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Abstract—This pilot study was carried out to find the
feasibility of analyzing the maturity of the fetal lung using
ultrasound images. Data were collected from 350 preg-
nant women at intervals of 2 weeks from the gestation age
of 24 to 38 weeks. Various textural features were com-
puted from regions of interest of 64 x 64 pixels each from
the fetal lung and liver images. The ratios of fetal lung
to liver feature values were investigated as possible indices
for classifying the images into those from mature (reduced
pulmonary risk) and immature (possible pulmonary risk)
lung. The features used are fractal dimension, lacunar-
ity and features derived from the histogram of the images.
Classifiers such as nearest-neighbour (NN), k-NN, modified
k-NN, multilayer perceptron, radial basis function network
and support vector machines were used. A classification
accuracy of 73 to 96% was obtained for the test set.

Index terms—Fetal lung; Lung maturity; Sonogram; Tex-
ture; Fractal dimension; Classification.

I. FETAL LUNG MATURITY ANALYSIS

Prenatal diagnosis (PD) is essential to avoid an untoward
outcome for the fetus or the mother or both. The assess-
ment of fetal lung maturity is of great value in perinatal
management. A variety of techniques are available for PD.
However, all the current techniques for PD are invasive,
involving at least a sample of maternal blood. In amnio-
centesis, the study of Lecithin - Sphingomyelin (L/S) ratio
is the most useful. However, being invasive, it carries risks,
and on occasion, may be contraindicated. Ultrasonography
is a non-invasive procedure, which can currently be used to
determine fetal size, gestation age (GA), and the condition
of placenta.

There has been extensive debate for and against the use
of sonographic features for analyzing fetal lung maturity.
Thieme et al [1] studied the lung development in the lamb
through sonographic patterns. Garrett et al. [2] stated
that reflectivity of human fetal lung is equal to or less than
that of liver throughout most of pregnancy but that rela-
tionship reverses in late gestation. Cayea et al. [3] argued
that there is no statistically significant correlation between
the sonographic features and the biochemical fetal lung ma-
turity indices, namely L/S ratio and phosphatidylglycerol
values. Benson et al. [4] employed RF signals for char-
acterizing fetal lung and liver tissues. They observed a
spectral shift in the reflected signals from a high to a low
frequency range, when the lung makes a transition from
immature to mature state. Feingold et al. [5] used den-

sitometer measurements to establish a correlation between
lung-liver echogenicity and L/S ratio. Podobnik et al. [6]
developed a relation between the coefficient of variation of
lung -liver echogenicity and L/S ratio. Petrucha et al. [7]
measured biparietal diameter (BPD) and placental grad-
ing (PG) from ultrasound. They concluded that BPD to-
gether with PG is at least as sensitive as the L/S ratio in
predicting the pulmonary maturity. Sohn et al. [8] carried
out frequency analysis of both fetal lung and liver and the
ratio between the mean and the range of the frequencies
received was used as an index of maturity analysis.

Some of the earlier studies have used echogenicities of
the lung and liver as possible indices of pulmonary ma-
turity [5], [2], [8]. Many researchers have used textural
measures to study and analyze the liver texture in differen-
tial diagnosis of liver [9], [10]. Ultrasound cannot measure
any of the biochemical parameters of fetal lung maturity,
nor can it provide direct histologic information about fe-
tal lung development. However, it is reasonable to assume
that both morphological and biochemical changes alter the
diffuse scattering and other propagation properties of fetal
lung. This may change the textural appearance of sono-
gram. Since echogenicity is sensitive to machine settings
and textural features have been used in the literature for
the differential diagnosis of liver, we attempted to classify
lung images as belonging to mature or immature class using
textural features. The motivation was to find the possible
changes in the sonogram texture during the transition from
a high pulmonary risk group to a low pulmonary risk group.

II. DaTA COLLECTION

Ultrasound examinations were performed both at Medis-
can Systems, Chennai, India and at the University Hospital
in Kuala Lumpur, Malaysia. Data were collected in both
places using the real time ATL Apogee 800 plus scanner
with a 3.5 MHz curvilinear, broad bandwidth transducer
probe with the dynamic range set at 55 dB. Imaging was
performed in a similar way at both locations. The overall
gain was set at an optimal value to get uniform visibil-
ity. Longitudinal and transverse sections of the fetal tho-
rax and upper abdomen were imaged. The fetal lung and
liver were identified in the thoracic and upper abdominal
sections, respectively. Obvious vascular structures in the
liver were avoided. An uniform echo texture was obtained
by optimizing the machine settings. The post-processing
curves were unchanged. The focal zone was adjusted to
keep the area of interest always in focus. Data were col-



lected from 350 subjects belonging to Indian, Chinese and
Malay races at gestation ages from 24 to 38 weeks, at inter-
vals of 2 weeks. Since most deliveries after 34 weeks can be
effectively handled with medical support, and since there
is little incidence of pulmonary risk after 38 weeks, data
was collected only up to 38 weeks. Further, in most Asian
races, pregnancy ends around 38 weeks. In this paper, we
refer to the group with pulmonary risk as immature and
the one with reduced risk as mature. Since it is known
clinically that many babies at 34 weeks of gestation do not
have pulmonary risk, we have considered subjects above 35
weeks as belonging to the mature class. The subjects were
followed up throughout the pregnancy and also after deliv-
ery. Only the data corresponding to normal pregnancies,
also leading to babies with normal pulmonary functions,
were included in our analysis.

A cross-sectional study of normal fetuses have shown
that the overall size of a fetus at each GA falls within a
range of 5! to 95" centile. Hence, in our study, since
normal subjects are chosen, large variations in depth were
not encountered. The lung and the liver areas taken for
analysis were contiguous and at the same depth for each
fetus. The appropriate section of each image was frozen
and then transferred to videotape. The images were then
digitized using the Creative video grabber card with 8-bit
resolution. The size of the digitized image was 320 x 240
pixels with a resolution of 29 pixels per cm. The histogram
of the images was stretched to occupy the entire range of
gray values. Regions of interest (ROT) of 64 x 64 pixels each
from the liver and the lung regions were used for extract-
ing textural features. Figure 1 shows two fetal echogram
samples, with the ROI’s selected from the liver and lung
regions. Figure 2 displays the selected regions of interest
from both the lung and liver regions from one sample im-
age each belonging to the different GA’s. The total data
acquired consisted of 750 images of immature class and 250
images of mature class. The lung to liver ratio of various
feature values were studied as possible indices of maturity.

III. FEATURE EXTRACTION

The textural features extracted are described below.

Spatial gray level dependence matrices (SGLDM): These
are based on the second order joint conditional probability
density functions, fs 4(a,b). Here fy 4(a,bd) is the proba-
bility that a pair of pixels separated by a distance d at an
angle ¢ have gray levels a and b. Haralick [11] proposed 14
texture measures that can be extracted from the estimated
probability density functions, Ps 4(a,b). In our study, only
the following five texture features are computed.

Energy = Z Z [Ps,4(a, b)]? (1)
a b
Entropy = — Z Z P, 4(a,b)log Py 4(a,b) (2)
a b
3)

Inertia = Z Z(a —b)?Py,4(a,b)
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where the two summations are carried over all the values
of a € (0,Ng — 1) and b € (0,Ng — 1), respectively, Ng is
the number of gray levels in the image and C, L are the
correlation and the local homogeneity, respectively. Simi-
larly, uy and o, are computed. Each measure is evaluated
for d =1 and ¢ = 0°,45°,90° and 135°.

Gray level difference matriz (GLDM): Let I(x,y) be the
image intensity function. For any given displacement § =
(A.Z',Ay), let I5($,y) = |I($,y) - I(ZC + A.Z',y + Ay)|> and
f'(i]9) be the probability density of I5(z,y). If there are m
gray levels, this has the form of an m-dimensional vector
whose " component is the probability that Is(x,y) will
have value i. f'(|§) is obtained as the number of times
I5(x,y) has a value of 7 for a given 4, i.e.,

f'(il0) = P(Is(w,y) =)

Four forms of the vector § were considered: (0,d), (—d,d),
(d,0) and (—d, —d) where d is the interpixel distance. From
each of the density functions, the following five texture fea-
tures were extracted:

Conrast : CON = Z i f'(i]6) (6)
MEAN :) i f’(i|<5)z (7)
Entropy : ENT = Z 1'(i|6)log(f'(i|6) (8)
IDM =3 f(ild)/(* +1) (9)

l (10)

ASM = Y(r o)

where IDM and ASM are the inverse difference moment
and angular second moment, respectively and the subscript
i € (0, Ng — 1) in all the cases.
Laws’ textural measures: Laws’ textural energy measures
[12] are derived from three vectors, each of length three:
L3 = {1,2,1}, E3 = {-1,0,1} and S3 = {-1,2,—1}.
These respectively represent the operations of local averag-
ing, edge detection and spot detection. If these vectors are
convolved with themselves or with one another, we obtain
among others the following three vectors, each of length
five: L5 = {1,4,6,4,1}, S5 = {-1,0,—2,0,—1} and E5 =
{-1,-2,0,2,1, } which perform local averaging, spot and
edge detection, respectively. The masks used in our anal-
ysis are L5TE5 and L57 S5. The masks were convolved
with the image and the entropy of the resulting image was
calculated.

Fractal dimension and Lacunarity: The fractal dimen-
sion (FD) is computed based on the concepts of multires-



olution image analysis and fractional Brownian motion
model (fBMM). The intensity surface of an ultrasonic im-
age can be viewed as the end result of random walks, and
fBMM [13] can be used for its analysis. FD and lacunarity
are the important features that characterize the roughness
and granularity of the fractal surface. Given an M XM
image I, the intensity difference vector (IDV) is defined as
IDV = [id(1),id(2), ...id(s)] where s is the maximum pos-
sible scale and id(k) is the average of the absolute intensity
difference of all pixel pairs with horizontal or vertical dis-
tance k. We compute id(k) as

1
TOAM(M—k-1)

| 106, 5) = I(i,j +F) |

i=0  j=0
—k—1M—1

+ | 1(i,5) = (i + k,j) | (11)
i=0 ;=0

and FD = 3 — H, where H is the Hurst parameter. H
is estimated as the slope of the curve of id(k) versus k in
log-log scale, using least-squares linear regression. Given a
fractal set A, let P(m) be the probability that there are m
points within a box of size L, centered about an arbitrary
point of A. We have, 2221 P(m) = 1, where N is the
number of possible points within the box. The lacunarity
is defined as

A = (My — M?)/M?

where M = SN _ mP(m) and My = 3N _ m?P(m)
Histogram based features: The histogram based features
calculated were mean, variance, coefficient of variation
(CV), skewness, kurtosis and second moment (SM).
Out of the 64 features extracted, the features of GLDM
and SGLDM had similar variations. Since computation
of SGLDM features is both time and memory consum-
ing, we discarded those features. The features which were
retained are FD, intercept, lacunarity, CON, ENT, IDM,
ASM, MEAN from GLDM, entropy of Law’s textural mea-
sures, Mean, Variance, CV, skewness, SM and kurtosis
from histogram of the images. Based on Pearson’s cor-
relation test, the following 6 features that exhibited good
correlation with GA are selected: (i) FD, (ii) lacunarity
from fractal measures, (iii) mean, (iv) variance, (v) CV,
and (vi) SM calculated from the histogram. The ratios of
these features were used as input to the classifiers. It was
observed that data sets from both the hospitals exhibited
similar behavior.

(12)

IV. TRAINING AND TEST DATA SETS

The collected data was grouped into two classes: Samples
from 24 to 34 weeks of gestation were considered to belong
to the immature class (possibility of pulmonary risk) and
those from 36 to 38 weeks, as mature (reduced risk), as pul-
monary risk is very rare after 35 weeks of gestation. Three
different types of training and test sets were formed from
the samples. The first set had 800 training and 200 test

samples. Of the training data, 600 belonged to the imma-
ture class and 200, to mature class. The test set contained
150 samples of immature class and 50 of mature class. In
the second training set, 400 samples were from 24 to 30
weeks of gestation, and 200, from 36 to 38 weeks of ges-
tation. In the test set, 200 samples belonged to 32 to 34
weeks of gestation and 50 belonged to 36 to 38 weeks of ges-
tation. The third set contained 400 training samples, with
equal number from immature and mature classes. To form
the test set of 100 samples, an equal number of immature
and mature samples were randomly picked from the total
data set. In our training, we have considered immature
lung classified as immature as true positive (TP).

V. CLASSIFIERS USED FOR THE STUDY

The ultrasonic images were classified into mature and im-
mature classes using the following classifiers.

Nearest-neighbour (NN) classifier: This assigns an un-
known sample a class same as that of the sample in the
training set nearest to it in the feature space by Euclidean
distance.

k-nearest neigbour (k-NN) classifier: There is a possi-
bility of NN classifer yielding an erroneous decision if the
obtained single neighbor is an out-lier of some other class.
To avoid this and improve the robustness of the approach,
the k-NN classifier works with k patterns in the neighbor-
hood of the test pattern. In our study, the value of k was
chosen to be 7 after testing with a number of values of k.

Modified k-nearest neighbor (mk-NN) classifier: In the k-
NN classifier, though a search in the k-neighborhood drives
classification, the distance of a template from the test char-
acter does not play any role. In an effort to bring about
a weighted representation, the mk-NN classifier associates
a distance-based weight with each prototype member in
the k-neighborhood. This weighted representation sched-
ule then drives the classification process. The weight is
calculated as follows:

Let S = {s1,82,...,5,} be the set of reference pat-
terns in the k neighborhood of the test pattern in the
feature space, sorted in the increasing order of their dis-
tances from the test pattern. Let X = {z1,%2,...,2%}
be the respective distances from the test pattern, where
21 is the minimum and zj is the maximum distance. Let
W = {wi,ws, ..., wi} be a weight set with w; as the weight
assigned to pattern s; based on its distance from the test
feature vector, given as:

(13)

By testing with different values of k, we found that k =7
gave a classification accuracy better than any other value.

Multilayer perceptron (MLP): The MLP is a feedforward
network, capable of generating nonlinear boundaries. In
our study, a two layer network was chosen with 6 input
nodes, one hidden layer with 3 nodes and 2 output nodes.
The hidden layer had sigmoid activation function, whereas
the output nodes had linear activation function.

Radial basis function network (RBF): The RBF network
[14] performs interpolation in a multidimensional space.

w; = (z — ;) [/ (xK — 1)



The RBF network has a high dimensional hidden layer
with Gaussian kernels. In the current study, a network
with six input nodes, fifteen hidden nodes and two output
nodes was used. The centres of the Gaussian kernels were
estimated through k-means algorithm.

Support vector machines (SVM): In SVM [15], the opti-
mal hyper-plane decides the separation between individual
classes of patterns. The optimality is in the following sense:
the average distance between the hyper-plane and the clos-
est training points on both sides is maximal. This aids
in maximization of the correct classification rate. Whereas
data with linear separability may be analyzed with a hyper-
plane, linearly non-separable data is analyzed with kernel
functions such as higher order polynomials, Gaussian, and
tan-sigmoid. The output of a SVM is a linear combination
of the training examples projected on to a high dimen-
sional feature space through the use of kernel functions.
The Gaussian kernel gave the highest classification accu-
racy among the kernels tested. The value of the standard
deviation was chosen as 0.2.

The NN, k-NN and mk-NN classifiers were implemented
in C. For MLP and RBF, we have used Netlab, a package
developed by C.M. Bishop and I.T. Nabney, Neural Com-
puting Research group, Aston University, U.K. For SVM,
we used SVM_ TORCH, a software developed by a group
at IDIAP, Switzerland [16].

VI. RESULTS

Figure 1 shows the lung and liver areas in the fetal im-
ages, and the ROIs for extraction of textural features. Fig-
ure 2 gives the descriptive statistical details of the lung to
liver feature values in the form of boxplots. It also char-
acterizes the variation of the above features with respect
to gestation age. Figure 3 demonstrates the dynamics of
the selected features as a function of the gestation age for
the lung and the liver. Figures 3A & 3B show that the
fractal dimension and lacunarity of lung increase as a func-
tion of the gestation age. This is to be expected because
the granularity of the cells change with the GA. Explic-
itly, the cells of the lung are found elongated during early
gestation period, which could give rise to images that are
quite smooth, that is, less granular in nature. However, the
cells become spherical and fluid-filled [1] towards the term.
Further, since the fluid to tissue content ratio changes with
GA, the diffuse scattering properties also change, leading
to more granular images.

Figure 3C shows a decrease in the echogenicity of lung
as compared to the liver as GA increases. The echogenicity
of the lung is almost the same as that of the liver at early
GA. Thus, the lung seems to attenuate ultrasound waves
more than the liver at later GA’s (see [4]). The variance
of the gray values of the lung (Fig. 3D) has an upward
trend with GA, whereas that of the liver remains relatively
unchanged throughout the period. The plot of CV (Fig.
3E) shows a similar trend as that of the variance and the
plot of the second moment (Fig. 3F) is similar to that of
FD. It may be noted that the nature of variation of the
features of the liver is, in most cases, similar to that of

the lung. Table 1 shows the results of classification. In all
the cases we have less number of false negatives, which is
a preferred outcome. The results indicate the consistency
of classification.

VII. DISCUSSION

In the area of fetal monitoring, a reliable method to deter-
mine lung maturity is very essential. The use of ultrasound
to study fetal lung maturity is advantageous over others be-
cause of its non-invasive nature. Traditionally, ultrasound
has been used in fetal monitoring to obtain physical mea-
surements of fetal size and placenta condition. In our work,
pulmonary risk assessment based on ultrasound textural
features has given encouraging results.

In our study, we have considered three different training
and test sets as explained in the earlier section. This for-
mulation is to test the generalization and adaptability of
the classifiers. The first training set is more biased towards
the immature class. We need our classifiers to be more sen-
sitive and specific for immature class, because classification
of immature class as mature is less desirable. If a mature
lung is classified as immature, the problem is not very se-
rious because adequate medical support would have been
made available. The classifiers’ accuracy for the training
and test sets is given in Table 1. It may be noted that
all the classifiers have almost comparable accuracy of clas-
sification, with NN and mk-NN having a little edge over
the others. The number of false negatives is low for every
classifier. The results show a high degree of specificity of
the classifiers to the immature class.

In the second case, the training set did not contain any
sample from 32 - 34 weeks, and the test set did not contain
any sample from gestation ages below 32 weeks. This step
was undertaken to ensure that the classifier is not biased
by data, which could belong to either of the classes. Ma-
turity does not occur before 32 weeks for a normal fetus,
whereas it is guaranteed beyond 36 weeks [17]. Thus, the
testing of images from the intervening period is likely to
throw light on the transition period. An increase in the
number of false negatives is seen in this case (see Table
1). This is because, we have assumed that the data cor-
responds to the immature class, whereas in reality, some
of them could actually have transited to the mature class.
As seen from the results, the NN classifier and its variants
have performed poorly when compared to other classifiers,
showing their poor generalization capability. In the third
set, we had equal number of samples from both classes in
order to have an unbiased training of the classifiers. From
Table 1, we see that even in the case of unbiased training,
the classification results are very consistent, with few false
negatives. In fact, the results are very close to the biased
training, and in the case of RBF and SVM classifiers, better
than the latter.

The NN and mk-NN have given more accuracy where
complete data set i.e samples from 24 to 38 weeks were
used. When tested with samples only from 24 to 30 weeks
(immature) and 36 to 38 weeks (mature), all the classifiers
had comparable accuracy of classification. At the boundary



between the two classes, the neighbourhood classifiers per-
formed better. Their accuracy can be attributed to more
closeness in the neighbourhood relation among the samples
at the boundary of the two classes. The boundary samples
along with the other samples of the two classes contribute
for the greater accuracy of NN and mk-NN classifiers. The
classification accuracy for k-NN and mk-NN was computed
for various values of k starting from k=2. The classifica-
tion accuracy for the test sets decreased with increasing &
upto k = 6, increased for k¥ = 7and8, and decreased once
again for k > 8. Based on this test, the value of k = 7 was
selected.

Some of the earlier studies have established usefulness
of ultrasound examinations in predicting pulmonary ma-
turity with various degrees of accuracy, by using features
like, placenta grading, physical measurements of fetal size,
echogenicites of the lung and liver regions, attenuation of
frequencies in the lung and liver regions, and shift in the
RF frequency spectrum during the process of maturation
2], [3], [5], [4], [6], [8]- In our study, we have used textu-
ral features as a measure of pulmonary maturation which
has yielded an accuracy of classification from 73% to 96%.
To the best of the authors’ knowledge, this seems to be the
first ever attempt to classify fetal lung maturity in terms of
textural features of the ultrasound image. Since in all the
cases, the lung and the liver have been imaged together,
the effects due to the imaging techniques (including the
internal processing by the machine) must affect both the
regions similarly, and thus must not cause any variations
on the textural features of the lung and liver differentially.

VIII. CONCLUSION

In this study, it has been shown that the textural fea-
tures are better indicators of the histological changes, com-
pared to the study of only the echogenicity. Based on the
results, it is clear that the fetal pulmonary risk can be
fairly accurately assessed by studying the ultrasound im-
ages. This result is worth investigating further, because of
its clinical ramifications. A complete sonographic analysis,
which combines the above textural features with param-
eters such as fetal biparietal diameter, placental grading,
femur length, head circumference and the abdominal cir-
cumference could possibly enhance the prediction accuracy.
Also, an analysis of data from high risk pregnancies (moth-
ers with hypertension or diabetes mellitus) could be used
to further validate the prediction of maturity using sono-
graphic features. Further investigation of textural features
of ultrasound along with biochemical tests will help estab-
lish the validity of the method and eliminate the use of
invasive tests for fetal pulmonary risk assessment.
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Fig. 3. Plots of ratios of lung-liver feature values as a function of FN 8 10 3
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