
An Improved Online Tamil Character Recognition Engine using

Post-Processing Methods

Suresh Sundaram, A G Ramakrishnan

Indian Institute of Science, Bangalore, India

suresh@ee.iisc.ernet.in, ramkiag@ee.iisc.ernet.in

 Abstract

 We propose script-specific post processing

schemes for improving the recognition rate of

online Tamil characters. At the first level,

features derived at each sample point of the

preprocessed character are used to construct a

subspace using the 2DPCA algorithm.

Recognition of the test sample is performed

using a nearest neighbor classifier. Based on the

analysis of the confusion matrix, multiple pairs

of confused characters are identified. At the

second level, we use script specific cues to sort

out the ambiguities among the confused

characters. This strategy reduces the recognition

error among the confused character sets handled,

by more than 4%. This approach can be applied

irrespective of the nature of the classifier used

for the first level of recognition, though the

nature of the confusion set might vary.

1. Introduction

 Tamil is a popular classical language spoken

by a significant population in South East Asian

countries. There are 156 distinct symbols in

Tamil [1]. For the recognition of online Tamil

characters, Deepu [2] uses class specific

subspaces, while Niranjan et al. [1] have

employed elastic matching schemes. Dinesh et

al. [3] have recently proposed ‘star -based’

features for the same. Hidden Markov models for

recognition have also been reported in [4] [5].

 In this paper, we propose a two level scheme

for recognizing online Tamil symbols. For the

first level of classification, we propose an

adaptation of the 2DPCA algorithm [6] for the

extraction of features from online Tamil

characters in a subspace. For the classification of

a test character, we employ a nearest neighbor

classifier.

It is an established fact that one way of

assessing the performance of any given classifier

depends on how well it can perform on an

unknown test sample. To this effect, a confusion

matrix is constructed with the training samples

of all the 156 classes by employing the leave-

one-out cross-validation (LOOCV) technique.
The nearest neighbor classifier in the first stage

fails to capture finer nuances between certain

structural shapes that form the basic cues in

making certain characters distinct. To further

improve the classification accuracy of the system,

it becomes imperative to design a robust, post-

classification scheme (at the next level) to

distinguish between visually similar

misclassified characters. Hence, usage of script

dependent cues becomes a necessity in

developing these post-processing methods

2. Feature Extraction

 The strokes of multistroke Tamil characters are

first combined into a single trace, retaining the

stroke order. Prior to feature extraction and

recognition, the input raw character is smoothed

to reduce noise. Dehooking algorithms are

applied to remove any spurious hooks at the start

of the character. The character is then resampled

along the trace length to obtain a constant

number of points, following which it is

normalized by centering and rescaling.
 Let the number of sample points in the

preprocessed character be Np. At each sample

point (xi ,yi), we extract a set of local features.

Let
i

jF represent the j
th

feature derived from the

i
th

 sample point of the character.

2.1 Character Feature Matrix

Features corresponding to each sample point

are stacked to form the rows of a matrix, referred

to as the character feature matrix (CFM). The

following are the features extracted.

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDAR.2009.65

1216

• The normalized x and y coordinates of the

sample points are used as features and are

denoted by F1
i
and F2

i
.

• The distance and angle of the sample point

with respect to the centroid of the character are

computed to form the features F3
i

and F4
i
.

• We divide the length of the preprocessed

character into 4 equal segments. The radial

distance and polar angle of the sample point of

the character with respect to the mean of the

segment in which it lies are the features F5
i -

and F6
i
.

• We relate the position of the sample point with

respect to its immediate neighbors. We take a

sliding window of size W (W odd) centered

on the sample point and perform an n
th

 order

polynomial fit on the samples within that

window. We use the resulting n+1 polynomial

coefficients as features. We use the values

W=3, n=2 (quadratic fit) and accordingly

denote the features as F7
i
, F8

i
 and F9

i
.

• We separately model the x and y coordinates

of the sample point by two n
th

 order

autoregressive (AR) processes and use the

resultant AR coefficients also as features. We

employ a 2
nd

order AR process and

accordingly obtain the features F10
i
, F11

i
, F12

i
,

F13
i
, F14

i
 and F15

i
.

 It is to be explicitly stated that for obtaining

the polynomial fit and AR coefficients of the

first and last sample points of the character, we

have concatenated the last stroke with the first

stroke. This ensures that the notion of

neighborhood is not lost. The set of 15 features

obtained at a sample point (xi ,yi) are

concatenated to form a feature vector FV i
 of

size 1 ×15

1 2 15...i i i i
FV F F F =   (1)

We then construct the character feature matrix C

by stacking the feature vectors of the sample

points of the preprocessed character.

1

2

....

pN

FV

FV
C

FV

 
 
 

=  
 
  

 (2)

 The i
th

row of matrix C corresponds to the

feature vector derived for the i
th

 sample point.

Therefore, the size of C is Np ×15.

3. Recognition using 2D PCA

In the 2DPCA method [3], we project the

character feature matrix C onto a set of

projection axes 1 2
{ , ,..., }

d
P P P that maximize

the total scatter of the projected samples. The

projection axes are the orthonormal eigenvectors

corresponding to the d largest eigenvalues of the

character scatter matrix Gt defined below:

1

1
() ()

TN
T

t j j

jT

G C M C M
N =

= − −∑ (3)

where NT is the total number of training samples,

1 2
{ , ,..., }

TN
C C C are the NT CFMs and M is

the mean of the pooled training CFMs. Thus, the

size of matrix Gt is 15 × 15.
 On applying the 2DPCA technique to the

character feature matrix C, we get a family of

principal component feature vectors

{Y1,Y2 …,Yd} as defined below:

 , 1, 2...
k k

Y CX k d= = (4)

The d principal component vectors can be

stacked column-wise to form the projected

feature matrix B of dimension Np × d.

1 2[......]
d

B Y Y Y= (5)

Let NT be the total number of training CFMs.

After transformation by 2DPCA, we get NT

projected feature matrices.

 1 2[, ,.....] 1, 2...i i i

i d TB Y Y Y i N= = (6)

Let Bt be the projected feature matrix for the test

character. The Euclidean distance between the

projected feature matrices Bt and Bi is

1 2

(,)
d

i t

i t k k

k

d B B Y Y
=

= −∑ (7)

The test character is assigned to the class of the

training sample B, that satisfies the condition,

 (,) min (,)
t i i t

d B B d B B= (8)

1217

4. Analysis of the Confusion Matrix

 The multi level recognition engines [1]

generally pass the Top N choices from a

previous classifier to the next level. This

approach, however, may lead to redundancy,

especially when at any given level; there is a

high probability that none of the samples of the

remaining 155 classes get easily confused with

the estimated class.

 In our work, we exploit prior knowledge of this

probability to circumvent the aforementioned

drawback of the top N choice approach. We

construct a confusion matrix from the training

samples using the leave-one-out cross-validation

(LOOCV) technique as shown in Figure 1. The

rows and columns of the confusion matrix

correspond to the true and estimated class labels,

respectively.

 By scanning the j
th

 column of the confusion

matrix, we obtain prior information on the

classes that may get misrecognized as the j
th

class. In fact, the (i,j)

 element in the confusion

matrix represents the number of samples of i
th

class that get recognized as the j
th class. If a

particular column j has only one non-zero entry

corresponding to the diagonal element (j,j), then

it implies that none of the other classes get

misclassified as the class j. In such a scenario,

there is no need to post-process test data

recognized as class j. A careful analysis of the

confusion matrix revealed that if less than 2.5%

of the total number of training samples of i
th

class gets misrecognized to class j, they are

regarded outliers that are produced mainly due to

incorrect styles of writing. Accordingly, we do

not consider class i in the post processing

module designed for the j
th class.

 i

 True

 class

 j

 Estimated class

 Fig. 1. Structure of the confusion matrix

 Given a test character, we get its estimated

class label from the first level classifier. If it

corresponds to a class for which the first level

classifier is highly discriminative, it is regarded

as the final recognition label. Otherwise, the test

data is fed to an appropriate post processing

module. The output of the second classifier is the

final recognition label.

5. Proposed Post-Processing Methods

 The frequently confused pairs were manually

grouped into two categories A and B as shown in

Table 1. In this section, we propose appropriate

post-processing techniques to each group of the

confusion pairs.

Table 1. List of Confused Pairs

Group

 A
(A,W) (B,X) (C,Y) (D,Z) (E,a)
(F,b) (G,c) (H,d) (L,h) (M,i)
(O,k) (Q,m) (T,p)

Group

B

(ã,ó) (ä,ü) (è,²) (ô,õ) (÷,ù)
(º,Í) (º,¿) (´,Ç) (¸,³) (Ë,Æ)

5.1 Disambiguating Group A Pairs

 The confusions in this group appear between

pairs of Tamil consonant-vowel combinations

sharing the same base consonant but different

vowel modifiers. The most frequently confused

vowel modifiers contributing to such errors are

the substrokes ¤ and ¦. Popular writing styles

of Tamil script demand that the vowel modifier

always forms the last stroke in any multistroke

consonant-vowel combination character.

However, for CV combinations written as a

single stroke (where the vowel modifiers get

attached to the base consonant), one can regard

the subset of sample points traced before the

final PEN UP to be the vowel modifier. The

number of such sample points is chosen to be a

function of the length of the character. It is worth

re-emphasizing that the confused pairs in Group

A correspond to CV combinations sharing the

same base consonant (BC). Let 1ω and 2ω

denote the class labels of BC+ ¤ and BC+ ¦
combinations, respectively. We outline below the

algorithm employed for distinguishing BC+ ¤

and BC+ ¦.
 For a preprocessed character (BC+ Vowel

modifier combination) resampled to Np points,

let){ }(,
pN

i i i b
S x y

=
= denote the pen coordinates

of the extracted vowel modifier. Here ‘b’ denotes

the pen position of the start of the vowel

modifier. A point (,)
i i

x y in S is said to be an

 (i,j)

1218

‘interest point' if the following two conditions

are satisfied.

 (i) 1i i
y y

−
< and 1i i

y y
+

<

 (ii) 1i i
x x

+
< (9)

1) Find the sample point (,)
s s

x y satisfying

the relation max
i bs i

y y
>=

= (see Fig. 2)

2) Starting from (,)
s s

x y , move along the

trajectory to locate interest points, if any. Let

N denote the number of interest points

encountered. If N > 0, assign the character to

class 2ω . If N=0, we invoke (3).

3) Locate the sample point m m(,)x y

satisfying the relation m max
i s i

x x
>

= .

 Define the ratio
m

m

pN

b

x x
r

x x

−
=

−
 (10)

 If r ≥ε and
pN b

y y> assign the character

to class 2ω ; else, assign it to class 1ω . ε is a

threshold, empirically set to a value of 0.02.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(xs,ys)

(xNp,yNp)
(xb,yb)

(xm,ym)

 Figure 2: Extraction of script specific features

from Group A. (This sample is assigned to class W)

 To illustrate this scheme, consider the character

(BC+ Vowel modifier combination) shown in

Figure 2. Analysis of the vowel modifier alone

indicates that N=0, r > 0.02 and
pN b

y y> .

Accordingly, the character is assigned to class W.
 We now give an intuitive reasoning for the

proposed post-classification scheme. It is

observed that in modern Tamil script, there are

many lexemic styles for the sub strokes ¤

and ¦ as shown in Fig. 3. Samples of top row

correspond to writing styles of A, while those of

the bottom correspond to W. For these cases,

mere elastic / rigid matching schemes may not be

good enough in distinguishing finer nuances

between the sub-strokes ¤ and ¦. In such

scenarios, the proposed technique outperforms

conventional matching schemes.

Figure 3: Lexemic styles of A and W. Samples of

the top and bottom rows correspond to A and W,
respectively.

5.2 Disambiguating Group B Pairs

 For this group, Fourier descriptor features

corresponding to parts of strokes that

discriminate frequently confusing classes are fed

to a second level classifier. Similar to Group A

pairs, there exist other pairs in Group B that

differ predominantly towards the end such as

(ä,ü) (è,²). However, the structure to be

analyzed for these pairs is strikingly different

from those treated in Group A. Moreover, there

are certain characters that differ either at the

start or middle of their trace such as (÷,ù) (ô,õ)
(¸,³). Such pairs are also incorporated in Group

B (See Table 1).
 As an illustration, consider the characters ä

and ü. Instead of feeding the (x,y) coordinates of

these characters as a whole to the post-

processing module, we focus on the shape of sub

strokes forming the tails of these characters and

extract Fourier descriptors from them, after

resampling the extracted shape to 30 points. The

number of Fourier coefficients chosen is set

empirically to 10. A nearest neighbor classifier is

used to obtain the final recognition label of a test

character.

 6. Experimental Results

 The proposed two level recognition technique

is tested on the IWFHR 2006 Tamil Competition

dataset [7]. This dataset contains 26926 random

test samples (approximately 177 test samples per

character). We have used 270 training samples

for each character. The characters are resampled

to 60 points and normalized to [0, 1]. We

compute features listed in Section 2.1 at each

point of the resampled characters used for

1219

training and construct character feature matrices

of size 60 × 15. We then transform the features

to an 8-dimensional subspace by performing

2DPCA on the training CFMs. A nearest

neighbor classifier is used to classify the test

character in the subspace. If the estimated class

label is one of the confusion pairs in Table 1, we

input the test character to an appropriate post-

processing scheme at the next level.

 Table 2 depicts the increase in the

classification accuracy of a few frequently

confused characters after the post processing step.

The improvement in performance is observed in

both the validation/ training and test sets.

Validation on the training set is performed using

the leave-one-out cross-validation (LOOCV)

technique. On the average, there is an 8 %

reduction in the recognition error among the

confused characters in the validation set. On the

test set, the improvement in recognition is

around 5%.

 On the IWFHR Test Set, we see that with

2DPCA+NN classifier alone, a recognition

accuracy of 86.5% is achieved. However

incorporation of post-processing schemes for

confused pairs improves the performance by

approximately 1%. The marginal improvement

can be attributed to the fact; the current work has

been concentrated solely on resolving pairs of

confused characters. From the confusion matrix,

there are many triplets and quadruples of

confused characters, that are yet to be

disambiguated such as (è,ê,²) (ù,÷,¬) and

(º,Í,¿,Ø) (A,W,C,Y). Efforts are currently

underway in this direction.

7. Conclusion

 In this work, we have adopted the 2DPCA +NN

classifier technique as the first stage in a two-

stage recognition framework for online Tamil

characters. We have employed structural cues to

discriminate between each of the confused pairs

in the second stage. There is significant

improvement in the classification accuracy of the

online recognition system.

8. References

[1] Niranjan Joshi, G Sita, A G Ramakrishnan and

Sriganesh Madhavanath, Comparison of Elastic

Matching Algorithms for Online Tamil

Handwritten Character Recognition. Proc. Intl

Workshop Frontiers Handwriting Recog. pp

444-449, 2004.

Table 2: Improvement in classification

accuracy (in percentage) of some frequently

confused characters on the validation and test

sets after incorporation of the post-processing

scheme.

 Validation Set Test Set

Confu

sed

Chara

cter

No

post

proce

ssing

With

post

proce

ssing

No

post

proce

ssing

With

post

proce

ssing

A 90.6

94.8 79.2

86.3

D 84.7

94.7 89.2 91.5

a 83.2

95.0 86.4 91.2

ä 89.1

93.0 97.7 99.4

ü 81.3

99.8 87.2

98.7

¿ 82.7

86.4 75.6 81.9

[2] Deepu V and Sriganesh Madhavanath.

Principal Component Analysis for Online

Handwritten Character Recognition, Proc. Intl

Conf .Pattern Recog. 2: pp 327-330, 2004.

[3] Dinesh M, Sridhar M K, A Feature based on

Encoding the Relative Position of a Point in the

Character for Online Handwritten Character

Recognition. Proc. Intl. Conf. Doc. Anal. Recog.

Vol 2, pp 1014-1017, 2007.

[4] Alejandro H Toselli, Moises Pastor, Enrique

Vidal, On-Line Handwriting Recognition

System for Tamil Characters, Proc. Iberian conf.

Pattern Recog. Image Anal., Lecture Notes

Comp. Science Vol. 4477(1), pp 370-377, 2007.

[5] Bharath A, S Madhvanath, Hidden Markov

Models for Online Handwritten Tamil Word

Recognition. Proc. Intl. Conf. Doc. Anal. Recog.

Vol 1, pp 506-510, 2007.

[6] Jiang Y, David Z, Alejandro FF and Jing yu

Yang, Two Dimensional PCA: a New Approach

to Appearance based Face. Representation and

Recognition. IEEE Trans. PAMI, 26 (1), pp.131-

137, 2004.

 [7] HP Labs Isolated Handwritten Tamil Character

Dataset.

 http://www.hpl.hp.com/india/research/penhw-

interfaces-1linguistics.html#datasets

1220

