
Automatic Generation of Compound Word Lexicon for Hindi Speech Synthesis

Deepa S.R.
�
, Kalika Bali

�
, A.G. Ramakrishnan, Partha Pratim Talukdar

�

�
Hewlett-Packard Labs

24 Salarpuria Arena, Hosur Road, Bangalore, India�
kalika.bali, partha.talukdar � @hp.com

�
Birla Institute of Technology & Science

Pilani, Rajasthan, India
f2000073@bits-pilani.ac.in

Indian Institute of Science
Bangalore, India

ramkiag@ee.iisc.ernet.in

Abstract
This paper addresses the problem of Hindi compound word splitting and its relevance to developing a good quality phonetizer for Hindi
Speech Synthesis. The constituents of a Hindi compound word are not separated by space or hyphen. Hence, most of the existing
compound splitting algorithms can not be applied to Hindi. We propose a new technique for automatic extraction of compound words
from Hindi corpus. Preliminary tests conducted on the algorithm have shown a split rate of 92 to 96% of the input compound words.
Of these splits, around 83 to 87% are correct splits. A few modifications have been suggested, which will improve the accuracy of the
splits. Finally, we observe an improvement of 1.6% in Hindi Grapheme-to-Phoneme (G2P) conversion as a result of using a phonetized
compound word lexicon, created by the above technique.

1. Introduction
Compound words are formed when two or more words

are concatenated into a single word. Compounding is
a highly productive word formation technique in Hindi.
Compounding is also a common phenomenon in Greek,
German, Finnish etc. Table 1 gives examples of a few Hindi
compound words.

Compound Word Constituents
loksabhA lok sabhA
hawAijahAj hawAi jahAj
kAlApAnI kAlA pAnI

Table 1: Examples of Hindi Compound Words

Compound word lexicons play an important role in var-
ious domains of language technologies e.g. speech recog-
nition (Ordelman et al., 2003), (Adda-Decker, 2003), ma-
chine translation (Koehn and Knight, 2003). Identifying
compounds is also necessary for assigning stress patterns
correctly as stress patterns for compounds differ greatly
from equivalent single word units.

In a Text-To-Speech (TTS) synthesis system, the G2P
module converts normalized input orthographic text into
underlying phonetic representation. Accurate phonetic
transcription is highly desired for natural sounding speech
synthesis. Compound word splitting plays a crucial role in
Hindi G2P conversion, specifically for solving the schwa
deletion problem (described in Section 2.).

2. Schwa Deletion
Schwa deletion is a unique problem encountered in

Hindi G2P conversion. Each consonant in Devanagari, the

script used to write Hindi, is associated with an inherent
schwa which is not represented in orthography. In some
cases, this associated schwa is deleted depending on certain
morpho-phonological factors and in others, it is retained .
The written text, however, does not provide a direct clue
about the deletion or retention of the schwa, thereby mak-
ing it a challenging problem to address. Hindi word kalam
“pen”, for example, is represented in orthography using the
consonantal characters for k, l, m. The schwas (a) are in-
serted by the speaker while speaking out the word. Vowels
other than schwa are explicitly represented in orthography.

A set of rules for schwa deletion in Hindi are reported in
(Narasimhan et al., 2001). The rules are based on the mor-
pheme boundaries present in words. Word internal mor-
pheme boundaries can be detected using a morphological
analyzer. Unfortunately, high quality Hindi morphological
analyzers are currently not available. Unavailability of such
analyzers restricts the applicability of these rules.

Another set of rules were implemented in the Dhvani
(Dhvani, 2001) speech synthesis system. These rules work
well for simple words but fail in the case of compound
words. For example, Hindi compound word loksabhA
“lower house of parliament” is obtained by joining two
words: lok “people” and sabhA “gathering”. In orthogra-
phy, the word is represented using consonant and vowel
forms of l, o, k, s, bh, A. Application of schwa deletion
rules on this word would produce [l o k a s bh A] which is
incorrect. Correct phonetic transcription [l o k s a bh A] is
obtained if the two words are analysed separately. Hence,
a lexicon of compound words along with their correct pho-
netic representation is very important for accurate phonetic
conversion of input text.

3. Previous Work
Corpus driven method for compound splitting using a

parallel corpus is reported in (Brown, 2002). Compound
splitting and recombination for reducing out of vocabulary
(OOV) words in large vocabulary speech recognition sys-
tems is reported in (Larson et al., 2000). An approach to
learn compound splitting rules from monolingual and par-
allel corpora and its impact on statistical machine transla-
tion systems are reported in (Koehn and Knight, 2003).

Statistical compound extraction techniques are reported
in (Zhang et al., 2000), (Su et al., 1994). These methods
require the constituents of a compound word to be space
separated. Such methods are not applicable for Hindi com-
pounds since constituents in a Hindi compound are not sep-
arated by space. To overcome this problem, a compound
splitting algorithm has been developed.

4. Compound Splitting Algorithm
The compound extraction algorithm takes as input a text

corpus and generates a lexicon with the compounds split
into its constituent parts. The algorithm starts with the
assumption that independently occurring words are valid
atomic words.

A trie-like structure is used to store and efficiently
match the words. Without loss of generalizability, the fol-
lowing description considers a compound word to be made
up of two constituents. A potential compound word is de-
tected if the currently processed word is part of a word al-
ready present in the trie or a word in the trie is a substring
of the current word. For compounds with more than two
components, the algorithm can be iteratively applied gener-
ating all constituent components. For each word (�), there
are several possibilities:

� Case 1: � is not present in the trie and is also not
a constituent of any of the words currently present in
the trie.

� Case 2: � is already present in the trie as an indepen-
dent word.

� Case 3: � is actually the initial constituent of a com-
pound word currently present in the trie as an indepen-
dent word.

� Case 4: � is actually the second constituent of a com-
pound word currently present in the trie as an indepen-
dent word.

In Case 1, the algorithm inserts � into the trie. In Case
2, no change is needed since � is already present in the
trie as an independent word. In Case 3, the algorithm gen-
erates the second constituent (�) for each of the potential
compound words where � is the first constituent. After the
generation of � ’s, the end node corresponding to � in the
trie becomes a leaf node. For each of the generated � ’s
, the algorithm checks for its presence in the trie. If � is
present in the trie, the algorithm marks the combination (�
�) as a compound word. If � is not present in the trie, the
combination (�	�) is inserted into the suspicion list. The

algorithm in its present form does not locate Case 4, since
the processing is performed left to right.

Before processing each � , the algorithm checks for its
presence in the suspicion list. If � is present in the sus-
picion list as the second constituent, the entry (
��) is re-
moved from the suspicion list and is marked as a compound
word. After this, � is matched against the trie contents and
actions are taken as per the case (i.e. Case 1, 2, 3, 4) to
which � belongs.

l

o

k

s

bh

A

g

A

th

A

a

s

bh

A

a

Probable Compounds

Figure 1: Before processing the word lok

l

o

k

s

bh

A

a

Probable Compounds

lok gAthA

Confirmed Compounds

lok sabhA

Figure 2: After processing the word lok

l

o

k

s

bh

A

a

Probable Compounds

lok gAthA

Confirmed Compounds

lok sabhA

th

A

A

g

Figure 3: After processing the word gAthA

To increase the number of potential compounds in the
suspicion list, the algorithm can be run with reversed words.
The forward pass (i.e. left to right processing of a word in
its original form) is enough to split a compound word if
all its constituents are present in the corpus as independent
words.

To illustrate the algorithm, let us consider a sample
lexicon with words in the sequence lokgAthA “folk tales”,
loksabhA “lower house of parliament”, sabhA “gathering”,
lok “people”, gAtha “tale”. If both constituents of a com-
pound are present in the corpus, then the order of read-

ing the compound and its constituent parts is irrelevant.
Fig. 1 represents the trie contents after the words lokgAthA,
loksabhA and sabhA have been read in. Suppose the word
lok is input after this. The algorithm first checks for it in
the suspicion list. After not finding it there, the word is
matched against the contents of the trie generating the con-
stituent forms gAthA and sabhA. sabhA is already present
in the trie but gAthA is not yet read in. Hence, lok sabhA
is marked as a compound word. But since gAthA is not
present in the trie, lok gAthA is inserted into the suspicion
list. This state is shown in Fig 2.

Suppose the algorithm comes across the word gAthA
later. gAthA is present in the suspicion list as the second
constituent. Hence, lok gAthA is removed from the suspi-
cion list and is marked as a compound word. Then the algo-
rithm matches gAthA in the trie and since it is not present,
it is inserted into the trie.

Hence, at the end of the algorithm, the best possible
atomic word forms are present in the trie with compounds
decomposed into their constituent parts.

4.1. Hindi Post-processing
4.1.1. Stray Characters & Affixes

The algorithm described above is vulnerable to stray
characters and affixes present in the corpus. Such charac-
ters can trigger wrong splits and also increase false positive
rate. For example, pra is a prefix in Hindi. Ideally, pra can
not occur as an independent word. However, due to typo-
graphical errors or for other reasons, presence of such char-
acter combination in a text segment cannot be ruled out.
If pra is present, the algorithm wrongly splits pranAm into
pra and nAm “name” (assuming nAm is also present in the
text). Actually, pranAm is not a compound word. Hence,
special care should be taken so that the algorithm doesn’t
consider affixes as valid words. A possible solution to this
problem can be the use of a list of affixes. The algorithm
can check the affix lexicon for the presence of each con-
stituent and mark the word as a compound word only if
none of the constituents is present in the affix list.

4.1.2. Length Based Heuristics
Length based heuristics can be used to keep away stray

characters from being considered as valid words by the al-
gorithm. But this strategy does not work very well for
Hindi. In Hindi, words with very few characters have the
potential to form compounds words. For example, the two
character word nav “new” can form an array of compound
words such as, navvarsh “new year” and navjivan “new
life”. In the current system, only single character words
are treated invalid.

4.1.3. Consonant-Vowel (CV) Pairs
Consonant-vowel (CV) combinations can occur inde-

pendently in Hindi text but they cannot be a constituent of
a compound word. Hence, the algorithm should check that
none of the generated constituents is a CV pair. Examples
of valid Hindi CV pairs are ne and ki.

4.1.4. Problems Related to Word-forms
Another problem associated with Hindi compound

splitting is related to root word and its different forms. Let

us take the example of the Hindi root hawA “wind” and one
of its word-form hawAi “windy” which is a constituent of
the compound word hawAijahAj “aeroplane”. Constituents
of the compound hawAijahAj are hawAi and jahAj. Let us
consider the case when the algorithm reads the words in the
sequence hawAijahAj, hawA, hawAi and jahAj. After read-
ing the first two words, the algorithm will split it into the
parts hawA and ijahAj and insert the combination into the
suspicion list since the existence of the second constituent
is not yet known. ijahAj is not a valid Hindi word. Hence,
even though both the constituents are present, the algorithm
will fail in splitting the compound hawAijahAj into its cor-
rect constituent parts. A possible solution to this problem
can be the detection of different splitting points and subse-
quently selecting the best split based on probabilistic mea-
sure. This feature, however, is currently not incorporated
into the current system.

5. Experimental Results
In the first experiment, the compound extraction algo-

rithm was used to generate a compound word lexicon. The
experiment was carried out to observe the number of com-
pound words extracted by the algorithm from a given text
segment.

Total Words In Text Segment 2420329
Total Unique Words 246325
Total Unique Words Marked as Compound 48428
Proportion of Compound Words (as detected) 19.66%

Table 2: Performance of our split algorithm on a text seg-
ment

A second experiment was carried out to study com-
pound splitting accuracy. A compound word lexicon was
generated using the algorithm described above. Final trie
contents were also dumped since these words are the atomic
word forms. Each word in the compound word lexicon
forms one of the constituents of a compound word. The
contents of the trie were merged with the compound word
lexicon generating a combined lexicon. This experiment, in
a way, tested the quality of the combined lexicon in terms of
its coverage of independent word forms. Two sets of com-
pound words (50 compound words each) were manually
prepared. These lists were prepared without any knowl-
edge of the words present in the generated compound word
lexicon. A variant of the algorithm described above was
used in this case. The algorithm first loaded all the words
in the combined word lexicon. After this, words from the
test files were matched against the loaded words and were
split accordingly. The algorithm was allowed to cause splits
only in the test words. The results are shown in Table 3.

Compound words for which all the constituents satis-
fied different criteria for independent words are included
in the High Confidence List. Compound words in the low
confidence list are the words for which the algorithm could
not find one of its constituents in the corpus. These are the
words which are finally present in the suspicion list. In Ta-
ble 3, compound split precision and compound extraction
rates are calculated based on the words included in both

Set 1 Set 2
Total Words 50 50
Number of Confirmed Compounds 42 43
Number of Probable Compounds 6 3
Compounds Correctly Split 40 40
Correct Split Rate 83.3% 86.9%
Compound Extraction Rate 96% 92%

Table 3: Accuracy of compound word split using our algo-
rithm.

High & Low confidence lists. For example, in Set 1, the
algorithm marked 48 of the total 50 words as compound
words achieving a compound extraction rate of 96%. Out
of these 48 (42 in high confidence list and 6 in low confi-
dence list) marked compound words, 40 compound words
are correctly split. Hence, the split precision rate is 83.3%.

The third experiment was carried out to study the im-
provement in Hindi Grapheme-to-Phoneme conversion re-
sulting from the incorporation of the phonetic compound
word lexicon into the Hindi G2P converter (Bali et al.,
2004). A section of the Emille corpus (Emille, 2003) was
randomly selected. The selected text segment was phone-
tized using Hindi G2P converter developed as part of the
LLSTI (Tucker, 2003) initiative. Words which were present
in the phonetic compound lexicon were also analysed using
rules and the two phonetic transcripts were manually com-
pared. The results are shown in Table 4.

Total Words Analysed 3497
Words Phonetised Using Compound
Word Lexicon

252

Lexicon Correct but Rule Incorrect 65
Rule Correct but Lexicon Incorrect 10
Lexicon and Rule Both Correct 173
Lexicon and Rule Both Incorrect 4

Table 4: Result of Hindi G2P Conversion

Effectively, phonetization of 55 words improved after
incorporating the phonetic compound word lexicon into the
Hindi G2P. Hence, a net improvement of 1.6% in Hindi
G2P conversion is observed as a result of using the com-
pound word lexicon generated by the algorithm presented
in this paper. Moreover, out of the total 252 words phone-
tised using the lexicon, an improvement of 21.8% is ob-
served.

6. Conclusion
An effective algorithm has been proposed for splitting

compound words in Hindi. The algorithm has been tested
and found to be effective in splitting above 90% of the input
compound words. Of these splits, around 85% are found to
be correct. One of the possible approaches to increase the
accuracy of the split is to allow for multiple splits (at differ-
ent points in the same word) of every word, by not remov-
ing any suspect compound word from the trie. To get more
potential compound words, the same algorithm can be ap-
plied a second time, after reversing each word, so that the

second constituent of each compound word can be identi-
fied first. A near-exhaustive list of affix words of the lan-
guage can be deployed to minimize or altogether eliminate
wrong splits on account of prefixes and suffixes.

7. References
Adda-Decker, Martine, 2003. A corpus-based decom-

pounding algorithm for German lexical modeling in
LVCSR. In ISCA Eurospeech. Geneva.

Bali, Kalika, A.G. Ramakrishnan, Partha Pratim Talukdar,
and Nemala Sridhar Krishna, 2004. Tools for the De-
velopment of a Hindi Speech Synthesis System. In 5th
ISCA Speech Synthesis Workshop. Carnegie Mellon Uni-
versity, Pittsburgh, USA.

Brown, Ralf D., 2002. Corpus-Driven Splitting of Com-
pound Words. In Proceedings of the 9th International
Conference on Theoretical and Methodological Issues in
Machine Translation.

Dhvani, 2001. Dhvani - TTS System for Indian Languages.
(http://dhvani.sourceforge.net).

Emille, 2003. The EMILLE (Enabling Minority Language
Engineering) Project. (http://www.emille.lancs.ac.uk).

Koehn, Philipp and Kevin Knight, 2003. Empirical Meth-
ods for Compound Splitting. In EACL 2003. Budapest,
Hungary.

Larson, Martha, Daniel Willett, Joachim Köhler, and Ger-
hard Rigoll, 2000. Compound splitting and lexical unit
recombination for improved performance of a speech
recognition system for German parlianmentary speeches.
In 6th Int. Conference on Spoken Language Processing
(ICSLP). Beijing, China.

Narasimhan, B., R. Sproat, and G. Kiraz, 2001. Schwa
deletion in Hindi Text-To-Speech Synthesis. In Work-
shop on Computational Linguistics in South Asian Lan-
guages.

Ordelman, R.J.F., A.J. van Hessen, and F.M.G. de Jong,
2003. Compound decomposition in Dutch large vocabu-
lary speech recognition. In Eurospeech 2003.

Su, Keh-Yih, Ming-Wen Wu, and Jing-Shin Chang, 1994.
A corpus-based approach to automatic compound ex-
traction. In 32nd Annual Meeting of the Association for
Computational Linguistics. New Mexico.

Tucker, Roger, 2003. The Local Language Speech Tech-
nology Intiative (LLSTI). (http://www.llsti.org).

Zhang, J., J. Gao, and M. Zhou, 2000. Extraction of Chi-
nese compound words – an experimental study on a very
large corpus. In Proc. of the 2nd Chinese Language Pro-
cessing Workshop, ACL.

