very small non-terminal edges with vertices. The second contributor to the malper-
formance could be noise leading to holes in component images during binarization.

Presence of holes can dramatically alter graph representations, thereby mixing up rep-
resentations, and increasing representations per class. This can also be minimized by
better pre-processing techniques. However, the third and a more subtle factor to note, is
the effect of scanning resolution. Since the deterministic part of the algorithm depends
heavily on edge junctions, a coarse scan can lead to loss of junction information. This
can make graph representation less effective. A component scanned at different reso-
lutions can have very different graph representations. Thus, a relatively high scanning
resolution (depending on the font size) may be needed in order to extract best results
from the graph based schemes. This further emphasizes the need to use features which
do not need image scaling for use with classifiers, since, as images get larger, resizing
gets costlier. From Table 3, we observe that the components in the real data set have
significantly different statistics compared to the synthetic data set, and are on an aver-
age, smaller especially in width. This could probably be due to particular classes being
completely missed out in real data set. However, if indeed small sized components exist
in the data set, they could lead to more conflicts at higher levels, as evidenced by Table
6, thereby making learning harder. Combinations of these factors need to be accounted
for, during training and testing, for the graph based scheme to be effective.

From the above results and discussions, we see that there is a large scope for im-
provement in the whole methodology. The results mentioned here are only conservative
estimates of what is potentially achievable with this scheme.

Extensions- In the experiments we discussed, we have not used the prior-information
about which we mentioned in section 5.4. Using prior information can help us identify
insignificant conflicts, which can be omitted in training, thereby reducing the training
time. In conjunction with SVMs that can give probabilistic outputs [15], it can also help
to improve the classification accuracy of the SVMs.

We could continue to use the strategy outlined here and use other graph features to
further sub-divide the problem. A particularly useful extension could be to use edge la-
bels obtained from an edge classifier (mapped to edge weights in graphs) to disentangle
possibly merged components. The proposed method also seems to be potentially useful
in online character recognition, where we can replace edge information by stroke infor-
mation. In this case, we will not have the problem of ordering edges and vertices, since
we obtain time information with each stroke. This may make this strategy very suitable
for online character recognition.

6 Conclusion

A bilingual OCR system has been presented, with a robust segmentation strategy that
does not depend on projections. We have demonstrated the use of graph based features
in building fast and efficient classification engines for Kannada script. This can easily be
extended to other scripts, since this is a script-independent strategy. Though the scheme
involves a highly taxing learning phase, we have shown that it can yield a high speedup
in testing, a key factor in designing OCR engines. We have discussed the scalability
of the scheme and shown that it is well suited for learning from very large data sets.
Similar ideas could be used to develop bilingual OCR’s involving other Indian scripts.

References

1. B. Vijayakumar and A. G. Ramakrishnan, Machine Recognition of Printed Kannada Text,
Document Analysis Systems V, Ed. D Lopresti, J Hu and R Kashi, pp. 37-48, Lecture Notes
in Computer Science 2423, Springer Verlag, Berlin, 2002.

2. T. V. Ashwin and P. S. Shastry, A font and size independent ocr system for printed kannada
documents using support vector machines, SADHANA Vol .27, Part 1, February 20002, pp.
35-58.

3. P B Pati, ”Analysis of Multi-lingual Documents with Complex Layout & Content”, PhD The-
sis, Indian Institute of Science, Bangalore, INDIA, 2007.

4. P. B. Pati and A. G. Ramakrishnan, ”Word level multi-script identification, Pattern Recogni-
tion Lett.(2008), doi:10.1016/j.patrec.2008.01.027

5. P. B. Pati, S. S. Raju, N. K. Pati and A. G. Ramakrishnan, ”Gabor filters for document
analysis in Indian Bilingual Documents,” Proc. First Intl. Conf. on Intelligent Sensing and
Information Processing (ICISIP-04), IEEE Publications, Chennai, India, 2004, pp.123 - 126.

6. D. J. Field, ”Relation between the statistics of natural images and the response properties of
cortical cells,” Journal of Opt. Soc. of Am. A, vol. 4, no. 12, 1987, pp. 2379 - 2394.

7. K. R. Rao and P. Yip, Discrete Cosine Transform : Algorithms, Advantages, Applications.
New York: Academic Press, 1990.

8. R. Muralishankar, A. G. Ramakrishnan, and P. Prathibha, ”Modification of pitch using DCT
in the source domain,” Speech Communication, vol. 42, 2004, pp. 143 - 154.

9. P. B. Pati, ”Machine recognition of printed Odiya text documents,” Master’s thesis, Indian
Institute of Science, Bangalore, INDIA, 2001.

10. C. J. C. Burges, ”A tutorial on support vector machines for pattern recognition,” Data Mining
and Knowledge Discovery, vol. 2, no. 2, 1998, pp. 955 - 974.

11. R. Collobert and S. Bengio, ”On The convergence of SVMTorch, an Algorithm for Large
Scale Regression Problems,” Tech. Rep., Dalle Molle Institute for Perceptual Artificial Intel-
ligence, Martigny, Switzerland, 2000.

12. Peeta Basa Pati and A. G. Ramakrishnan, OCR in Indian Scripts: A Survey, IETE Technical
Review, Vol. 22, No. 3, May-June 2005, pp. 217-227.

13. Chih-Wei Hsu, Chih-len Lin. A comparison of methods for multiclass support vector ma-
chines. IEEE Trans Neural Networks. 13: 415-425, March (2002).

14. Bruno T. Messmer and Horst Bunke,Efficient Subgraph Isomorphism Detection: A Decom-
position Approach, IEEE Trans. Knowl. Data Eng. 12(2): 307-323 (2000).

15. Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines, Soft-
ware available at http://www.csie.ntu.edu.tw/ cjlin/libsvm

16. J. Flusser. Moment invariants in image analysis. In Proc. World Academy of Science, Engi-
neering and Technology. Vol 11, Feb 2006.

17. C. De Boor. A Practical Guide to Splines. Springer-Verlag, 1978.
18. R. L. R. Thomas H. Cormen, Charles E. Leiserson. Introduction to algorithms. MIT

Press/McGraw-Hill, 1990.
19. D. Lopresti and G. Wilfong. A fast technique for comparing graph representations with

applications to performance evaluation. International Journal on Document Analysis and
Recognition, 6(4):219–229, April 2003.

