
Online handwritten Kannada word recognizer with unrestricted vocabulary

Rituraj Kunwar, Shashikiran K, A. G. Ramakrishnan
MILE Lab, Department of Electrical Engineering, IISc, Bangalore, India.

{kunwar.rituraj, shashi.reach, agrkrish}@gmail.com

Abstract

In this paper, we propose a novel heuristic approach
to segment recognizable symbols from online Kannada
word data and perform recognition of entire word. Two
different estimates of 1st derivative are extracted from
the preprocessed stroke groups and used as features for
classification. Estimate 2 proved better with 88% accu-
racy, which is 3% more than that achieved with estimate
1. Classification is performed by the Statistical DTW
(SDTW) classifier which uses X, Y co-ordinates and
their 1st derivatives as features. Classifier is trained
with 40 writer data making it writer independent. 295
classes are handled covering Kannada aksharas, with
Kannada numerals, Indo-Arabic numerals, punctua-
tions and other special symbols like $, # etc. Akshara
level classification accuracy is 88% and a lower accu-
racy of 80% at word level, which shows the scope for
further improvement in segmentation algorithm.

1. Introduction

Rapid development in technology has made hand-
held devices very popular and in coming days with in-
crease in demand, it will be affordable too. This will
lead to handwriting recognition being an alternative to
the keyboard as an input device, along with, may be,
speech recognition. Data entry using pen is a natural
form of interface. Various techniques have been ex-
plored for handwriting recognition and efficient prac-
tical applications exist for English. However, there is
no such system for Indian languages so far. Majority of
the research reported for Indian languages have either
dealt with a subset of characters such as only the base
characters or the numerals, or approaches based on lim-
ited vocabulary lexicon based recognizers using HMM.
While the above approaches have their own applicabil-
ity, when it comes to unlimited vocabulary recognition
involving proper names, addresses, etc. the above ap-
proaches simply cannot be used at all.

In this paper, we aim to develop a system that rec-
ognizes at the word level. No constraint has been im-
posed on the type of word to be recognized. This is
made possible by developing a robust segmentation al-
gorithm which segments the word level data into rec-
ognizable symbols (stroke groups) and later performing
the recognition at the stroke group level. At the end, rec-
ognized output is combined to give the Unicode of the
recognized word. The complete set of Kannada aksha-
ras, including the Kannada and Indo-Arabic numerals,
besides other symbols are handled

Word recognition can be performed in various ways.
One of the popular approaches is to obtain a model of
each word and the whole word is recognized as an en-
tity. The drawback of this approach is that it cannot han-
dle the proper nouns since capturing all possible nouns
is near to impossible. Another bottleneck of this ap-
proach is the computation time due to the enormously
large number of training classes. An alternate approach
to perform recognition at word level is by enforcing the
writer to write the recognizable symbols far apart so that
segmentation of symbols remains no more a challenge.
But it is obvious that this approach basically does not
handle word as this approach will fail if we move a step
forward that is to carry out recognition at the sentence
level. Thus, it will not be able to segment 2 different
words in a sentence.

In the proposed method, all the issues mentioned
above have been addressed by using a heuristic seg-
mentation algorithm to segment recognizable symbols
(group of strokes) from word level input. This al-
gorithm exploits the basic characteristics of Kannada
script. The proposed algorithm looks into the relative
positions of the stroke groups and depending on the val-
ues of thresholds, they are segmented. The value of
these thresholds are set empirically and this characteris-
tic of the algorithm makes it script dependent. Further,
each segmented symbol is fed to the recognizer, which
gives a class label to it. Finally, all the class labels of
the segmented symbols are combined using the rules of
Kannada script grammer to generate the Unicode string

of the recognized word.

2. Kannada OHR Survey

2.1. Kannada Script:

Kannada is the official language of the South In-
dian state of Karnataka. It has its own script derived
from Bramhi script. Kannada script has a base set
of 52 characters, comprising 16 vowels and 36 conso-
nants. Further there are distinct symbols that modify
the base consonants, called consonant and vowel mod-
ifiers. The number of these modifiers is the same as
that of the base characters. The characters called ak-
sharas are formed by graphically combining the sym-
bols corresponding to consonants, consonant modifiers
(optional) and vowel modifiers using well defined rules
of combination. Therefore, the number of theoreti-
cally possible combinations of Kannada characters is 16
vowels, 36*16=576 consonant-vowel combinations and
36*36*16=20736 consonant-consonant-vowel combi-
nations.

While designing a character recognition system, if
we consider each akshara as a separate class, the num-
ber of classes becomes prohibitively high. However
in Kannada, all consonant modifiers are written sepa-
rate from the base character and at least some part of
some stroke of a consonant modifier will lie below the
base character as shown in Fig.1. So we consider the
consonant modifiers as separate classes. This reduces
36*36*16 C-C-V combinations (or possible classes) to
36*16 C-V combinations of the base character and addi-
tional 36 classes of the consonant modifiers. Similarly,

Figure 1. Consonant modifiers lie below
the base character

some of the vowel modifiers are also written separately
from the base character as shown in Fig. 2 . Thus, con-
sidering these as separate classes, we reduced the total
number of classes further. In all, we reduced the to-
tal number of classes to 295 including Indo-Arabic nu-
merals, Kannada numerals and punctuation marks. By
recognizing these symbols, we cover the whole of the
Kannada character set. One of the applications we have
in mind for our recognizer is that of a form-filling ap-
plication, which necessarily has names, numbers, punc-
tuation marks and special symbols. Hence, we include
all of the above as pattern classes.

Figure 2. Examples of some of the vowel
modifiers written separately from the
base character, which could therefore be
segmented from the character complex
(akshara) and recognised separately.

2.2. Status of Kannada OHR:

Work on Kannada OCR and OHR have been few and
far between. One of the few works reported in Kannada
character OCR was by P.S. Sastry et. al. [1] which was
font and size independent with reported performance
between 80 to 86%. Another work done on OCR of
Kannada character was by Vijay Kumar et. al. [6] us-
ing neural network with accuracy reported to be 95%.
Similar work on Kannada offline numeral handwritten
recognition was conducted by S.V. Rajashekararadahya
et. al. [9] with reported performance of 95%. One of
the works on Kannada character OHR is by S.R. Kunte
et. al. [7] using wavelet features and neural network as
classifier, reporting an accuracy of 95%. However in
none of the above cases, details of the dataset used are
given, rendering the different works incomparable.

To the best of our knowledge, this is the first work
in Kannada OHR, where the recognition is done at the
word level, covering the complete character set of Kan-
nada: base characters, vowel modifiers, ottus and nu-
merals (both Kannada and Indo-arabic). It is difficult to
infer few details from the previous works in Kannada
OHR as to whether they are writer dependent or inde-
pendent and how efficient they are in terms of time.

In the present work, we have addressed these issues.
We developed a robust segmentation algorithm which
conforms to the strategy used to reduce the number of
classes. Our Kannada OHR engine has been trained
with data from 40 users thus making it writer indepen-
dent. In spite of covering all the characters of Kannada,
symbols, etc. we managed to have the number of classes
manageable by exploiting the nature of the script as dis-
cussed in sub-section 2.1, above.

3. Classification Experiments

The building blocks in Online Handwriting Recog-
nition is shown in Figure 3. The data collected or cap-
tured using the Tablet PC is considered as the raw data.
This raw word level data is given as input to the seg-
mentation algorithm. Each word is now segmented into

recognizable stroke groups. The raw data can be noisy
due to erratic hand movements while writing. Hence
the obtained stroke groups need to be smoothed. This is
done by preprocessing, normalizing and resampling the
data. Resampling is based on equi-arc length. The pre-
processed data is used to extract features of each stroke
group, which are then used for the classification of that
particular stroke group. Each segmented stroke group
is recognized similarly. The Unicodes of all the recog-
nized symbols are combined to give the Unicode of the
word.

Figure 3. Schematic of Kannada OHR ex-
periments.

3.1. Segmentation

Challenges in segmentation: Enormous amount of
variability in the handwriting style is observed. This
necessitates a robust segmentation method. The chal-
lenges involved in segmentation are as follows:

Spatial and temporal information is used in segmen-
tation as well as in recognition methods. This informa-
tion gets affected due to the following issues, thereby
resulting in a drop in the recognition accuracy.

• Correction: In the real time data, sometimes a
writer makes correction in one or more of the pre-

viously written aksharas. An example of this case
is shown in Fig 4.1.

• Unusual stroke order: It is observed that peo-
ple who do not write the script regularly tend to
change the usual order of strokes to suit their con-
venience. An example of this case is shown in Fig
4.2

• Overwriting: Imperfections of the data collection
devices results in improper feedback making the
writer overwrite one or more strokes, which lead
to misclassification. An example of this case is
shown in Fig 4.3.

• Delayed strokes: Kannada language contains
strokes like paadam and dot, which a few users end
up writing at the last. This is similar to the com-
mon practice of marking the t’s or placing the dot
of i’s at the end in English language. This leads to
alteration in the temporal information. An exam-
ple of this case is shown in Fig 4.4.

• Strokes in reverse direction: Some writers
change the direction of writing a stroke for ease
of writing or because they have been out of prac-
tice. This creates confusion in segmenting correct
stroke groups. An example of this case is shown in
Fig 4.5.

• Merged strokes: Apart from this, users also com-
bine two or more strokes which are expected to be
written separately or vice-versa as shown in Fig
4.6.

An observation of the stroke order and the position
of the strokes of an akshara in Kannada, gives us an idea
of how segmentation strategy can be used for grouping
strokes into different recognizable symbols.

Base Characters: We observe that in general, major-
ity of the symbols are multi-stroke as shown in Fig: 5.1.
The strokes of a multi-stroke symbol occur with a dom-
inant horizontal overlap and the stroke order is usually
from bottom to top.

Conjuncts (”ottu”s in Kannada): These are vowel
and consonant modifiers that occur below the base sym-
bol. Parts of most Ottus occur below the character; there
is generally an overlap in the horizontal axis and the
ottu starts below the base character i.e. first point of
the stroke forming the Ottu is below the base charac-
ter/symbol it is associated with as shown in Fig.5.2.

Pulli/Paadam in Kannada: This is a small vertical
line at the bottom of a consonant which changes it from
an unaspirated (alpaprana) to an aspirated (mahaprana)
consonant. as shown in Fig.5.3.

(1) (2) (3)

(4) (5) (6)

Figure 4. (1) Correction of strokes (2) Change in stroke order (3) Overwriting of strokes (4)
Delayed strokes (5) Strokes written in reverse direction (6) Merged strokes.

Dots in Kannada script: In Kannada, a dot can occur
meaningfully as part of two aksharas, namely Tha and
tha. As shown in Fig.5.4, the first symbol ’ra’ becomes
’Tha’ by the addition of the dot inside the loop. Such
dots are identified by size and position and removed and
a corresponding flag is set. Recognized symbol is as-
signed a label based on the status of this flag.

3.2. Feature extraction

In this module some high level structural features are
extracted from the preprocessed stroke group. The esti-
mates of derivative features extracted are defined as.

Estimate 1 of First Derivative: In this method, the
derivative at the current point is estimated using the for-
mula given below:

X′1(j)=

∑2

1
i [x(j+i)−x(j−i)]

2

∑2

1
i2

, Y ′1 (j)=

∑2

1
i [y(j+i)−y(j−i)]

2

∑2

1
i2

(1)
Since the above formula cannot be estimated for the

1st, 2nd, last and 2nd last points, their values are calcu-
lated after extending the length of the sequence.

where 1≤ j ≤ L where L = number of points in the
pattern. X’(1)=X’(2)=X’(3); Y’(1)=Y’(2)=Y’(3);
X’(L)=X’(L-1)=X’(L-2); Y’(L)=Y’(L-1)=Y’(L-2)

Estimate 2 of first Derivative Estimate 2: Another
estimate of derivatives of x and y at each point was sug-
gested as a feature in [5]. The estimated derivative of x

and y at the point j in a pattern could be calculated using
the formulae given below:

X′2(j)=
[x(j)−x(j−i)]+

[x(j+1)−x(j−i)]
2

2 , (2)

Y ′2 (j)=
[y(j)−y(j−i)]+

[y(j+1)−y(j−i)]
2

2 , (3)

Since the above formula cannot be estimated for the
first and last points, their values are assumed to be the
same as those of second and penultimate points, respec-
tively:
X’(1)=X’(2); Y’(1)=Y’(2); X’(l)=X’ (L-1); Y’(l)=Y’(L-
1) where 1≤ j ≤ L where L = number of points in the
pattern.

3.3. Statistical Dynamic Time Warping (SDTW)

SDTW: In SDTW, a reference character is repre-
sented by a sequence Q = (Q1, Q2, Q3,Qlq) of sta-
tistical quantities (states) [2], as shown in Fig 6. These
statistical quantities include
1) Discrete probabilities say αj : Ω[0,1] for statistical
modeling of transitions ∆φεΩ reaching the sequence’s
state j. i.e. state transition probabilities are defined by

In the special case of n = j = 1,

αj(∆φ)=P (∆φ=φ(n)−φ(n−1)|φR(n)=j) , ∆φεΩ (4)

(1)

(2)

(3)

(4)

Figure 5. (1)Base Character (2)Conjuncts
(ottus) (3) Pulli/Paadam (4) Dots.

α1(1,1)=P (∆φ(1)=φ(1)−φ(0)|φR(1)=1)=1 (5)

2) A continuous probability density function βj :
Rd −→ R that models the feature distribution at se-
quence’s state j. In our work we modeled βj by a uni-
modal, multivariate Gaussian distribution i.e.

(6)
In some situations, the probability αj

′(∆φ) that a
transition ∆φ emerges from the sequence’s state j is
also required and is related to αj(∆φ) as

αj(∆φ) = α′j−∆φR
(∆φ) and

∑
∆φ

α′j(∆φ) = 1 (7)

While testing, the SDTW distance of test pattern
to the reference model of each class is computed and
the test pattern is assigned the label of the class giving
minimum SDTW distance. Here, the definition of
SDTW distance is somewhat different from that of
DTW and is given by

SDφ∗(T,Q) = minφSDφ(T,Q) (8)

where SDφ(T,Q) is statistical warping distance
between pattern T and model Q, with Φ as alignment
path and is given by

SDφ(T,Q) =
∑N
i=1(d(tφt(i), Qφq(i)) −

logeαφq(i)(∆φ(i))) (9)
where
d(ti, Qj) = 0.5((ti−µj)T

∑−1
j (ti−µj)+dloge(2π)+

loge|
∑
j |) (10)

Figure 6. Transitions between states in
SDTW

Fig.6 shows how the matching takes place between
the reference model and the test pattern. The matrix
in Fig.6 shows the SDTW path (path of best SDTW
matching).

It can be observed that the SDTW distance is the neg-
ative log state optimized likelihood of pattern T gener-
ated by the model Q, with optimal state sequence Φ∗

given by the Viterbi algorithm. So, models in SDTW
framework are similar to HMMs [8], [3] of particular
type with state prior probabilities π = (1, 0, 0,0)T

and are of left to right models with step size of at most
1 and with null transitions (transitions that allow change
in state without observation change i.e. transitions (0,1)
in Ω). So the models in SDTW framework can be
trained by algorithms used for training HMMs. In our
work, we used segmental K-means algorithm [3] for
training SDTW model parameters.

4. Data collection for our experiments

MILE lab Kannada database for conducting the ex-
periment was built by collecting data from 69 different
writers. Thus the recognition engine could be trained
with different styles of handwriting to make the OHR
engine writer independent. Each writer wrote all the
symbols corresponding to the 295 classes. Writers for
data collection were meticulously chosen: only ones
who regularly use Kannada script. Justification of this
constraint is that we need to capture the regular style
of Kannada handwriting, which includes local temporal
information.

5. Results

The accuracy of the classifier was evaluated on the
Kannada Database of Medical Intelligence and Lan-
guage Engineering (MILE) Lab, IISc. The results are

Table 1. Writer independent symbol level
recognition performance of SDTW with
different estimates of first derivative as
features. (No. of classes: 295; No. of
training and testing samples/class: 40
and 29, respectively.)

Features used Symbol
Accuracy
(%)

Recognition
time/sample
(sec)

Preprocessed X,Y
co−ordinates and 1st
derivatives of X,Y
co-ordinates (Estimate
1)

85.2 0.5

Preprocessed X,Y
co−ordinates and 1st
derivatives of X,Y
co-ordinates (Estimate
2)

87.9 0.5

Table 2. Writer independent word level
recognition performance on randomly
collected 100 words using SDTW as clas-
sifier with estimate 2 of first derivatives as
features.

Classifier Features used Unicode level
Accuracy (%)

Statistical
DTW

Preprocessed X,Y
co−ordinates and 1st
derivatives of X,Y
co-ordinates (Estimate 2)

80

shown in Table 1. Kannada dataset has 295 classes
where each class represents a group of strokes. Each
class has been trained and tested with 40 and 29 sam-
ples files, respectively.

As seen in Table 1, estimate 2 of first derivative
beats estimate 1 by approximately 3% with same per-
formance in terms of time. Using the segmentation al-
gorithm, recognition at word level has been evaluated
using the estimate 2 as feature and SDTW as classi-
fier as shown in Table 2. Word level accuracy is 80%,
which has gone down as compared to symbol level ac-
curacy. This is because few of the segmentation chal-
lenges listed in section 3.1 have not yet been dealt with
completely. It is evident from our results shown in Ta-
ble 1 that our above approach can be applied in real time
applications.

6. Conclusions

We have demonstrated the effectiveness of segmen-
tation in word recognition. To our best knowledge,
this is the first work that deals with Kannada word
level recognition handling all combinations of conso-
nants and vowels, punctuations, Kannada and Indo-
Arabic numerals appearing in a word. Currently, we
are working to handle all the segmentation challenges
listed above in section 3.1 and improve the accuracy at
the word level.

References

[1] T. V. Ashwin and P. S. Sastry. A font and size-
independent ocr system for printed kannada documents
using support vector machines. Sadhana, 27(1):35–58,
2002.

[2] C. Bahlmann and H. Burkhardt. The writer independent
online handwriting recognition system frog on hand
and cluster generative statistical dynamic time warping.
IEEE Trans. PAMI, 26(3):299–310, March 2004.

[3] R. Dugad and U. B. Desai. A tutorial on hidden markov
models. SPANN, May 1996.

[4] N. Joshi, G. Sita, A. G. Ramakrishnan, and S. Mad-
hvanath. Comparison of elastic matching algorithms
for online tamil handwritten character recognition. Proc
intl. workshop frontiers handwriting recog., pages 444–
449, October 2004.

[5] E. Keogh and M. Pazzani. Derivative dynamic time
warping. First SIAM Intl. Conf. Data Mining, 2001.

[6] B. V. Kumar and A. G. Ramakrishnan. Machine recog-
nition of printed kannada text. Proc. Intl. workshop doc.
anal. systems, pages 37–48, 2002.

[7] S. R. Kunte and S. Samuel. Wavelet features based on-
line recognition of handwritten kannada characters. Jl
Visualization Society of Japan, pages 417–420, 2000.

[8] L. R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. Proc. of the
IEEE, 77(2):257–286, February 1989.

[9] S. V. Rajashekararadahya and P. V. Ranjan. Handwrit-
ten numeral recognition of three popular south indian
scripts. Proc intl. conf. information processing, pages
162–167, 2008.

[10] A. K. J. Scott D Connell. Template based online char-
acter recognition. Pattern Recognition, 34:1–14, 2001.

