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Abstract—Nearby scalp channels in multi-channel EEG data
exhibit high correlation. A question that naturally arises is
whether it is required to record signals from all the electrodes in a
group of closely spaced electrodes in a typical measurement setup.
One could save on the number of channels that are recorded,
if it were possible to reconstruct the omitted channels to the
accuracy needed for identifying the relevant information (say,
spectral content in the signal), required to carry out a preliminary
diagnosis. We address this problem from a compressed sensing
perspective and propose a measurement and reconstruction
scheme. Working with publicly available EEG database, we
put our scheme to experiment and illustrate that if it is only
a matter of estimating the frequency content of the signal in
various EEG bands, then all the channels need not be recorded.
We have achieved an average error below 15% between the
original and reconstructed signals with respect to estimation of
the spectral content in the delta, theta and alpha bands. We
have demonstrated that channels in the 10-10 system of electrode
placement can be estimated, with an error less than 10% using
recordings on the sparser 10-20 system.

Index Terms—Correlated signals, Karhunen-Loeve Trans-
form, Electroencephalography, Motor-Imagery tasks, Com-
pressed Sensing, Convex Optimization, EEG electrode placement

I. INTRODUCTION

Nearby scalp channels of multi-channel EEG exhibit high
correlation because EEG signals are not produced in the
scalp or the neurons (brain) directly under the recording
electrodes. Instead, as suggested in [1], they are a consequence
of partial synchrony of local field potentials from distinct
cortical domains - each domain, in the simplest case, being a
patch of cortex of unknown extent. At any electrode, the EEG
recording is a weighted linear mixture of underlying cortical
source signals. The strong correlations observed between EEG
recordings at nearby electrodes can be attributed to the spatial
mixing of EEG source signals by volume conduction. Signif-
icant research effort has gone into exploring the correlation
between EEG recordings at electrodes on different areas of
the scalp. In [2], [3], [4], heavy correlation, sometimes as
high as 0.9 has been reported between anterior-posterior EEG
signals in the alpha band. Very high coherence in the delta
band has been reported in [5] between posterior temporal lobe
regions. Interhemispheric coherence in the gamma band has
been studied in normal adults in [6]. Existence of very high

correlation, between temporal regions of the human brain, in
the alpha band has been reported in [7].

A. Motivation

The primary interest in understanding inter-channel correla-
tion in multi-channel EEG is to identify scope for information
redundancy in a measurement involving the full set of elec-
trodes. If the channels are correlated, is it always mandatory
to make recordings at all the electrodes, particularly those in
close vicinity ? For any subject, during the initial training
sessions, all the channels are monitored. Once the correlation
is learnt, one could do away with measurement at some of
the electrodes and yet be able to estimate the EEG spectral
signature at the locations of the missing electrodes. On the
other hand, it may also be possible to reconstruct channels that
are noisy or missing altogether due to electrode movement,
etc. This conjecture is motivated by supporting literature cited
above that provides evidence of correlation between nearby
EEG channels.

B. Limitations

One cannot ignore the fact that the inter-channel correlation
may be weak and time varying. However, in applications
such as EEG brain mapping, where we are mainly concerned
with the relative signal content in various frequency bands,
accuracy of signal reconstruction per se, at such locations can
be relaxed. The focus of this work is restricted to providing
empirical evidence of obtaining approximate signal reconstruc-
tion and a reasonably good estimate of the spectral content
in all channels of EEG by recording over limited number of
channels. Some of the possible implications of such an effort
on clinical diagnosis and research are listed in section VI. It
is definitely desirable to be able to detect small changes in the
correlation pattern, which might have diagnostic significance.
However, we are not sure that the proposed method can
accomplish this and we shall explore this in future.

II. SUB-SAMPLING AND RECONSTRUCTION

Reduction in the number of EEG recordings involves identi-
fication of a suitable subsampling/reconstruction architecture,
realization of which based on many different paradigms has

ar
X

iv
:1

40
7.

12
85

v1
  [

cs
.E

T
] 

 4
 J

ul
 2

01
4



been an important research area in itself. Almost all the sub-
sampling schemes proposed for general signals are based on
the assumption of signal sparsity in some domain such as time,
frequency or space. Many spectral estimation methods have
been proposed, where the signal is assumed to be sparse in the
frequency domain. These methods [8], [9], [10] are suited to
applications like radar, in which targets act as spatially sparse
monotones. Though EEG signals exhibit characteristic spectral
peaks for various normal and pathological conditions, they are
not in general sparse in the frequency domain. It is at best
possible to exploit the intersignal correlation in such cases so
that a vector of measurements from a set of electrodes could
be transformed into a sparse vector on a basis derived from
the signal autocorrelation matrix. It is important to mention
here that significant work has been reported previously on the
frequency analysis of EEG signals. Time-frequency analysis
of EEG data based on adaptive periodogram technique has
been proposed in [11]. Identification of the signal compo-
nents through decomposition of data into time-frequency-space
atoms (based on the Wigner-Ville distribution) using parallel
factor analysis has been proposed in [12]. Time-frequency
spectral estimation of multichannel EEG has been reported
[13] using smooth, time-frequency localized versions of the
Fourier functions. These contributions address the problem of
detection and analysis very well.
In [14], the authors have exploited the joint sparsity of
EEG signals on the Gabor frame and have achieved a low
normalized mean square error. However in this work, the
different trials are treated as different electrodes with the
assumption that in both cases the same underlying activity is
measured. In [15], the authors have suggested a novel approach
of structuring individual signals into groups and exploiting
the group sparsity by computing the l12 norm. However
their approach involves the use of the unconventional random
sampling based acquisition architecture and does not exploit
the joint sparsity of a group of signals. In [16], the authors
have demonstrated the use of fast ICA as a preprocessing step
before compressed acquisition of EEG signals to achieve a
low reconstruction error.
In the approach that we report in this paper, we intend
to exploit the inter-channel correlation in EEG and in the
process do away with some of the channels altogether during
acquisition. The focus of our efforts is more on detecting the
signal content in various spectral bands using reduced number
of channel measurements. Section IV gives a brief introduction
to the well known Karhunen Loeve Transform (KLT), which
makes available a sparsifying basis for a set of correlated
signals. With such a sparsifying basis, a subsampling scheme
like compressed sensing could be employed for undersampling
and reconstruction of the channels. The next section presents
a rudimentary introduction to the area of compressed sensing
which has made a significant impact in sparse signal process-
ing in the past decade.

III. COMPRESSED SENSING PARADIGM

Classically, signals are Nyquist sampled and transformed
into a sparse domain, following which only the significant
coefficients are retained for transmission or storage. The
compressed sensing paradigm [17], [18], [19], [20] provides
mechanisms for sub-sampling signals, that are sparse in an
arbitrary transform domain, and subsequent reconstruction of
the original signal from the sub-sampled measurement. Under
compressed sensing schemes, sampling and compression are
combined into a single step, so that only the required smaller
number of appropriate samples are obtained through non-
uniform sampling at a sub-Nyquist rate. Let x ∈ RN be a
finite length, discrete signal in the time domain which is to
be sub-sampled. Assume that x has a sparse representation
in a transform domain, represented by the unitary matrix
Ψ ∈ RN×N . In other words,

x = ΨX (1)

where X is an N × 1 vector that has at most K < N non-
zero elements, i.e. it is a K-sparse vector. In practice, for
real world signals x, X has at most K significant elements
and the rest are negligibly small. For signal compression, the
negligible coefficients are set to zero and only the significant
coefficients are transmitted (stored). A lossy recovery of the
original signal is then obtained using (1). Although the signal
is efficiently compressed, all the Nyquist samples are required
initially. Instead, if M linear combinations of the signals are
taken by a sampling matrix, Φ ∈ RM×N we have,

f = Φx = ΦΨX (2)

The next step after taking the compressed measurement is to
recover the original signal x, given the measurement vector f,
the inverse transformation Ψ−1, and the measurement matrix
Φ. It is clear that simple linear algebra does not permit us to
do so, due to the fact that the set of equations (2) has more
number of unknowns than equations.

The earliest reconstruction algorithms were geometric, in-
volving l1 minimization techniques to find the K-sparse vec-
tor, X from the measurement f.

minimize |h |1, subject to ΦΨh = f
X̂ = h

x̂ = ΨX̂ (3)

Also known as the basis pursuit [21], this method has been
widely used in applications of compressed sensing. It can be
extended for the case of noisy signals by altering the first line
in (3) as:

minimize |h |1, subject to ‖ΦΨh− f‖l2 ≤ ε (4)

where ε is a small term bounding the amount of noise in the
data and whose value may be specific to the application.
l1 minimization technique offers a high reconstruction ac-

curacy. However, its complexity is Ω
(
N2
)
, making it compu-

tationally intensive for large dimensional problems. Iterative
greedy algorithms have been proposed, which execute faster



compromising the reconstruction accuracy. The orthogonal
matching pursuit [22], along with its many variants [23], [24],
is a greedy, iterative algorithm which finds the support of
the sparse vector progressively. Although the basis pursuit
approach is employed by the scheme proposed in this work
for acquisition and reconstruction of EEG signals, our method
can work with any reconstruction algorithm.

IV. KARHUNEN LOEVE TRANSFORM

Karhunen Loeve Transform (KLT) [25], [26] is a reversible
linear transformation that removes redundancy in signals by
decorrelating them. KLT has been extensively used in image
compression, wherein the correlation between neighboring
pixels is exploited.

Consider the signal matrix, S ∈ Rτ×N , the rows of which
are indexed by τ successive time instants and the columns
are indexed by N correlated signal sources. The covariance
matrix of S denoted by ΣS , is symmetric for real valued S and
its eigen vectors, ψn, are orthogonal. Consequently, one can
construct an orthogonal matrix, Ψ ≡ [ψ0, ψ1, ..., ψN−1] such
that ΣSΨ = ΨΛ where Λ is a diagonal matrix consisting of
the corresponding eigen values. The transpose of Ψ is known
as the KL transform.

Let x(t) ∈ RN×1 be a vector comprising samples from N
sources at any time instant t. Thus, x(t) can be represented on
the basis spanned by the eigen vectors ψn as

x(t) = Ψ X(t) (5)

If the signals are correlated then, X(t) is going to be a sparse
vector. Thus at any time instant, only a subset of the source
signals need to be sampled to form a measurement vector
and the remaining sources can be estimated through a suitable
reconstruction scheme. Let us assume that we measure only M
out of the N sources. Such a subsampling scheme is realized
by the downsized identity matrix I(M)

N obtained by eliminating
those rows from IN which correspond to the sources that are
not measured. Thus, we have I(M)

N as the measurement matrix

φ = I(M)
N

y(t) = φ x(t) (6)

where, y(t) is as before the measurement vector and from (5)

y(t) = φΨ X(t) (7)

Applying the convex optimization in (4) and the second and
third equations in (3) we get,

x̂(t) = ΨX̂
(t)

(8)

The name KLT has been synonymously used with principal
component analysis (PCA) by the signal processing commu-
nity. In the light of this, it is very pertinent to mention that the
method proposed in this paper is not the same as the sparse
PCA approach [27], [28] which is different from classical PCA
in which the matrix Ψ is formed out of the eigen vectors of
the autocorrelation matrix (5). In other words, one tries to
maximize ψTnΣSψn subject to ‖ψn‖ = 1.

On the other hand, the sparse PCA approach seeks sparse
principal components that span a low dimensional space. The
matrix Ψ is found by solving an optimization problem with
a sparsity constraint on its entries. Equivalently, one tries to
maximize ψTnΣSψn subject to ‖ψn‖ = 1 and also |ψ| = K
where K is the parameter that controls the sparsity. As in
regular PCA (or KLT), in this paper the sparsity constraint is
not imposed on Ψ. Instead, sparsity constraint is applied on
the vector X in the minimization in the equations (3) that also
involve the matrix Ψ formed using the standard PCA with the
help of plain matrix algebra. Thus, throughout the process of
acquisition and reconstruction of the signals, the matrix Ψ,
referred to as the KLT matrix and calculated previously from
the training data set, remains unaltered.

V. APPLICATION TO EEG SIGNALS

Before exploring the possibility of applying the scheme
presented in the previous section for acquisition and recon-
struction of EEG signals, we present a brief introduction to
the major standards of electrode placement.

A. Standards for EEG electrode placement

The first internationally accepted standard for electrode
placement is the 10/20 system (figure 1a) that describes
head surface locations via relative distances over the head
surface between cranial landmarks. The primary purpose of
this standard is to provide a reproducible method for placing
a relatively small number (typically 21) of EEG electrodes for
various trials. With the advent of multi-channel EEG systems
the need was felt for extending the 10/20 system to higher
density electrode settings for use in research and diagnosis.
This led to the introduction of the 10/10 system (figure 1b) by
Chatrian et. al. in 1985, consisting of 64 electrodes, as a logical
extension of the original 10/20 system. While electrodes are
placed at distances of ten and twenty percent along certain
contours over the scalp in the 10/20 system, they are placed
at distances of ten percent along the medial-lateral contours
in the 10/10 system. Also, new contours are introduced in
between the existing ones. The 10/5 system with even higher
electrode density was proposed by Oostenveld and Praamstra
in 2001. An elaborate description and comparison of all these
systems is given in [29].

Consider the scenario where the electroencaphologram of a
patient undergoing treatment or a subject voluntarily involved
in research, has to be frequently taken. The first few sessions
can constitute the training phase in which measurements from
all the defined set of electrodes are taken and used to compute
the inverse KLT matrix. In the subsequent sessions, more
than fifty percent of the measurements can be dispensed
with thereby facilitating shorter setup time. In essence, it
would be possible to employ the 10/10 system of electrodes
in which signals from only fifty percent of the electrodes
will be measured during sessions subsequent to the initial
training phase. Thus the density of the measurements will be
somewhere in between the 10/20 and 10/10 systems, whereas
after the compressed reconstruction, all the signals in the



(a) 10-20 system. Courtesy: Wikipedia (b) 10-10 system Courtesy: Physionet

Fig. 1: EEG electrode placement systems

TABLE I: Motor/Imagery tasks during which the EEG used for the study has been collected. (see [31])

Record no. TASK DESCRIPTION OF THE TASK, DURING WHICH EEG IS RECORDED.

Record 1 Baseline 1 Eyes open DURATION: 1 sec
Record 2 Baseline 2 Eyes closed DURATION: 1 sec
Record 3 Task 1 A target appears on the left or the right side of the screen. The subject opens and closes

the corresponding fist until the target disappears. Then the subject relaxes. DURATION: 2 sec
Record 4 Task 2 The stimulus is same as Task 1. However, in this case the subject imagines responding

to the stimulus the same way as in Task 1 and then relaxes. DURATION: 2 sec
Record 5 Task 3 A target appears on the top or the bottom of the screen. The subject opens and closes both

fists if the target is on top and both feet if the target is on the bottom until the target disappears.
Then the subject relaxes. DURATION: 2 sec

Record 6 Task 4 The stimulus is same as Task 3. Again the subject imagines responding
to the stimulus the same way as in Task 3 and then relaxes. DURATION: 2 sec

The Tasks 1 to 4 are repeated two times and stored in records 7 to 14. Records 7 and 11 correspond to Task 1,
records 8 and 12 correspond to Task 2, records 9 and 13 correspond to Task 3 and records 10 and 14 correspond to Task 4.

10/10 system will be available. We have applied the proposed
method to the EEG signal database from Physionet [30]. A
brief description of the database is given in the next section.

B. The Physionet database

A detailed description of the database is given in [31].
This data set consists of over 1500 one- and two-minute
EEG recordings, obtained from 109 volunteers. The subjects
performed different motor/imagery tasks (see Table I) while
64-channel EEG was recorded, at a sampling frequency of
160 Hz, using the BCI2000 system [32]. The placement of the
electrodes is as per the international 10-10 system (excluding
electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9,
and P10). Each volunteer performed, in a sequence, a set of
14 tasks: two baseline tasks followed by four different tasks
repeated three times. We have assumed that the motor/imagery
tasks performed by the subjects (as given in the Table) are
very benign (e.g. opening and closing of fists and imagining

doing the same) and unlikely to produce ECG, EOG and EMG
artifacts in the recordings. Hence, no explicit steps have been
taken to filter out these signals, in case they exist.

C. The experiments

In order to compare the reconstructed signals with the
original, we compute a fractional spectral measure (FSM) for
each of the significant frequency bands - delta, theta, alpha,
beta and gamma. FSM is the ratio of the sum of the absolute
values of the 512-point DFT coefficients within a band to the
corresponding sum in the 0–40 Hz band. Thus, FSM for the
ith band is

FSMi =

∑
(abs(Fi))∑

(abs(F(0−40Hz)))
(9)

where i denotes one of the bands:delta, theta, alpha, beta
and gamma. For example, for theta band, the numerator in
the equation above is equal to the sum of the absolute values



of DFT coefficients in the frequency range 4–8 Hz. We have
chosen 512 as the size of the DFT so as to get a good frequency
resolution of 0.3125 Hz in the DFT spectra, given that the
sampling frequency of the data in the database is 160 Hz. We
compare the fractional power values for the original and the
reconstructed signals. Our experiment comprises the following
steps, that we categorize into the training and the testing phases
for the sake of clarity:

Training phase
Step 1: At random, choose six subjects to be included in the
test set – say, 1, 8, 41, 61, 77, 104
Step 2: For each subject pick a record corresponding to one of
the tasks 1, 2, 3 and 4, representing different motor/imagery
tasks, to be utilized for training.
Step 3: For the record that is picked, compute the inverse
KLT matrix for the channels (twenty in number) - Fc5, Fc3,
Fc1, Fcz, Fc2, Fc4, Fc6, C5 C3, C1, Cz, C2, C4, C6, Cp5,
Cp3, Cp1, Cpz, Cp2, Cp4 on successive (non-overlapping)
windows of 1000 observations each, till the end of the record.
Compute the mean of the inverse KLT matrices of all the
windows. The chosen channels correspond to a set of closely
spaced electrodes on the scalp (see figure 1b).

Testing phase
Step 4: For each of the subjects 1, 8, 41 and 61, one of the
records 7 to 10, that corresponds to the same motor/imagery
task as the record which was used for computing the inverse
KLT matrix, is used as the test record. For example if record
3 is used in the training phase then record 7 (that corresponds
to the same motor/imagery task, see table I) is used for
testing. Similarly, if the training record is 4, the testing record
will be 8 and so on. In the case of subjects 77 and 104,
the motor/imagery task that is chosen as the test record is
different from the one used in the training phase. For example,
for subject 77, records 3 and 14 are chosen for training and
testing, respectively. Similarly, for subject 104, records 4 and
13 are chosen for training and testing, respectively. This is
done with the objective of observing the robustness of the
method. At each successive time instant during 0-10 sec of
the test record, a sub-sampling is carried out, that is, only
a subset consisting of ten channels is measured. This subset
is different for each subject and the members of the subset
are picked up arbitrarily. The samples from the ten channels
form the measurement vector, y(t). The remaining ten are
estimated through l1 minimization (4) using the cvx toolbox
[33]. The mean inverse KLT matrix is used in the compressed
reconstruction algorithms.
Step 5: Compute the DFT1 for the original and reconstructed
signals.
Step 6: Compute the fractional spectral measure for the
original and the reconstructed signals and compare.

1In order to compute the DFT, the entire signal is divided into segments
of length 512, with a fifty percent overlap. The last segment is padded with
sufficient number of zeros. To each segment, a 512-point Hamming window
is applied. A 512-point DFT of each windowed segment is calculated. The
absolute values of the DFT coefficients are averaged over all the segments.

It is to be noted that, for any subject, all the EEG channels
are sampled only during the initial training sessions. Subse-
quently, on the same subject, only a subset of channels need
to be sampled and the rest can be reconstructed.

D. Results

For each subject, the FSM values for each band, in each of
the ten reconstructed channels are presented in Table II. The
average error between the original and reconstructed signals
in each band is also given as a percentage. Figure 2 shows
the plots of the reconstructed and the original signals for
nine channels (only 9 out of 10 reconstructed channels are
shown due to space constraint; channel 1 is not shown to
facilitate symmetrical placement of the rest of the sub-figures)
for subject 104. The original and reconstructed signals have a
close match in the signal as well as the frequency domains.

VI. POSSIBLE APPLICATIONS

A very pertinent question, in the context of the ideas
proposed in this paper, is: are there scenarios in which after
an initial training phase involving all the channels, one can
dispense with some of the channels ? To answer this question,
we list below a few possible cases where this could be done.

1) After a one-time learning phase for any subject, it would
be possible to obtain the full EEG, for the same subject,
using measurements on substantially lesser number of
channels. Using recordings on channels in the interna-
tional 10-20 system of electrode placement, it is possible
to estimate, with fair accuracy, the spectral content of
channels in the denser 10-10 system. To illustrate this,
we have calculated the KLT matrix, for subject 64 in the
physionet database, using channel numbers 8 to 14 of
the 10-10 system, i.e. C5, C3, C1, Cz, C2, C4 and C6
that fall in a straight line on top of the scalp. For testing,
using data from channel numbers 9, 11 and 13 (i.e C3,
Cz and C4) that coincide with electrode locations in
the 10-20 system, we reconstruct the remaining four
channels - C5, C1, C2 and C6 (see figures 1a and 1b).
Table III gives the corresponding FSM values for the
original and reconstructed signals. The average error
in the delta band is as low as 2.6% (or equivalently
the spectral fidelity is about 97.4%). The plots of the
reconstructed channels vs the original along with the
corresponding DFT magnitudes are shown in figure 3.
This could be useful in recording ambulatory EEG [34]
which is carried out for an extended period (up to 72
hours) in which the patient can move about freely during
the recording and data is stored in a pocket recorder.
Thus, EEG recorded on a subject at rest, using a dense
set of electrodes, can be used for training. Subsequently
when the subject is in motion, all the channels need not
be monitored.

2) In sleep studies, it is possible that data is missing on
some channels, either due to noise or due to undesirable
movement by the subject. In this case, the loss of data,



treated as undersampling, can be handled by recovery
through compressed sensing. Here there is no intentional
sub-sampling.

3) Deviation between the signal values estimated through
compressed sensing and the actual measurements (due
to loss of correlation), beyond a threshold, can be used
to detect the onset of seizure in epileptic subjects. In
this case too, there is no intentional sub-sampling.

VII. CONCLUSION AND FUTURE WORK

In this work, we have presented a novel approach of
subsampling EEG, by measuring only a subset of electrodes
and reconstructing the remainder through compressed sensing.
Empirically we have been able to demonstrate that if the cor-
relation amongst the channels is captured with good accuracy,
then by recording at only a few locations on the scalp, it is
possible to estimate the relative signal content in different
frequency bands with reasonable accuracy. We propose the
idea that if it is a matter of only knowing the relative spectral
content, measurement of only a few EEG channels suffices,
provided the correlation is previously captured in the inverse
KLT matrix using data reserved for training. The method
proposed is suitable for real time data capture since the compu-
tationally intensive reconstruction process can be done offline.
We have demonstrated that the accuracy in estimating the
relative frequency content is within 15%. We have also shown
that recordings on the 10-20 system can be used to estimate the
signals on electrodes in the 10-10 system with more than 90%
spectral fidelity. Although we employed basis pursuit for the
reconstruction, the approach we have presented is independent
of the compressed sensing reconstruction algorithm used.

For our future work, we intend to explore the possibility of
detecting sudden changes such as epileptic seizures manifest-
ing as high prediction error due to lack of correlation.
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TABLE II: Comparison of FSM in different bands of the original and reconstructed EEG for different channels of 6 subjects

Subject 1 (Record 7, Measured channels: 1 4 5 6 9 11 12 15 19 20)
Chnl Delta Theta Alpha Beta Gamma

(O) (R) (O) (R) (O) (R) (O) (R) (O) (R)
Fc3 0.337 0.328 0.134 0.138 0.090 0.095 0.282 0.281 0.089 0.097
Fc1 0.342 0.338 0.142 0.134 0.098 0.099 0.290 0.261 0.092 0.090
Fc6 0.336 0.378 0.123 0.115 0.087 0.099 0.248 0.275 0.101 0.084
C5 0.340 0.319 0.123 0.143 0.080 0.092 0.241 0.280 0.079 0.090
C1 0.369 0.311 0.136 0.141 0.099 0.101 0.276 0.276 0.087 0.097
C4 0.365 0.377 0.129 0.133 0.102 0.101 0.264 0.265 0.089 0.088
C6 0.341 0.374 0.112 0.132 0.088 0.108 0.246 0.277 0.092 0.086

CP3 0.364 0.352 0.142 0.128 0.095 0.093 0.272 0.256 0.082 0.087
CP1 0.383 0.348 0.132 0.118 0.096 0.093 0.268 0.268 0.081 0.088
CPz 0.384 0.351 0.121 0.138 0.096 0.105 0.255 0.270 0.079 0.092

Avg error 7.2% 9.0% 7.7% 6.2% 9.4%

Subject 8 (Record 8, Measured channels: 1 2 6 8 9 10 13 14 16 17)
Chnl Delta Theta Alpha Beta Gamma

(O) (R) (O) (R) (O) (R) (O) (R) (O) (R)
Fc1 0.354 0.344 0.146 0.124 0.108 0.107 0.200 0.211 0.072 0.082
Fcz 0.370 0.354 0.147 0.133 0.104 0.108 0.190 0.200 0.073 0.074
Fc2 0.371 0.359 0.147 0.141 0.104 0.106 0.189 0.195 0.074 0.073
Fc6 0.346 0.323 0.143 0.118 0.101 0.099 0.210 0.201 0.093 0.084
Cz 0.337 0.337 0.142 0.126 0.116 0.103 0.201 0.205 0.074 0.084
C2 0.351 0.323 0.131 0.125 0.108 0.096 0.191 0.227 0.070 0.099

CP5 0.327 0.310 0.116 0.123 0.131 0.099 0.208 0.254 0.088 0.112
CPz 0.353 0.359 0.113 0.123 0.104 0.087 0.173 0.180 0.066 0.070
CP2 0.344 0.320 0.127 0.126 0.116 0.116 0.198 0.223 0.073 0.100
CP4 0.332 0.304 0.129 0.130 0.117 0.108 0.201 0.238 0.074 0.106

Avg error 4.7% 7.8% 8.0% 9.6% 19.4%

Subject 41 (Record 9,Measured channels: 4 6 7 8 11 12 15 17 19 20)
Chnl Delta Theta Alpha Beta Gamma

(O) (R) (O) (R) (O) (R) (O) (R) (O) (R)
Fc5 0.381 0.336 0.163 0.160 0.099 0.094 0.221 0.248 0.062 0.076
Fc3 0.447 0.324 0.183 0.165 0.079 0.094 0.178 0.252 0.049 0.078
Fc1 0.383 0.355 0.185 0.172 0.089 0.092 0.238 0.240 0.062 0.071
Fc2 0.370 0.345 0.186 0.181 0.090 0.091 0.257 0.244 0.063 0.071
C3 0.336 0.351 0.159 0.157 0.098 0.083 0.276 0.216 0.073 0.070
C1 0.348 0.348 0.174 0.168 0.101 0.092 0.277 0.254 0.070 0.074
C4 0.339 0.342 0.152 0.162 0.085 0.085 0.248 0.231 0.065 0.064
C6 0.372 0.360 0.111 0.141 0.066 0.072 0.202 0.238 0.062 0.071

CP3 0.305 0.287 0.120 0.142 0.082 0.107 0.236 0.263 0.060 0.072
CPz 0.325 0.332 0.152 0.149 0.090 0.085 0.255 0.230 0.062 0.064

Avg error 7.0% 8.0% 9.7% 13.5% 15.7%

Subject 61 (Record 10, Measured channels: 2 6 8 9 10 14 15 17 18 19 )
Chnl Delta Theta Alpha Beta Gamma

(O) (R) (O) (R) (O) (R) (O) (R) (O) (R)
Fc5 0.414 0.323 0.137 0.132 0.082 0.112 0.219 0.267 0.061 0.101
Fc1 0.408 0.349 0.150 0.142 0.086 0.089 0.214 0.263 0.068 0.090
Fcz 0.396 0.388 0.140 0.125 0.089 0.081 0.209 0.225 0.076 0.072
Fc2 0.390 0.392 0.135 0.138 0.081 0.086 0.217 0.216 0.101 0.075
Fc6 0.388 0.364 0.135 0.133 0.080 0.092 0.216 0.242 0.101 0.080
Cz 0.380 0.345 0.121 0.140 0.088 0.087 0.207 0.261 0.077 0.093
C2 0.380 0.276 0.123 0.135 0.092 0.109 0.205 0.316 0.078 0.127
C4 0.386 0.370 0.123 0.132 0.089 0.090 0.212 0.230 0.082 0.087

CP3 0.375 0.236 0.109 0.127 0.084 0.114 0.236 0.360 0.067 0.127
CP4 0.378 0.308 0.112 0.123 0.095 0.112 0.216 0.284 0.072 0.111

Avg error 14.1% 8.4% 14.2% 23.8% 38.3%

Subject 77 (Record 14, Measured channels: 1 5 7 8 9 11 13 14 17 20 )
Chnl Delta Theta Alpha Beta Gamma

(O) (R) (O) (R) (O) (R) (O) (R) (O) (R)
Fc3 0.359 0.297 0.171 0.140 0.069 0.097 0.144 0.182 0.042 0.063
Fc1 0.359 0.353 0.162 0.171 0.063 0.096 0.132 0.222 0.040 0.073
Fcz 0.348 0.308 0.162 0.149 0.067 0.081 0.139 0.191 0.042 0.068
Fc4 0.376 0.283 0.149 0.150 0.060 0.100 0.136 0.243 0.038 0.071
C1 0.347 0.285 0.163 0.151 0.069 0.104 0.158 0.248 0.045 0.082
C2 0.336 0.346 0.154 0.139 0.068 0.089 0.150 0.210 0.040 0.070

CP5 0.307 0.343 0.134 0.184 0.074 0.084 0.173 0.209 0.040 0.062
CP3 0.334 0.273 0.148 0.152 0.076 0.092 0.181 0.240 0.046 0.069
CPz 0.326 0.309 0.144 0.142 0.074 0.094 0.162 0.226 0.044 0.067
CP2 0.336 0.279 0.146 0.137 0.073 0.086 0.167 0.202 0.041 0.060

Avg error 12.9% 9.8% 34.0% 42.0% 64.0%

Subject 104 (Record 13, Measured channels: 2 6 7 8 10 11 15 16 17 20 )
Chnl Delta Theta Alpha Beta Gamma

(O) (R) (O) (R) (O) (R) (O) (R) (O) (R)
Fc5 0.364 0.331 0.138 0.095 0.077 0.075 0.175 0.171 0.049 0.043
Fc1 0.363 0.360 0.136 0.125 0.079 0.085 0.162 0.166 0.036 0.041
Fcz 0.368 0.334 0.134 0.123 0.079 0.075 0.158 0.168 0.034 0.042
Fc2 0.360 0.327 0.133 0.097 0.078 0.082 0.158 0.161 0.033 0.045
C3 0.345 0.317 0.137 0.101 0.087 0.078 0.184 0.178 0.042 0.043
C2 0.349 0.348 0.126 0.116 0.082 0.079 0.163 0.154 0.034 0.037
C4 0.346 0.358 0.129 0.120 0.086 0.076 0.167 0.146 0.036 0.034
C6 0.350 0.318 0.126 0.139 0.078 0.084 0.162 0.188 0.043 0.052

CPz 0.331 0.349 0.118 0.132 0.083 0.084 0.164 0.172 0.035 0.037
CP2 0.336 0.343 0.123 0.121 0.087 0.083 0.169 0.162 0.035 0.036

Avg error 5.7% 13.9% 6.0% 6.0% 13.3%



Fig. 2: Reconstructed (red) vs original (black) signals for subject 104, record 13



TABLE III: Comparison (with the original) of FSM, in different bands, of
the 10-10 system EEG channels reconstructed through compressed sensing
using only recordings done on the 10-20 system

Subject 64 (Record 12, Measured channels: C3, Cz and C4)
Chnl Delta Theta Alpha Beta Gamma

(O) (R) (O) (R) (O) (R) (O) (R) (O) (R)
C5 0.441 0.444 0.137 0.131 0.080 0.070 0.194 0.200 0.061 0.060
C1 0.431 0.441 0.135 0.136 0.079 0.070 0.208 0.209 0.055 0.066
C2 0.435 0.437 0.139 0.136 0.076 0.072 0.208 0.217 0.057 0.066
C6 0.452 0.421 0.110 0.116 0.058 0.062 0.162 0.176 0.052 0.053

Avg error 2.6% 3.2% 8.5% 4.0% 10.5%

Fig. 3: Estimation of 10-10 channels from 10-20 recordings - reconstructed (red) vs original (black)
signals for subject 64, record 12
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