
MAST: Multi-Script Annotation Toolkit for Scenic Text

T Kasar, D Kumar, M N Anil Prasad, D Girish and A G Ramakrishnan
Medical Intelligence and Language Engineering Laboratory

Indian Institute of Science
Bangalore, INDIA - 560 012

{tkasar, deepak, anilprasadmn, dasarigirish, ramkiag}@ee.iisc.ernet.in

ABSTRACT
This paper describes a semi-automatic tool for annotation
of multi-script text from natural scene images. The pro-
cedure involves manual seed selection followed by a region
growing process to segment each word present in the image.
The threshold for region growing can be varied by the user
so as to ensure pixel-accurate character segmentation. The
text present in the image is tagged word-by-word. A vir-
tual keyboard interface has also been designed for entering
the ground truth in ten Indic scripts, besides English. The
keyboard interface can easily be generated for any script,
thereby expanding the scope of the toolkit. Optionally, each
segmented word can further be labeled into its constituent
characters/symbols. Polygonal masks are used to split or
merge the segmented words into valid characters/symbols.
The ground truth is represented by a pixel-level segmented
image and a ‘.txt’ file that contains information about the
number of words in the image, word bounding boxes, script
and ground truth Unicode. The toolkit can be used to gen-
erate ground truth and annotation for any generic document
image and hence is useful for researchers in the document
image processing community for evaluating the performance
of document analysis and recognition techniques.

Keywords
Annotation tool, ground truth, scene text, multi-script doc-
uments, camera-based document analysis

1. INTRODUCTION AND MOTIVATION
There is a significant need for methods to extract and rec-

ognize text in scenes. Unlike the case of processing conven-
tional document images, natural scene text understanding
usually involves a pre-processing step of text region loca-
tion and extraction before subjecting the acquired image for
character recognition task. Recognition is performed only
on the detected text regions so as to mitigate the effects
of background complexity. The availability of annotated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

datasets for scenic images will aid in testing and quanti-
fying the performances of various document analysis and
recognition algorithms.

The Robust Reading Competition [1] was held at the 7th

international conference on document analysis and recogni-
tion 2003 to find the best system able to read complete words
in camera-captured images. An XML file gives the ground
truth in terms of the word and character bounding boxes
and their transcription. The dataset contains various kinds
of degradations such as uneven lighting conditions, complex
backgrounds, variable font styles, color, low resolution and
text appearing on curved or shiny surfaces.

Precision and recall measures were used in the evalua-
tion of text detection algorithms. For text localization, it
is unrealistic to expect a system to agree exactly with the
ground truth identified by a human tagger. So, the IC-
DAR 2003 robust reading competition organizers propose a
rectangle-based matching to compute the precision and re-
call measures. However as pointed out by Wolf and Jolion
[2], rectangle-based evaluation is a non-trivial task since as
the detection result rarely matches perfectly with the text
boundary as specified in the ground truth. It is difficult
to decide on the correctness of the text detection based
on bounding box measures. Moreover, character bounding
boxes can have significant overlap with adjacent components
especially for an inclined or curved text. This can reduce
distinctive features of that character and hence affect the
training process required for recognition task. Pixel-based
evaluation measures are easy to calculate and easy to inter-
pret.

A separate competition [3] has been organized recently
for born-digital (web and e-mail) images as a part of IC-
DAR 2011 Robust Reading Competition. The ground truth
is provided at the pixel level for segmentation task while
bounding boxes are employed for text locating and read-
ing tasks. However, in the ICDAR competition dataset, the
orientation of the text is always horizontal. There are no
samples of vertical or multi-oriented text while such text
instances appear often in images. It is also limited to En-
glish. The presence of multiple scripts also require a special
treatment. In a multi-lingual country like India, it is com-
mon to find English words interspersed within sentences in
Indic-script documents. Many documents, forms and sign-
boards are generally bi-lingual or multi-lingual in nature.
Every script has certain distinctive characteristics and may
require script-specific processing methods. Identification of
script plays a vital role for the development of next gen-
eration OCRs. Besides enabling an automated processing

and utilization of documents, it will also allow the use of
script-specific rules to enhance the OCR output.
Recently, two datasets containing multi-script text have

been created. The Char74k dataset [4] consists of English
and Kannada characters segmented from scene images, hand-
written text and synthetic documents. Individual characters
were manually segmented and represented by its rectangular
bounding boxes or polygonal segments. This dataset does
not contain pixel-accurate ground truth for individual char-
acters.
The KAIST scene text dataset [5] comprises 3000 images

captured both outdoor and indoors using a digital cam-
era or a mobile phone under different lighting conditions.
The KAIST scene text database is divided into 3 categories
namely Korean, English and a composite one that contains
Korean as well as English. The ground truth is stored in an
XML file for each image that contains information about the
location of single characters or single words (using bounding
boxes) and their transcription, along with global information
about the image. In addition to the XML file, a bitmap im-
age is provided where the segmentation of the text at pixel
level.
Shafait et al. [6] introduce a pixel-accurate representa-

tion of documents and propose metrics to quantify over-
segmentation, under-segmentation, over-segmented compo-
nents, under-segmented components, missed components and
false alarms for evaluating a page segmentation algorithm.
Baird et al. [7] describe ground truthing policies to zone ar-
eas in document images such as machine print, handwriting,
photography, blank and line arts. Suand et al. [8] presented
a user-interface (UI) design for labeling elements in docu-
ment images at a pixel level. The UI design is targeted
specifically toward selection of collections of foreground pix-
els in a document image such as machine print text, ma-
chine print graphics, handwritten text, handwritten graph-
ics, stamps and noise. After a user has selected a set of
pixels with the help of the mouse, those pixels are assigned
a particular color to indicate the selected label class. The
label descriptions and their colors are set by a user-editable
XML configuration file. The above strategies cannot be used
for scene text annotation.
We seek to aid the creation of pixel-level annotated databases

for research in camera-based document analysis. The soft-
ware toolkit, which we call MAST, is developed for annotat-
ing multi-script textual information in scenic images. The
main contributions of this paper are listed below:

• Semi-automatic seeded region growing method that
can cater to scene image. By selecting the seed points
appropriately, text with color gradient and multi-colored
text can also be segmented.

• The toolkit can be used to annotate multi-script doc-
uments. The virtual keyboard interface proposed in
this paper can easily be extended for tagging text in
any script.

• The ground truth information generated consists of a
pixel-accurate segmented image, word images, script
information and the unicode text that can be used for
evaluating the performance of document analysis and
recognition techniques.

• There is also a provision to label each character/symbol

(a) (b)

(c)

Figure 1: (a) An example multi-script image (b)
Pixel-accurate segmented image (c) The corre-
sponding ‘.txt’ file describing the attributes of the
annotated words.

at the pixel-level that may be used in training classi-
fiers.

• The software is open source; users can modify it to suit
their needs.

2. METHODOLOGY
Region growing technique is an ideal choice for the semi-

supervised process of segmenting characters from an input
image. It ensures an accurate identification of CCs due
to the inherent connectivity property being invoked while
grouping adjacent pixels. The input image is processed on
a word-by-word basis wherein seeds are manually placed in
each character of the word to initiate a region growing pro-
cess. The color distance gives a measure of similarity be-
tween adjacent pixels and is used as the threshold in group-
ing neighboring pixels into distinct homogeneous regions.
The common RGB color format is not suitable for color
grouping tasks because it is not expressed in the way per-
ceived by humans. Two different pairs of points with the
same Euclidean distance in the RGB color space do not re-
sult in the same change in the perceived color. So, we use
a uniform color space, namely CIE L∗a∗b∗, in which similar
changes in color distance correspond to similar recognizable
changes in the perceived color. The distance between the
colors C1 = (L∗

1, a
∗
1, b

∗
1)

T and C2 = (L∗
2, a

∗
2, b

∗
2)

T in the
L∗a∗b∗ color space is given by the Euclidean distance:

Dist(C1, C2) =
√

(L∗
1 − L∗

2)
2 + (a∗

1 − a∗
2)

2 + (b∗1 − b∗2)
2

(1)
The threshold parameter can be interactively varied by

the user depending on the image till the word is accurately
segmented. For storing the ground truth, a directory with
the same filename as that of the input image is created. The
segmented words, pixel-level segmented image and a ‘.txt’
file containing the number of words, filename for saving the
segmented word, corresponding bounding box, script label
and the unicode text are stored in the image directory itself.

(a)
(b)

Figure 2: (a) Schematic block diagram of MAST for word-level annotation. (b) Flowchart for tagging a
segmented word.

Figure 3: Screenshot of the user-interface for word-
level annotation.

The structure of the ‘.txt’ file for an example multiscript
image is shown in Fig. 1.

The segmented words can further be segmented into its
constituent characters or symbols depending on the user’s
requirement. In most English words, a default left-to-right
CC labeling order is sufficient to decompose the word into
its constituent characters. However, the lower case letters
‘i’ and ‘j’ will require a merging process to group the dot
with the base character. For Indic scripts, segmentation
of words into individual characters is not trivial. Due to
the presence of compound characters (vowel and consonant
modifiers), two or more CCs need to be grouped to form a
valid character. Some scripts, such as Bangla, Devanagari
and Gurmukhi, have a top headline called ‘Shirorekha’ that
interconnects all the characters of a word and will require
splitting of symbols. Similarly, cursive text will also require
an appropriate splitting process. We employ a polygonal
mask to group or split CCs into valid symbols. This al-
lows a straightforward and easy way to segment words into
any level of detail such as characters/symbols or unicode
symbols depending on the user’s requirement. The labeled
characters/symbols are assigned a unique label so that they

can be accessed by the label without the need to specify the
character bounding boxes.

3. WORD-LEVEL ANNOTATION
The schematic flowchart of the word-level annotation toolkit

is shown in Figure 2. The action required for each block
of the flowchart is also mentioned. The subroutine for tag-
ging a segmented word is separately outlined in the adjacent
flowchart. A screenshot of the main menu of the word-level
annotation UI is shown in Fig. 3. After the image to be
tagged is loaded, one can select a text region using the zoom
option at the top of the UI tool bar. Actual segmentation
is performed only on the zoomed-in region, accelerating the
process. Once a word is zoomed in, the seed points are
selected within the character strokes followed by a region-
growing process. Whenever the input is through successive
mouse click, the last selection should be made with the right
click. Canny edges [9] are also shown in a gray shade along
with the segmented image for visual comparison of the seg-
mented character boundaries and the edges so as to aid the
user in deciding the quality of the segmented output.
Occasionally, there may be a case where the word is over-

segmented or under-segmented depending on the preset thresh-
old value. The color distance threshold value can be varied
and perform the region growing process again with the new
color distance threshold till we obtain a pixel-accurate seg-
mented image. If the segmentation result is not satisfactory
after repeated trials, the user can decide to reload the im-
age and select new seed points and perform a new region
growing process. When the text resolution is poor, it may
be difficult to place the seed points accurately which can
result in a noisy segmentation output. In such a case, a
simple thresholding operation may be performed instead of
the normal region growing process. The Otsu method [10]
is used to binarize the selected gray-scale word block. There
is also a provision to invert the binary output for handling
text lighter than the background.
Presently, the toolkit has provision for tagging the seg-

mented word image in 10 Indic scripts namely Bangla, De-
vanagari, Gujarati, Gurmukhi, Kannada, Malayalam, Ma-
nipuri, Oriya, Tamil and Telugu besides English. The stan-
dard keyboard is used for tagging English text. The word
segmentation process and tagging is repeated till all the
words are considered.
There are other event-driven buttons such as the WORD

BOUNDARY button, which when activated, the bounding
rectangles of all the previously annotated words are dis-
played on the image. This facilitates the user to decide
whether the word boundaries are accurate or not. It is also
used to check if there is any word in the image that is still
not annotated. The ‘RELOAD’ button is used to undo all
the changes since last tagging a word.

4. CHARACTER/SYMBOL SEGMENTATION
After all the words have been annotated, each segmented

word image may be further segmented into its constituent
characters/symbols. When the ‘SEGMENT CHAR’ but-
ton is activated, the user is taken to a new UI where each
segmented word is visually examined for possible splitting
or merging of symbols to form valid characters. Figure 4
shows the flowchart of the character segmentation process
and the main menu of the symbol-level annotation UI. The

(a)

(b)

Figure 4: (a) Flowchart for character/symbol label-
ing and (b) Screenshot of the user-interface for sym-
bol level annotation.

first segmented word image gets loaded by default. This is
followed by labeling process that assigns a unique label to
each CC such that the labels are in increasing order from
the leftmost to the rightmost CC. The user may split or
merge the labeled CCs to form valid characters/symbols us-
ing a polygonal mask. Thus, any word can be decomposed
into any level of detail such as characters/symbols or uni-

(a) Segmented word image and the initial labeled compo-
nents

(b) Splitting of merged characters using polygonal mask

(c) Merging of CCs using polygonal mask to form a com-
pound character

Figure 5: Illustration of labeling individual charac-
ters of a word image using polygonal mask.

code symbols depending on the user’s requirement. Fig. 5
shows an example of decomposing a segmented image into
characters involving a split as well as merge operation using
polygonal masks.
Each of the CCs are re-labeled in left-to-right order after

each split/merge operation. While most texts are horizon-
tally aligned, there may be instances where the text is ori-
ented vertically or curved. The automatic labeling of the
CCs in a left-to-right fashion fails in such cases. In such a
case, the user can manually assign the order of the symbol
labels using the mouse. The labeled word image is stored
in an uncompressed ‘.bmp’ file format. Unlike other meth-
ods [1, 4, 5], our approach allows access to the individual
characters by its label without the need to specify the char-
acter bounding boxes even when the orientation of the text
is inclined, curved or vertical.

5. CREATION OF VIRTUAL KEYBOARD IN-
TERFACE

In addition to segmenting and annotating text present in
generic scenic images, MAST can also be used to generate
the virtual keyboard interface for any other script. To do
this, an image of the keyboard in the desired script is fed to
the word-level annotation module as the input.
The keyboard image may be obtained by creating a table

in a html file where each cell of the table contains a specific
character unicode in any of the scripts available at the Uni-
code 6.0 Character Code Charts [11]. When this html file is
viewed using a web browser, a table with the chosen script
fonts will be displayed. A screenshot of this table is used as
the virtual keyboard image.
Each key in the keyboard is segmented using the word-

level segmentation module and mapped to its corresponding
unicode value using the standard English keyboard interface.
These keymaps are stored in the resulting ‘.txt’ file. The key-
board image and the corresponding keymaps are placed as

(a)

(b)

Figure 6: Illustration of Tamil virtual keyboard in-
terface. (a) The input keyboard image for segmen-
tation and tagging each key with the correspond-
ing unicode (b) The .txt file generated using MAST
which contain the keymaps for each key.

required in the toolkit which can be used for ground truthing
text in the chosen script.

For example, in Fig. 6(a) all the 66 keys of the Tamil
keyboard are segmented individually and mapped to its cor-
responding unicode. The tagged file containing the Tamil
unicode values is shown 6(b). The virtual keyboard image
and the associated ‘.txt’ file are then used to create the in-
terface for ground truthing texts in Tamil.

6. RESULTS
Fig. 7 illustrates the word-level annotation process the

multi-script scene image shown in Figure 1(a). Fig. 7(a)
shows a segmented Kannada word image, the virtual key-
board interface for entering Kannada text and the annota-
tion as entered by the tagger. Fig. 7(b) and (c) show the
results of segmenting and tagging Devanagiri and English
words respectively. The standard keyboard is used for en-
tering the text.

Fig. 8 shows some examples of pixel-level ground truth
obtained using MAST for typical scene images containing
multiple scripts and various types of text layouts. It may be
noted that bounding box-based ground truth are not suit-
able for such images that contain arbitrarily-oriented text.

The flexibility of the toolkit is illustrated in Fig. 9 which
shows words in different scripts having being segmented into
their constituent characters/symbols. Broken characters are
merged into valid characters while touching characters, cur-
sive text or compound characters are appropriately split and
labeled. Clearly, the method can cater to any orientation of
text, writing style and script.

(a) A segmented Kannada word image and annotated unicode text using the virtual keyboard interface

(b) Annotation of segmented Devanagari word image

(c) Annotation of a segmented English word image using the standard keyboard interface

Figure 7: Illustration of word-level annotation for the multi-script scene image shown in Fig 1(a).

Figure 8: Sample ground truth segmented images
obtained using MAST for scene images with multi-
script content and arbitrary text orientations.

7. CONCLUSION AND FUTURE WORK
We have presented a versatile software tool for annotating

text present in multi-script scenic images. It can be used to
create ground truth data for any generic image at the word
level or character/symbol level depending on the user’s re-
quirement. The ground truth text regions are represented at
the pixel-level. Bounding boxes of adjacent CCs can have a
high degree of overlap for skewed or curved text and hence,
it does not represent an accurate location of the characters.
The pixel-level ground truth gives an accurate representa-
tion of the text regions for arbitrary text orientations. More-
over, The polygonal mask, used in our approach, for symbol-
level segmentation allows a straightforward and easy way to
extract characters/symbols for training various recognition
algorithms. The pixels are indexed by a unique label that
allows direct extraction of a character/symbol without spec-
ifying its bounding box.

Currently, we have provision for tagging 10 Indic scripts
and English. The Devanagari virtual keyboard interface can

(a) Bangla

(b) Devanagari

(b) Kannada

(c) Gurmukhi (d) Malayalam

(e) Tamil (f) Telugu

(g) Indo-Arabic numerals (h) English

(b) Example word images for which manual ordering of the character labels is required

Figure 9: Sample outputs of symbol-level segmentation for various scripts. Note that merged/broken char-
acters are split/grouped into valid symbols.

be used to tag other scripts like Marathi, Hindi, Konkani and
Sanskrit since all of them have similar scripts. Likewise,
the Bangla virtual keyboard interface can also be used to
tag Assamese text. One useful contribution of the paper
is the design of virtual keyboard interface. It is easy to
create interfaces for other scripts thereby making the toolkit
applicable to any script. The software is available online at
[12] along with a detailed description of the functionalities of
each of the menu items. We hope that researchers worldwide
will find it useful in creating ground truth database for any
generic document image.
Owing to its simplicity, we have chosen Otsu binarization

for segmenting small text. In future, the binarization mod-
ule can be replaced with a more sophisticated method such
as color clustering. Support for tagging other entities such
as logos, symbols and graphic objects can also be added.
Using the toolkit, we are building a database containing
multi-script scene images which will be made publicly avail-
able. We plan to groundtruth other existing databases at
the pixel-level. We also plan to provide web interface for
users to upload and tag their own images, which can help
create a large database.

8. REFERENCES
[1] ICDAR 2003 Robust reading competition data set,

http://algoval.essex.ac.uk/icdar/Competitions.html.

[2] C. Wolf and J.M Jolion, Object count/area graphs for
the evaluation of object detection and segmentation
algorithms, Intl. Jl. Document Analysis and
Recognition, 8(4), 280 - 296, 2006.

[3] ICDAR 2011 Robust Reading Competiton, Challenge 1:
“Reading Text in Born-Digital Images (Web and
Email)”, http://www.cvc.uab.es/icdar2011competition/

[4] The Chars74K dataset, available at
http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/

[5] KAIST Scene Text Database, http://www.iapr-
tc11.org/mediawiki/index.php/KAIST Scene Text Database

[6] F. Shafait, D. Keysers, and T. Breuel, Pixel-accurate
representation and evaluation of page segmentation in
document images, Proc. Intl. Conf. Pattern
Recognition, 872–875, 2006.

[7] H. Baird, M. Mill, and C. An, Truthing for
pixel-accurate segmentation, Proc. Intl. Workshop
Document Analysis and Systems, 379-385, 2008.

[8] E. Saund, J. Lin and P Sarkar, PixLabeler: User
Interface for Pixel-Level Labeling of Elements in
Document Images, Proc. Intl. Conf. Document Analysis
and Recognition, 646,650, 2009.

[9] J Canny: A computational approach to edge detection,
IEEE Trans. Pattern Analysis and Machine
Intelligence, 8(6), 679 - 698, 1986.

[10] N Otsu, A threshold selection method from gray-level
histograms, IEEE Trans. Systems Man Cybernetics,
9(1), 62 - 66, 1979.

[11] Unicode 6.0 Character Code Charts,
http://unicode.org/charts/

[12] MAST: Multi-script annotation toolkit for scenic text,
http://mile.ee.iisc.ernet.in/mast

