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Abstract

This paper proposes COCOCLUST, a contour-based
color clustering method which robustly segments and bina-
rizes colored text from complex images. Rather than op-
erating on the entire image, a ‘small’ representative set of
color pixels is first identified using the contour information.
The method involves the following steps: (i) Identification of
prototype colors (ii) A one-pass algorithm to identify color
clusters that serve as seeds for the refining step using k-
means clustering (iii) Assignment of pixels in the original
image to the nearest color cluster (iv) Identification of po-
tential candidate text regions in individual color layer and
(v) Adaptive binarization. We propose a robust binarization
technique to threshold the identified text regions, taking into
account the presence of inverse texts, such that the output
image always has black text on a white background. Exper-
iments on several complex images having large variations
in font, size, color, orientation and script illustrate the ro-
bustness of the method.

1. Introduction

The use of digital cameras for image acquisition has en-
abled human interaction with any type of document in any
environment. In addition to imaging hard copy documents,
digital cameras are now used to acquire text information
present in 3-D real world objects such as buildings, vehi-
cles, road signs, billboards and T-shirts rendering the im-
ages more difficult for any recognition task. Such camera-
captured documents are generally characterized by varying
illumination, blur, perspective distortion and deformations.
Moreover, large variations in font style, size, color, orien-
tation and layout pose a big challenge to document anal-
ysis. Conventional optical character recognition engines
meant for document images obtained using flat-bed scan-
ners fail on images acquired by this promising mode. Spe-

cialized techniques are required to deal with these problems.
Thus, research on camera-based document image analysis is
growing [4].

In most document processing systems, a binarization
process precedes the analysis and recognition procedures.
It is critical to achieve robust binarization since any error
introduced in this stage will affect the subsequent process-
ing steps. The simplest and earliest method is the global
thresholding technique that uses a single threshold to clas-
sify image pixels into foreground or background classes.
Global thresholding techniques are generally based on his-
togram analysis [6, 9]. It is simple, fast and works well
for scanned images that have well-separated foreground and
background intensities. Camera-captured images often ex-
hibit non-uniform brightness because it is difficult to control
the imaging environment unlike the case of the scanner. The
histograms of such images are generally not bi-modal and a
single threshold can never yield an accurate binary image.
As such, global binarization methods are not suitable for
camera images.

Local binarization techniques use a dynamic threshold
across the image according to the local image statistics
and offer more robustness to non-uniform illumination and
background noise. These approaches are generally window-
based and the local threshold for a pixel is computed from
the gray values of the pixels within a window centred at that
particular pixel. In Niblack’s method [8], the sample mean
µ(x, y) and the standard deviation σ(x, y) within a window
W centred at the pixel location (x, y) are used to compute
the threshold T (x, y) as follows:

T (x, y) = µ(x, y)− k × σ(x, y), (1)

The constant parameter k is set to 0.2. In [11], Trier and
Jain evaluated the performance of 11 popular local thresh-
olding methods on scanned documents and reported that
Niblack’s method performs the best for optical character
recognition. However, Niblack’s method produces a noisy
output in smooth regions since the expected sample vari-
ance becomes the background noise variance. Sauvola and



Pietikainen [10] address this drawback by introducing a hy-
pothesis that the gray values of the text are close to 0 (Black)
while the background pixels are close to 255 (White). The
threshold is computed with the dynamic range of standard
deviation (R) which has the effect of amplifying the contri-
bution of standard deviation in an adaptive manner.

T (x, y) = µ(x, y) [1 + k (
σ(x, y)

R
− 1)] (2)

where the parameters R and k are set to 128 and 0.5 respec-
tively. This method overcomes the effect of background
noise and is more suitable for document images. However,
as pointed out by Wolf et al. in [13], the Sauvola’s method
fails for images where the assumed hypothesis is not met
and accordingly, the former proposed an improved thresh-
old estimate by taking the local contrast measure into ac-
count.

T (x, y) = [1− a]µ(x, y) + aM + a
σ(x, y)
Smax

[µ(x, y)−M ]

(3)
where M is the minimum value of the grey levels of the
whole image, Smax is the maximum value of the standard
deviations of all windows of the image and a is a parameter
fixed at 0.5. This method combines Savoula’s robustness
with respect to background textures and the segmentation
quality of Niblack’s method. The Wolf’s method, however,
requires two passes since the parameter Smax is obtained
only after the first pass of the algorithm.

Local methods offer more robustness to the background
complexity, though at a cost of higher computational com-
plexity. The performance of these methods depend on the
size of the window used to compute the image statistics.
They work well if the window encloses at least 1 character.
For large fonts, where the text stroke is wider than the win-
dow, undesirable voids appear within the text stroke. This
puts a constraint on the maximum font size and limits their
application only to known document types. In addition, all
these methods require a priori knowledge of the polarity
of the foreground-background intensities and hence cannot
handle documents that have inverse text. Kasar et al. [7]
address these issues by employing an edge-based approach
that derives an adaptive threshold for each connected com-
ponent (CC). Though it can deal with arbitrary font size and
the presence of inverse text, its performance significantly
degrades, like most CC-based methods do, in the presence
of complex backgrounds that interfere in the accurate iden-
tification of CCs. It also uses script-specific characteristics
to filter out edge components before binarization and works
well only for Roman script.

Most approaches [5, 12, 14] for the analysis of color doc-
uments involve clustering on the 3D color histogram fol-
lowed by identification of text regions in each color layer
using some properties of text.

Badekas et al. [2] estimate dominant colors in the im-
age and CCs are identified in each color plane. Text blocks
are identified by CC filtering and grouping based on a set
of heuristics. Each text block is applied to a Kohonen SOM
neural network to output only two dominant colors. Based
on the run-length histograms, the foreground and the back-
ground are identified to yield a binary image having black
text in white background. The performance of these meth-
ods rely on the accuracy of color reduction and text group-
ing, which are not trivial tasks for a camera-captured com-
plex document image. The method does not consider iso-
lated characters for binarization. Zhu et al. [15] proposed a
robust text detection method that uses a non-linear Niblack
thresholding scheme. Each CC is described by a set of low
level features and text components are classified using a cas-
cade of classifiers trained with Adaboost algorithm. An ac-
curate identification of CCs is the key to the success of these
algorithms. Complex backgrounds and touching characters
can significantly degrade their performance.

In this paper, we introduce a novel color clustering ap-
proach that robustly segments the foreground text from the
background. Text-like regions are identified and individu-
ally binarized such that the foreground text is assigned black
and the background white regardless of its color in the orig-
inal input image.

2 COCOCLUST for color segmentation

We propose a novel contour-based color clustering tech-
nique that obviates the need to specify the number of colors
present in the image and to initialize. Rather than operating
on the entire image, a representative set of color pixels is
first identified using the contour information. This signifi-
cantly reduces the computational load of the algorithm since
their number is much smaller than the total number of pix-
els in the image. A single-pass clustering is then performed
on the reduced color prototypes to identify color clusters
that serve as seeds for a subsequent clustering step using
the k-means algorithm. CCs are accurately identified since
text and background objects fall into separate color layers.
Based on the assumption that every character is of a uniform
color, we analyze each color layer individually and identify
potential text regions for binarization. Figure 1 shows the
schematic block diagram of the proposed method.

2.1 Determination of color prototypes

The segmentation process starts with color edge detec-
tion to obtain the boundaries of homogeneous color regions.
Canny edge detection [3] is performed individually on R,
G and B channel and the overall edge map E is obtained as
follows:

E = ER ∪ EG ∪ EB (4)



Figure 1. Block diagram of the proposed binarization method.

where ER, EG and EB are the edge images corresponding to
the three color channels and ∪ denotes the union operation.
The resulting edge image gives the boundaries of all the
homogeneous color regions present in the image.

An 8-connected component labeling is performed on the
edge image to obtain a set of M disjoint components

{CCj} j = 1, 2 , · · · , M such that
M⋃

j=1

CCj = E

The boundary pixels are identified and represented as
follows:

Xj
i = {xi, yi} i = 1, 2, · · · , nj (5)

where nj is the number of pixels that constitutes the bound-
ary and the index j refers to the connected component CCj .
Our method employs a few vectors normal to the edge con-
tour for every CCj . To estimate the normal vector, the edge
contour is smoothed locally as follows:

X̄j
i =





1
s

i+ s−1
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2

xi,
1
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 (6)

where s defines the span of pixels over which smoothing
is performed and is set to 5 in this work. Here, the index
i takes a circular convention to maintain continuity of the
contour. The normal vectors are then computed from the
smoothed contour using the following relation.

nj
i =

[
cos(π

2 ) −sin(π
2 )

sin(π
2 ) cos(π

2 )

]
×

1
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X̄j

i − X̄j
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+

X̄j
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i+1 − X̄j

i‖

)
(7)

Here, the subscript i denotes the position of the boundary
pixel at which the normal vector is computed and ‖ · ‖ de-
notes L2 norm.

Since the edge image gives the boundaries of homoge-
neous color regions, the color values of a few pixels that
lie normal to the contour are ‘good’ representatives of the
colors present in the image. Figure 2(a) shows the edge con-
tours for a sample color image and Figure 2(b) illustrates the
selection of color prototypes from the pixels that lie normal
to the edge contour. The median color values of the pixels in
the normal direction that lie ‘inside’ (nj

−) and ‘outside’ (nj
+)

the boundary are computed based on 3 pixels each to ob-
tain 2 color prototypes from each normal. The color differ-
ence between two points with the same Euclidean distance
in the RGB color space does not reflect the same change
in the perceived color. So, we use a uniform color space,
namely CIE L∗a∗b∗, in which similar changes in color dis-
tance also correspond to similar recognizable changes in the
perceived color. The color prototypes (CP ), thus obtained,
are stacked column-wise as follows.

CP =





L∗1− L∗1+ · · · L∗N− L∗N+

a∗1− a∗1+ · · · a∗N− a∗N+

b∗1− b∗1+ · · · b∗N− b∗N+





where N is the number of normals along which the color
values are sampled. In this work, we sample the color val-
ues from 6 regularly spaced points along the boundary of
each CC yielding a total of 12 M colors. This set of color
values, though much smaller in number than the total num-
ber of pixels, captures all the colors present in the image.
This offers a significant advantage in terms of cheaper com-
putation and provides an effective initialization of k-means
algorithm regardless of the complexity of image content.



(a)

(b)

Figure 2. (a) A sample color image (b) Its edge
contours and the computed normals that
guide the selection of color prototypes. From
each normal, one color value each is ob-
tained from the pixels that lie ‘inside’ (Green
segment) and ‘outside’ (Blue segment) the
contour.

2.2 Unsupervised color clustering

A single-pass clustering is performed on color proto-
types, as obtained above, to group them into clusters. The
pseudo-code for the clustering algorithm is given below.

Input:Color prototypes,CP={C1,C2,...,C2N}
Color similarity threshold,Ts

Output:Color clusters,CL
1. Assign CL[1]=C1 and Count =1
2. For i = 2 to 2N, do
3. For j = 1 to Count, do
4. If Dist(CL[j],Ci)≤ Ts

5. CL[j] = Update Mean(CL[j])
6. Next i
7. Else
8. Count = Count + 1
9. CL[Count] = Ci
10. EndIf
11. EndFor
12. EndFor

where Dist(C1, C2) denotes the distance between the colors
C1 = (L∗1, a∗1, b∗1)

T and C2 = (L∗2, a∗2, b∗2)
T and is com-

puted as follows:

Dist(C1, C2) =
√

(L∗1 − L∗2)2 + (a∗1 − a∗2)2 + (b∗1 − b∗2)2

(8)
The threshold parameter Ts decides the similarity between
two colors and hence the number of clusters. Antonacopou-
los and Karatzas [1] perform grouping of color pixels based

on the criterion that only colors that cannot be differenti-
ated by humans should be grouped together. The threshold
below which two colors are considered similar was experi-
mentally determined and set to 20. We use a slightly higher
threshold to account for the small color variations that may
appear within the text strokes. In our implementation, the
threshold parameter Ts is empirically fixed at 45, after trial
and error.

The color clusters, thus obtained, are used as seeds for
a subsequent clustering step using the k-means algorithm.
Each resulting cluster is then examined for ‘compactness’
by computing distances of all the pixels in that cluster from
its mean color. The maximum intra-cluster distance from its
mean color is ensured to be less than 75 % of Ts if required
by recursively splitting non-compact clusters into two using
k-means algorithm initialized with the mean color and the
one that is furthest from it. The color clusters obtained at
the end of this splitting process are then used as the initial
seed colors for a final pass of k-means clustering. Note that
the whole clustering process is performed only on the se-
lected prototypes. Finally, each pixel in the original image
is assigned to the closest color cluster.

3 Adaptive binarization

Each color layer is then individually analyzed and text-
like components are identified. We filter out the obvious
non-text elements by making some sensible assumptions
about the document. The aspect ratio is constrained to lie
between 0.1 and 10 to remove highly elongated compo-
nents. Components larger than 0.6 times the image dimen-
sions are removed. Furthermore, small and spurious com-
ponents with areas less than 8 pixels are not considered for
further processing.

Text components have well-defined boundaries and
hence have a high degree of overlap with the edge image
as compared to non-text components. The boundary Xj of
a component CCj and its corresponding edge image region
Ej are first dilated and their intersection is computed as a
measure of stability of the boundary (BS).

BSj =
Area((Ej ⊕ S3) ∩ (Xj ⊕ S3))

Area(Xj ⊕ S3)
(9)

where S3 is a 3×3 structuring element. Components that
yield a BS measure of more than 0.5 are selected for bi-
narization from all the color layers. Overlapping CCs are
merged and fed to the binarization module to generate the
desired output.

3.1 Estimation of threshold

The binarization technique proposed in [7] automatically
computes the threshold value from the image data without



the need for any user-defined parameter. We use a similar
approach to binarize each CC by estimating its foreground
and background intensities. The foreground intensity of a
component CCj is computed as the mean gray level of its
boundary pixels.

FGj =
1
nj

∑

(x,y)∈Xj

I(x, y) (10)

where I(x, y) denotes the intensity value at the pixel posi-
tion (x, y) and nj is the number of pixels that constitute the
boundary Xj .

Rather than using the bounding box to obtain an esti-
mate of the background intensity [7], we use the available
contour information that yields a more reliable decision for
inversion in the presence of inverse text. Bounding boxes
can have a significant overlap for inclined text and touching
text lines that can result in incorrect inversion of the binary
output. The contour is traced in a clock-wise direction and
the normals are estimated. The background intensity is then
computed as the median intensity value of the pixels along
the normal direction ‘outside’ the boundary of the CC.

BGj = Median(I(x, y)) (x, y) ∈ nj
+ (11)

Note that the boundary of the CC is always ‘closed’ un-
like during the prototype color identification stage where we
may have broken as well as bifurcating edge contours. The
CC is binarized using the estimated foreground intensity as
the threshold value.

Oj(x, y) =
{

1 if CCj(x, y) ≥ FGj

0 if CCj(x, y) < FGj (12)

The estimated values of the foreground and background in-
tensities indicate their relative polarity. Whenever the esti-
mated foreground intensity is higher that that of the back-
ground, the binary output is inverted to ensure that text is
always represented by black pixels.

4 Experiments and results

The test images used in our experiments include physical
documents such as books and charts as well as non-paper
documents like text on 3-D real world objects. These im-
ages are characterized by complex backgrounds, irregular
text orientation and layout, overlapping text, variable fonts,
size, color, multiple scripts and presence of inverse text.

Figure 3 compares the results of our method with some
popular local binarization techniques, namely, Niblack’s
method, Sauvola’s method and Wolf’s method on a docu-
ment image having multi-colored text and large variations
in sizes with the smallest and the largest components being
4×3 to 174×245 respectively. Clearly, these local binariza-
tion methods fail when the size of the window is smaller

(a) Input color image (b) Niblack’s Method

(c) Sauvola’s Method (d) Wolf’s Method

(e) Proposed method

Figure 3. Comparison of some popular local
binarization methods for a document image
having multiple text color and size. While the
proposed method is able to handle charac-
ters of any size, all other methods fail to bi-
narize properly the components larger than
the size of the window and require a pri-
ori knowledge of the polarity of foreground-
background intensities as well.

than stroke width. The size of the window used here is 33
× 33. While small text regions are properly binarized, large
characters are broken up into several components and unde-
sirable voids occur within the character stroke. It requires a
priori knowledge of the polarity of foreground-background
intensities as well. On the other hand, our method auto-
matically derives the threshold from the image without any
user-defined parameter. It can deal with characters of any
font size and color.

Figure 4 shows the result of the proposed method on im-
ages having inverse text, multiple scripts, background ob-
jects touching the text and cursive letters. The method pro-
posed in [7] is sensitive to the background and several in-
stances of text get filtered out since it uses an edge-based
segmentation. Moreover, it uses script-dependent charac-
teristics and works well only for isolated Roman letters.



(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

Figure 4. (i - iv): Input images having graphic objects, inverse text, multiple scripts, complex back-
grounds and cursive letters. (v - viii): The corresponding binary outputs obtained using the method
proposed in [7]. Clearly, the method is sensitive to background objects since it relies on the edge
information to locate CCs. It also invokes script-dependent characteristics and works well only for
isolated Roman letters. (ix - xii): Binarized output images obtained with the proposed method. Color
segmentation provides robustness to background complexity as well as independence to script.

In Figure 4(v) and (vii), the background and graphic ob-
jects touch some text regions and they get filtered out. In
Figure 4(vi-viii), the script-dependency of the method is
clearly observed. In addition to the merged characters and
cursive text being eliminated, Figure 4(viii) also shows an
instance of incorrect inversion of the binary output due to
overlapping text lines. In contrast, the new method shows
a marked improvement thanks to the color clustering algo-
rithm that enables an accurate identification of CCs. The
color decomposition effectively disambiguates background
objects interfering with text as they are separated into dif-
ferent color layers. Each CC is individually binarized based
on a threshold derived from its foreground and background
intensity estimates. The background intensity estimate ob-
tained using the contour normals provides a reliable deci-
sion to invert the binary output in the the presence of inverse
text. As desired, all the text components are represented
by black on white background regardless of their colors in
the original image. The method is tested on several images

and is found to have good adaptability. More results of the
proposed method on various input images that have inverse
text, arbitrary text orientation and layout are shown in Fig-
ure 5.

5 Conclusions

This paper describes an important preprocessing step for
the analysis of color document images. The use of the con-
tour information makes the method robust to the complexity
of the input image. This is a desirable feature for process-
ing camera-based images that are generally characterized
by arbitrary content and layout. It does not require a priori
knowledge of the number of colors present or their initial-
ization. The contour information is successfully exploited
both in color segmentation that enables accurate identifica-
tion of CCs and in the inversion of the binary output to deal
with inverse text. Preliminary results on camera-captured
images with variable fonts, size, color, orientation, script



Figure 5. Input images and the corresponding color clusters, identified text regions and binarized
outputs shown column-wise.

and the presence of inverse text are encouraging.
Our future work is to augment the method with a trained

classifier for robust extraction of only the text regions.
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