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ABSTRACT

We propose a new Shape Adaptive Integer Wavelet Transform
based progressive transmission coding scheme for 2-D and
3-D MRI. The scheme consists of (a) extraction of shape in-
formation (b) Shape Adaptive Integer Wavelet transform (c)
Intraband Wavelet enoding and (d) entropy coding. The pro-
posed scheme results in improved performance of progrssive
transmission as compared to the conventional rectangular
Wavelet transform coding schemes. The main contribution
of this paper is its unique approach which rejects the noisy
background rather than considering it for lossy compression
as proposed in most of the recent schemes.This rejection of
unwanted information results in considerable decrease in bit
rate. Another contribution is object based 3-D coding which
is out of scope of baseline JPEG2000.

1.. INTRODUCTION

Data compression is useful in reducing the storage and/or
transmission bandwidth requirements of medical images.
Compression methods are broadly classified into reversible
(lossless) and irreversible (lossy) methods. In the medical
image scenario, lossy compression schemes are not generally
used. This is due to a possible loss of useful clinical infor-
mation which may influence diagnosis. In addition to these
reasons, there can be legal issues. Hence there is a need for
efficient lossless compression schemes for medical data.

The Discrete Wavelet Transform (DWT) is widely ac-
knowledged to feature excellent decorrelation properties but
DWT based encoders cannot achieve genuine lossless com-
pression, due to the limited precision of computer arithmetic.
A more efficient approach to lossless compression is the use
of integer transforms such as Integer Wavelet Transforms.
The transform coefficients exhibit the feature of being ex-
actly represented by finite precision numbers and this allows
truely lossless coding. Although the use of Integer Wavelet
Transforms gives lossless compression, the compression ra-
tios are generally low for perfect reconstruction. In the case
of MR images, only ��� of the image consists of clinically
useful information and rest of the portion is the noisy back-
ground. This makes MR images ideal for object based cod-
ing.

A compression scheme with progressive transmission ca-
pability is very useful in applications like telemedicine,
where data needs to be transmitted at a faster rate. With this
capability, image data can be transmitted from a coarse to
finer resolution. The user at the receiving end can download
the image up to the resolution required and if necessary, up
to perfect reconstruction.

The agreement of the image processing community on
object-based approaches is proved by the fact that the incom-
ing standard for still image compression JPEG2000 features
region of interest (ROI) based functionalities [4]-[5]. Never-
theless, the baseline JPEG2000 does not address 3-D data.

In this paper, we present a MRI coder which uses Shape
Adaptive Integer Wavelet Transform (SAIWT) and has pro-
gressive transmission and lossless reconstruction options.
The progressive transmission scheme is based on the scheme
proposed by [2] where correlation within the band is ex-
ploited as against EZW and SPIHT schemes where correla-
tion across the bands are exploited. The difference between
our approach as compared to the approach in [7] is that they
consider only the brain portion as the useful information in
MR images and suitable for lossless compression, the skull
portion and the noisy background may be compressed in a
lossy way, whereas our approach completely rejects the un-
desired, noisy background and reconstructs the image por-
tion losslessly. The approach in [7] takes the rectangular
wavelet transform of the whole image (including the noisy
background), whereas our approach requires taking Shape
Adaptive Integer Wavelet Transform of only the desired por-
tion and rejecting the noisy background. The advantage of
our scheme is in its simple implementation and effective per-
formance in terms of bit rate as compared to the conventional
rectangular wavelet transform based schemes. The block di-
agram of the proposed scheme is given in Fig.1

2.. EXTRACTION OF SHAPE INFORMATION

A typical MR image consists of two parts:
1. Air part (background)
2. Flesh part (foreground)

The flesh part contains the useful clinical information which
needs to be compressed without any loss. On the other hand,
the air part does not contain any clinical information. It is
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Figure 1: Block Diagram of The Proposed Scheme
(SAIWT : Shape Adaptive Integer Wavelet Transform; I/I :
Input Image; R/I : Reconstructed Image)

only noise and consumes unnecessary bit budget and impairs
the performance of a compression scheme. In [1], a scheme
is proposed which uses two source models, one for back-
ground and the other for foreground, and an improvement
in performance is reported. But no justification is given to
code the air part as there is no useful information present in
it. In this work, we ignore the air part. We generate image
masks in such a way that the flesh part is totally included and
the pixel values in the air part are made zero. The rest of this
section explains an image independent algorithm for mask
generation.
Morphological operations can be effectively used to gener-
ate image masks, which contain a value of ’1’ in the fore-
ground and a value of ’0’ in the background. The original
image is then multiplied with these masks to obtain ”back-
ground noise-free” images while keeping the information in
the foreground intact. Figure 2 shows the generated mask
after each morphological operation stated above. Figure 3
shows an MR image, its mask and the image obtained after
multiplication with the mask. The algorithm for generating
the mask is given below:

1. Binarize the image with a threshold decided by the his-
togram of the image.

2. Holes may be formed within the foreground. Close
these holes using morphological ’closing’ operation.

3. Background may contain spurious lines. Use morpho-
logical ’erode’ operation to remove these lines.

4. The above erosion operation also erodes the boundary
of the foreground region. To make sure that the mask
spans the entire foreground region, use morphological
’thickening’ operation to thicken the boundary of the
foreground region. This is followed by bridging oper-
ation to bridge the gap inbetween the mouth portion.

5. Multiply the original image with the resulting binary
mask. We use this binary mask information for shape
adaptive wavelet transform based compression scheme
as explained in the following sections.

(a) (b) (c) 

(d) (e) 

Figure 2: Mask after various morphological operations. (a)
original image (b) mask after binarisation (c) mask after clos-
ing operation (d) mask after erosion (e) mask after thickening
and bridging.

(a) (b) (c)
 

Figure 3: Suppression of background in an MR image using
morphological operations. (a) original image (b) the gener-
ated mask (c) background suppressed image.

3.. SHAPE ADAPTIVE INTEGER WAVELET
TRANSFORM

We modify the technique given in [10] to obtain integer
transform coefficients required for lossless compression.
The motivation behind using this scheme is that the wavelet
transform is performed faster and with easier boundary
extension. One more advantage of this scheme over the
scheme used in [7] is that in this scheme there is no need
to code extra coefficients to avoid artifacts along the region
boundaries. This 1-D transform is applied to each row and
then to each column to obtain 2-D transform as follows:
Step 1: Row Transform: Each row intersects the object and
forms one or more foreground segments which can be found
from the shape information present in the mask. A lifting
wavelet with a symmetrical boundary extension is applied
on each segment independently. We always align the center
of the low pass wavelet filter with even index 2i and align the
center of the high pass filter with odd index 2i+1 with index
position calculated from the start of the segment. If there is
no object pixel at 2i or 2i+1 there will be no corresponding
coefficient at index i of the low-pass or high-pass bands.
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Suppose a segment of length 8 pixels is fed into the lifting
wavelet module as shown in Fig 4(a). We furthur assume
that the low pass wavelet filter is aligned with coefficient ��.
The biorthogonal 9-7 lifting wavelet [9] can be depicted by
a 4-stage lifting with coefficients a = -1.586, b = -0.052, c =
0.883 and d = 0.444. The wavelet coefficients are calculated
as follows. First high pass filtering is performed which
updates the coefficients at odd indices and then a low-pass
filtering is performed which updates the coefficients at even
indices. The third and fourth stages are high and low-pass
stages respectively, which generate the final high and
low-pass coefficients. The entire forward lifting operation is
shown in Fig 4(a). A basic element of lifting can be described
by the equation given below and is also illustrated in Fig 4(b).

� � ������ � �	 ��

X,Y: coefficients before and after lifting
L,R: left and right neighbouring coefficients
d: lifting parameter of the current stage
� 	: floor operation

Step 2: Column Transform: The low and high-pass bands
of horizontal transform are further processed column by col-
umn. Each column intersects the object and forms one or
more vertical segments. We perform the procedure same as
described above and align the low-pass filter with even in-
dex 2j and high-pass filter with odd index 2j+1. The result-
ing coefficients are stored in the index j of the low and high
pass vertical bands respectively. The number of wavelet co-
efficients after SAIWT is exactly the same as the number of
pixels in the object.

Decomposition of the mask: When we apply row trans-
form to the MR image we get low pass and high pass im-
age. Simultaneously we generate two binary masks, one for
low pass image and the other for high pass image by making
the regions where we get transformed coefficients as ’1’ and
other reigions as ’0’. Similarly, from these two masks we
generate masks representing ll, lh, hl, hh images by applying
column transform to low and high pass images. Using the
above method the ll mask can be again decomposed along
with the ll image to get the 2-level decomposed mask.

Fig 5 shows the 2-level 2-D shape adaptive transform of
a MR slice along with the decomposition of mask. At each
level, the decomposed mask is used for the next level de-
composition. Decomposed mask in each band also gives the
object’s shape in that band. This information is used for en-
coding the wavelet coefficients as explained in the following
section.

4.. CODING SCHEME

We modify the coding scheme proposed in [2] for shape
adaptive coding. This scheme exploits correlation within the
band whereas the schemes proposed by [6] and [3] exploit in-
terband correlation using zerotrees. We also reduce the side
information required to be sent to the decoder using the idea
proposed in [8]. The details of the scheme are given below:

1. Apply �-level 2-D separable shape adaptive integer

wavelet transform to the given image.
2. Assign the label ��� (do not care) to wavelet coeffi-

cients which do not belong to the object using the mask
information shown in Fig 5.

3. Partition the image into 	 � 	 lattices.
4. For each lattice 
, find the maximum absolute value

���� without considering coefficients with label ���.
Let �� � �
������������� be the threshold of the 
��
lattice. Store these values in the array ��.

5. Initialize an array 
��� of size equal to that of ��.
6. Set the maximum of all the thresholds as the global

threshold, ��.
7. Scan the wavelet image starting from the lowest fre-

quency band to the highest frequency band in zig zag
manner. In each band, the lattices are scanned in raster
order.

8. If �� � ��, the lattice is insignificant with respect to ��
and no information is sent to the decoder. A binary ’0’
is stored in 
���. If �� �� ��, the lattice is significant
and needs to be transmitted to the decoder. If this lattice
is first time significant, a ’1’ is recorded in the list 
���.
If the lattice is already significant, no information is sent
to the decoder, since this lattice will also be significant
for the future lower global thresholds.

9. If the lattice is significant, check for the significance of
each coefficient in raster scan order. If the coefficient is
absolute significant, a ’1’ is appended to the significant
list 
��
 otherwise a ’0’ is appended. If the coefficient
is positive significant, a ’0’ is appended to the sign list

��� or a ’1’, if it is negative significant.

10. From the second pass onwards, those coefficients which
are already significant in the previous passes, are refined
by sending the next MSB in the list ��� .

11. After all lattices are scanned, set �� � ���
. If �� ��
� go to step 7, otherwise stop.

The lists 
��
, 
���, 
��� and ��� can be further losslessly
compressed by employing arithmetic coding. Since the most
important coefficients (with higher thresholds ��) are coded
before the least important ones (with lower thresholds), there
will be an ordering of wavelet coefficients resulting in pro-
gressively transmittable bit stream. The decoder can stop at
any step and reconstruct the image that is best at that level.
The image reconstructed at �� � � will be identical to the
original image and hence results in lossless compression.

The main difference between our scheme and that pro-
posed by [2] is in sending the significance map of the lat-
tices. In [2], the array �� is entropy coded and sent to the de-
coder. This impairs the performance of the scheme at higher
thresholds. The bit budget that would be spent for resolutions
at these thresholds is not worth. In our scheme, the signifi-
cance information of lattices is sent only when it is required.
This greatly increases the performance at higher thresholds
(which is desired in a progressive transmission scheme). It
has been shown in [8] that the above coding scheme per-
forms better than that proposed by [2] and comparable to
that of SPIHT for rectangular case. Moreover the scheme
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used here has an added advantage of simple implementation
as compared to any interband coding techniques like SPIHT
or EZW.

Coding of Binary Mask: The coding of binary mask is
necessary because it contains the useful shape information.
Rather than sending the whole binary mask we only send the
boundary co-ordinates to the decoder after coding. We scan
each row in the mask image and see which from which row
the mask information starts and which row it ends, and send
the starting and the ending row value. We see that each row
cuts the boundary of the mask twice. We note down these val-
ues.We find the difference between successive column values
and send this difference after entropy coding.The bit budget
used in sending the shape information is of the order of 1/100
bits per pixel (bpp).
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Figure 4: Implementation of Integer Wavelet Transform

(a) (b) (c) 

Figure 5: 2-D Shape Adaptive Integer Wavelet Transform (a)
Original Image (b) 2-level Wavelet Decomposed Image (c)
2-level Decomposition of Mask

5.. EXTENSION TO REGION OF INTEREST BASED
3-D MR IMAGE COMPRESSION

The above scheme can easily be extended to 3-D MR images.
The motivation is to exploit intra and interframe correlation
in these images. A common mask for a set of 2-D MR image
slices (comprising 3-D MR data) is prepared by binary OR
operation of individual masks of 2-D slices. This mask is
used for coding all the MR slices.

We extend the above schemes by employing 3-D sapara-
ble SAIWT. A 1-D integer wavelet transform is applied is ap-
plied along the time axis for each pixel. This results in tem-
poral low and high frequency images. Each of these images
are then decomposed by saparable 2-D SAIWT as described
in section 3. We tiled the wavelet images by cuboids of size
v x v x vt (v=4 and vt=2). The algorithm in the previous sec-
tion was used to obtain progressive bit stream. Fig 6 shows
1-level temporal and 1-level spatial Wavelet Decomposition
which can be repeated to obtain higher level temporal and
spatial wavelet decomposed images. Fig 7 shows the 2-level
temporal and 2-level spatial 3-D shape adaptive transform of
8 MR slices along with the decomposition of mask.

I/P MR Slices
(8)

L(4)

H(4)

LLH

LHL

HLL

LLL(4)

(4)

(4)

LHH(4)
(4)

HLH(4)

HHL(4)

HHH(4)

For Second Level 
Decomposition

Temporal Decomposition                                 Spatial Decomposition

Figure 6: 1-level temporal and 1-level spatial Wavelet De-
composition; Note: The number of images are given in ()

6. EXPERIMENTAL RESULTS

We compare the performance of our Shape Adaptive Integer
Wavelet based scheme with the conventional wavelet based
scheme. We apply the above algorithms on 8-bit MR images
provided by National Institute of Mental Health and Neuro
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(a) 

        (b) 

Figure 7: 3-D Shape Adaptive Integer Wavelet Transform of
a set of 8 MR Image slices(a) 2-level temporal and 2-level
spacial Wavelet Decomposed Image (b) 3-D Decomposition
of Mask

Sciences (NIMHANS), Bangalore, India. We compare 2-D
rectangular scheme wirh 2-D shape adaptive scheme and then
3-D rectangular with 3-D shape adaptive scheme.

The MR images are first preprocessed to remove back-
ground noise as explained in section 2. We take 2-level 2-
D integer wavelet decomposition of the preprocessed image.
We use 	 � � for both the rectangular and shape adaptive
schemes. For higher values of 	, the performance improves
for higher thresholds, but at lower thresholds more coeffi-
cients are significant and hence more bits need to be spent
for significance information. This reduces the performance
at lower thresholds. We arrived at the value of 4 after exper-
imenting with various values of 	. Figure 8 compares PSNR
(peak signal to noise ratio) Vs Bit Rate of the two schemes.
The performance of shape adaptive scheme is superior at all
Bit Rates . On an average, the saving in the bit rate is 
�����
at perfect reconstruction. Table-1 shows bit rate (in bpp) of

above 2-D schemes for different PSNRs for a representative
image.

We implement 3-D algorithm on a group of 8 MR im-
ages. The size of the images are 256 x 256 x 8. The inter-
frame thickness being 1mm. We apply 2-level 3-D integer
wavelet transform in both temporal and spatial directions.
We use v = 4 and vt = 2. The saving in the bit rate is for 3-D
shape adaptive case is 
����� as compared to 3-D rectangular
scheme at perfect reconstruction. Figure 9 compares PSNR
(peak signal to noise ratio) Vs Bit Rate of the 3-D rectangular
and shape adaptive schemes. The overall performance in the
progressive transmission is impressive in extending the 2-D
scheme to 3-D scheme. Table-2 shows bit rate (in bpp) of
above 3-D schemes for different PSNRs for a set of 8 repre-
sentative images.

Table:1 PSNR in dB; Bit Rate in bpp; 2DRect : 2D Rect-
angular Scheme; 2Dshape : 2D Shape adaptive Scheme (in-
cluding the shape information of the binary mask);

PSNR 16.3 22 27 32 38 44 50 100
2DRect .046 .107 .239 .544 1.114 1.772 2.424 3.247
2DShape .051 .101 .220 .501 .959 1.346 1.560 1.687

Table:2 PSNR in dB; Bit Rate in bpp; 3DRect : 3D Rectangu-
lar Scheme; 3Dshape : 3D Shape adaptive Scheme (including
the shape information of the binary mask);

PSNR 16.3 22 27 32 38 44 50 100
3DRect .020 .050 .151 .446 1.001 1.653 2.305 3.113
3DShape .029 .056 .157 .447 .916 1.300 1.566 1.712
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Figure 8: PSNR (in dB) Vs Bit Rate (in bpp) performance
curves of 2D schemes

7. CONCLUSIONS

We presented a new Shape Adaptive Integer Wavelet based
lossless image compression scheme for 2-D and 3-D MR im-
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Figure 9: PSNR (in dB) Vs Bit Rate (in bpp) performance
curves of 3D schemes

ages. This scheme exploits intraband correlation as opposed
to interband correlation used by EZW and SPIHT schemes.
This scheme is simple in implementation as compared to
EZW and SPIHT algorithms. We got around �
� and ���
saving in Bit Rate for 2-D and 3-D respectively, at perfect
reconstruction, using our new scheme as compared to con-
ventional rectangular wavelet based schemes.
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