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Binary classification posed as a quadratically

constrained quadratic programming and solved using

particle swarm optimization

Deepak Kumar · A G Ramakrishnan

Abstract Particle swarm optimization (PSO) is used in several combinatorial
optimization problems. In this work, particle swarms are used to solve quadratic
programming problems with quadratic constraints. The central idea is to use PSO
to move in the direction towards optimal solution rather than searching the en-
tire feasible region. Binary classification is posed as a quadratically constrained
quadratic problem and solved using the proposed method. Each class in the bi-
nary classification problem is modeled as a multidimensional ellipsoid to form a
quadratic constraint in the problem. Particle swarms help in determining the op-
timal hyperplane or classification boundary for a data set. Our results on the Iris,
Pima, Wine, Thyroid, Balance, Bupa, Haberman, and TAE datasets show that
the proposed method works better than a neural network and the performance is
close to that of a support vector machine.

Keywords Quadratic programming · Particle swarm optimization · Hyperplane ·
Quadratic constraints · Binary classification

1 Introduction

A class of algorithms originated for minimizing or maximizing a function f(x),
while satisfying some constraints g(x). In the early history of optimization, the
function f(x) and the constraints g(x) were linear and the problem was known
as linear programming (LP). One of the earliest algorithms for solving the linear
programming problem was given by Dantzig, popularly known as Simplex method
(Dantzig, 1963). As the number of dimensions and constraints increased, solving
the LP problem using simplex method became hard. The inability of simplex
method was that it could not solve LP problem in polynomial time. Khachiyan
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proposed ellipsoid algorithm as an alternative to simplex method and proved that
it could reach the solution iteratively in polynomial time (Khachiyan, 1979). The
practical infeasible condition of ellipsoid algorithm led to the evolution of several
interior or barrier point methods. One of the well known interior point methods
is Karmarkar’s method proposed by Narendra Karmarkar (Karmarkar, 1984).

Binary classification is one of the active research areas in machine learning
(Bishop, 2006; Duda et al, 2001). There are several ways to train a binary classifier.
The features and the class labels of the training data set can be stored and retrieved
during classification using the approach of nearest neighbor (Derrac et al, 2014). A
hyperplane is learnt for classification by training a neural network, which may not
always be optimal (Bishop, 1995). Vapnik and others formulated the problem of
classification as optimization. This method is known as support vector machines
(SVMs) (Cortes and Vapnik, 1995). Sequential minimal optimization (SMO) is a
technique which solves the optimization problem in SVMs (Platt, 1998). Decision
trees, bagging, and boosting techniques are also used in binary classification (Duda
et al, 2001; Fernández et al, 2013; Galar et al, 2013; López et al, 2013).

1.1 Motivation

Nearest neighbor method does not involve any modeling to reduce the storage of
the training data set (Derrac et al, 2014). On the other hand, neural network and
SVM model the data with an objective function to estimate a hyperplane, which
is used in classification. In neural network approach, the objective function is a
least squares, which is quadratic in nature and is minimized for the given data
set. The hyperplane obtained by training a neural network may or may not be
optimal, since it depends on the number of layers and weights used to train the
network. SVM uses quadratic programming formulation with linear constraints for
minimizing the objective function (Gonzalez-Abril et al, 2013). Even though the
objective function used in a neural network or SVM is a quadratic programming
problem, the constraints are linear.

If there is a way to model linear constraints as quadratic constraints, then
the objective function becomes quadratically constrained quadratic programming
(QCQP). In this paper, binary classification is posed as a QCQP problem and a
novel solution is proposed using particle swarm optimization (PSO). One of the
advantages of this approach is that it solves the QCQP problem without the need
for gradient estimation.

The paper is organized as follows: QCQP and PSO are described in the back-
ground section and the solution for quadratically constrained quadratic program-
ming using particle swarms is described in Sec. 3. The proposed method is com-
pared with Khachiyan’s and Karmarkar’s algorithms for linear programming and
with neural networks and SVM for quadratic programming in Sec. 4 on experi-
ments and results. Section 5 concludes the paper with suggestions for future work.

2 Background

The formulation of QCQP and PSO are described in the following subsections.
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2.1 Quadratically Constrained Quadratic Programming

An optimization problem has the form (Boyd and Vandenberghe, 2004):

minimize f(x)
subject to gi(x) ≤ bi, i = 1, 2, . . . ,m

(1)

where, x = {x1, x2, . . . , xn} is the variable of the problem. The function f(x) :
R

n → R is the objective function. The function gi(x) : R
n → R, i = 1, 2, . . . ,m

are the constraint functions and the constants b1, b2, . . . , bm are the limits for the
constraints.

When the objective function is quadratic and the constraints are quadratic,
then the optimization problem becomes a quadratically constrained quadratic
program. A general quadratically constrained quadratic programming problem
is expressed as follows (Bomze, 1998; Bomze and Schachinger, 2010; Boyd and
Vandenberghe, 2004):

minimize f(x) = xTP0x+ 2qT0 x+ r0
subject to xTPix+ 2qTi x+ ri ≤ 0, i = 1, 2, . . . ,m

(2)

where, x = {x1, x2, . . . , xn} ∈ R
n. P0 ∈ R

n∗n, q0 ∈ R
n, and r0 ∈ R define

the quadratic function f(x). Pi ∈ R
n∗n, qi ∈ R

n, and ri, i = 1, 2, . . . ,m are the
constants of the quadratic constraints.

If Pi is positive semi-definite matrix for i = 0, 1, 2, . . . ,m, then the prob-
lem becomes convex QCQP. When P0 is zero, then the problem becomes linear
programming with quadratic constraints.

2.2 Particle Swarm Optimization

Particle swarm optimization was proposed for optimizing the weights of a neural
network (Kennedy and Eberhart, 1995). PSO has been applied to numerous ap-
plications for optimizing non-linear functions (Kennedy et al, 2001; Spadoni and
Stefanini, 2012; Zhan et al, 2009). PSO evolved by simulating bird flocking and
fish schooling. The advantages of PSO are that it is simple in conception and easy
to implement. Particles are deployed in search space and each particle is evalu-
ated against an optimization function. The best particle is chosen as a directing
agent for the rest. The velocity of each particle is controlled by both the particle’s
personal best and the global best. During the movement of the particles, a few of
them may reach the global best. Several iterations are required to reach the global
best.

Let X = {x1,x2, ...,xk} be the particles deployed in the search space of the
optimization function, where k is the number of particles and V = {v1,v2, ...,vk}
be the velocities of the respective particles. xi, vi ∈ R

n for all the k particles. A
simple PSO update is as follows.

– Velocity update equation

v
j
i = wv

j−1

i + c1r1 (xbi − x
j−1

i ) + c2r2(xbg − x
j−1

i ) (3)

where w is the weight for the previous velocity; c1, c2 are constants and r1,
r2 are random values varied in each iteration. xbi is the personal best value
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for particle i and xbg is the global best value among all the particles. vj
i is

the updated velocity of the ith particle in the jth iteration and v
j−1

i is its

velocity in the (j − 1)th iteration. xj−1

i is the position of the ith particle after
the (j − 1)th iteration.

– For position update, the updated velocity is added to the existing position of
the particle. The position update equation is

x
j
i = x

j−1

i + v
j
i (4)

Table 1 presents a pseudo code of Particle Swarm Optimization. Initially, the
particle with minimum f(x) is considered as the global best. After every iteration,
the global best value is updated if necessary. Also, the personal best value is
updated.

Table 1 Pseudo code of PSO

Inputs: k, tmax = T and minimize f(x); initialize parameters xi, vi and set w, c1, c2
Outputs: Global best value xbg

t = 0,
xbg = x0

for i = 1 to k

xbi = xi

if f(xbg) > f(xbi)
xbg = xbi

end if

end for

while t < tmax

t ← t+ 1
Velocity update step:

Randomly choose values for r1, r2 in the range ‘0’ to ‘1’.
Then update the velocity of each particle.

v
j
i = wv

j−1

i + c1r1 (xbi − x
j−1

i ) + c2r2(xbg − x
j−1

i )
Position update step:

Add the updated velocity to the existing position.
for i = 1 to k

x
j
i = x

j−1

i + v
j
i

if f(xbi) > f(xi)
xbi = xi

end if

if f(xbg) > f(xbi)
xbg = xbi

end if

end for

end while

3 Proposed method

Our interest lies in determining the shortest path between the two non-intersecting
ellipsoids to perform binary classification. The shortest path between the two
ellipsoids in R

n can be formulated as a convex QCQP problem.
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3.1 Formulation

Arriving at the two end points of the shortest path, one on each ellipsoid, can be
posed as minimization in a quadratic form and formulated as follows.

minimize f1(x) = (x− y)TP0(x− y)

subject to xTP1x ≤ 1 x ∈ X

yTP2y ≤ 1 y ∈ Y

(5)

where x,y ∈ R
n and X,Y are non-intersecting regions in R

n, X ∩Y = 0. P1 and
P2 are the matrices that characterize the ellipsoids modeling the two classes.

In case the Euclidean distance metric is used for minimization of the path
length, then P0 is the identity matrix. The modified equation is,

minimize f2(x) = ‖ x− y ‖2

subject to xTP1x ≤ 1 x ∈ X

yTP2y ≤ 1 y ∈ Y

(6)

Thus, in this paper, we address only this limited problem for binary classifica-
tion, rather than the more general problem given by Eq(2).

3.2 Solution using modified PSO

Suppose one end point (y) in the shortest path is known and fixed as a. Then, Eq
(6) can be reformulated as,

minimize f3(x) = ‖ a− x ‖2

subject to xTP1x ≤ 1 x ∈ X
(7)

Figure 1 shows the ellipsoid with the covariance matrix P1 with points x (in-
side), xB (on the boundary) and a (outside). xB is the boundary point nearest
to the point a outside the ellipsoid. We need to determine the unknown xB by
minimizing f3(x).

The novelty of the proposed approach is the application of particle swarms for
solving the QCQP problem. Particle swarms are deployed within the ellipsoid to
determine xB . The function f3(x) = ‖ a − x ‖2 needs to be evaluated for
each particle in the search space. Instead of using f3(x) = ‖ a − x ‖2, we use
f4(x) = ‖ a − x ‖ as the modified objective function. The particle with the
minimum f4(x) is considered as the closest to the point a. Only one particle of
the swarm is shown in Figure 1 for ease of representation.

The value of the function f4(x) for the ith particle at the jth iteration is

f4(x
j
i ) = ‖ a − x

j
i ‖ (8)

Let the present position of the ith particle be split into the previous position
and the velocity vector of the particle using Eq (4).

f4(x
j
i ) = ‖ a − x

j−1

i − v
j
i ‖ (9)

Here, a is fixed and the particle position x
j−1

i is known and dependent on

the velocity vector vj−1

i . So, the possible option for minimizing the function is to
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change the velocity vector of the particle towards the direction of (a − x
j−1

i ). The
arrow (for representation purpose) shown in Figure 1 is in the direction of mini-
mizing the function f4(x). The function f3(x) is also minimized when minimizing
the function f4(x).
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Fig. 1 An ellipsoid with a particle at a point x inside and a point xB on its boundary nearest
to the point a outside it (boundary point on the other ellipsoid). The dotted lines connecting
the point a to the points x and xB are shown. The desired direction of movement from x is
also shown by an arrow, which is required to reach point xB .

PSO is a population based stochastic optimization technique, which takes sev-
eral iterations to reach the optimal value. The velocity vector update of the PSO
algorithm given by Eq (3) is modified by including the direction term from the
function f4(x). The addition of evaluation function restricts the particle from mov-
ing away from the actual course towards the global best position. This addition
provides an advantage in computation. However, it also constrains the particle to
move in a particular direction. To counter this effect, we add a craziness term in
the velocity update equation. The modified velocity update equation is:

v
j
i = wv

j−1

i + c1r1(xbi − x
j−1

i ) + c2r2(xbg − x
j−1

i ) + c3r3(a− x
j−1

i ) + c4r4 (10)

where c3 and c4 are constants, and r3 is a random value that is varied during each
iteration. The value of c3 is chosen such that the term (a − x

j−1

i ) does not take
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the particle outside the ellipsoid. r4 is a random point on the surface of a sphere
of dimension n with randomly varying radius. c4r4 forms the craziness term.

On the assumption that one end point is known in the shortest path, particle
swarms are placed in the search space of the other region and the other end point
of the shortest path is determined. In order to evaluate the objective function
f2(x) in Eq (6) for binary classification, we need to determine one end point from
region X and the other from region Y . Two sets of particle swarms, one for each
region, are placed within the search spaces of the respective regions. The objective
function f4(x) is evaluated based on the particles present in both the regions.
In every iteration, the best position of a particle in one region is used as the
known end point ‘a’ in the shortest path in the velocity update equation (10) of
the particles of the other region. The objective function f4(x) reaches its optimal
value after several iterations. Thus, the objective function f2(x) also reaches its
optimal value.

In the process of optimization, some particles may often go out of the search
space. To limit the particles within the search space, we inspect after every ten-
tative position update as to whether the particle is lying within the search space
by carrying out a check on the QCQP constraints. If the intended new position
of a particle is going to violate the constraint, then its position is not updated. In
other words, the particles likely to go out of the search space are redeployed back
to their previous positions.

The proposed solution may be used in control system problems such as op-
timization of sensor networks or collaborative data mining, which are based on
multiple agents or gradient projection (Zanella et al, 2012). General consensus
problem may be solved using the proposed method, where multiple agents need
to reach a common goal (Matei and Baras, 2012; Nedi and Ozdaglar, 2009; Nedi
et al, 2010). Consensus or distributed optimization is discussed in (Boyd et al,
2010) as ‘consensus and sharing’ using alternating direction method of multipliers
(ADMM). ADMM uses one agent for each constraint. Such solvers are used for
solving SVM in distributed format (Forero et al, 2010).

3.3 The pseudo code of the proposed method

Table 2 presents a pseudo code for the algorithm. The parameters w, c1, c2, c3,
and c4 are set to fixed values and the randomly varying parameters r1, r2, r3,
and r4 are updated in each iteration. The position, velocity, personal best, and
global best of each particle are stored. The maximum number of iterations for the
algorithm is specified as T in the experiments and the size of swarm used in the
algorithm is ‘10’. The proposed algorithm is implemented in MATLAB.

4 Experiments and Results

In this section, the linear and quadratic programming problems with quadratic
constraints are solved using the proposed method.
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Table 2 Proposed algorithm for QCQP using PSO

Inputs: k = 10, tmax = T and f4(x); set w = 0.05, c1 = 0.05, c2 = 0.05, c3 =
0.05, c4 = 0.20 and initialize parameters xi, vi

Outputs: Global best value
t = 0,
while t < tmax

t ← t+ 1
Function evaluation step:

Calculate the function f4(x) for xi

Velocity update step:

Randomly choose values for r1, r2, r3, r4 in the range ‘0’ to ‘1’.
Then update the velocity of each particle as in Eq (10).

Position update step:

Add the updated velocity to the existing position.
Check for the constraint xTP1x ≤ 1 on all the particles.
for m = 1 to k

if xT
mP1xm > 1 then

xm = xmprev

end if

end for

end while

4.1 Linear programming with quadratic constraints

A LP problem with quadratic constraints is chosen in order to compare the con-
vergence performance of our method with those of Khachiyan’s and Karmarkar’s
methods. The LP problem is given below:

max f5(x1, x2) = x1 + x2

subject to x2

1 + x2

2 ≤ 1 x1, x2 ∈ X
(11)

where X is the region, satisfying the constraint.
This LP problem is reformulated as a QCQP problem:

max f5(x) = aTx

subject to xTAx ≤ 1 x ∈ X
(12)

where vector a = [1 1]T , x = [x1 x2]
T and A is the identity matrix of size 2

(positive definite).
The solution for this LP problem is x1, x2 = 0.7071 with f5(x) = 1.4142.

This LP problem is solved using Khachiyan’s ellipsoid algorithm, Karmarkar’s
algorithm and our method. Figure 2 shows the value of the function f5(x) for each
iteration for a typical independent run of the experiment with 50 iterations. The
length vector in Karmarkar’s method is scaled by a variable δ (Karmarkar, 1984).
Two values are used for δ namely 0.05 and 0.50, for the evaluation of the function.
As the value of δ increases, the algorithm reaches the optimal value of f5(x) in
less number of iterations. Table 3 shows the error value of function f5(x) for all
the algorithms after the 25th iteration as shown in Figure 2. The error values for
the ellipsoid and our methods are less than 10x10−3.

In our algorithm, the values of the variables w, c1, c2, and c3 are set to 0.05.
These values are small so that the vector addition to position keeps the particles
within the region X. Only the value of c4 is varied since it scales the neighboring
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Fig. 2 A plot of evaluated value of f5(x) against the number of iterations for different algo-
rithms for the LP problem given by Eq (12). At around 25 iterations, all the algorithms except
Karmarkar’s reach a value close to the solution. We observe that Karmarkar algorithm takes
more iterations to reach the solution.

Table 3 Comparison of the error value of function f5(x) of our algorithm with those of two
other methods for the LP problem given by Eq (12) after the 25th iteration.

Algorithm → Ellipsoid Karmarkar Karmarkar Our method Our method
δ = 0.05 δ = 0.50 c4 = 0.05 c4 = 0.20

Error value → 0.0001 0.3623 0.0494 0.0082 0.0016

search space of a particle. The results for two different values of c4 are shown
in Figure 2. We carried out 50 independent runs for this LP problem with two
different values of c4. The average, minimum, maximum and standard deviation
of error value are tabulated in Table 4. The error values for c4 = 0.20 are less than
those for c4 = 0.05, indicating that as the neighboring search space is scaled to a
higher value, the error value of the function fit becomes better in fewer number of
iterations.

Table 4 The minimum, mean, maximum and standard deviation of error values for the func-
tion f5(x) over 50 independent runs of our algorithm for the LP problem defined by Eq (12).

c4 ↓ Minimum Mean Maximum Standard deviation
0.05 0.0020 0.0197 0.1346 0.0272
0.20 0.0006 0.0182 0.0899 0.0208
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4.2 Binary classification of simulated data

Several variants of PSO have been applied for classification problems (Kennedy and
Eberhart, 1997). Generally PSO is deployed to learn the rules for classification.
A suitable classifier is chosen for classification; for example, a neural network
(Kennedy and Eberhart, 1995). The parameters like network weights are tuned
using particle swarms. There are discrete versions of swarms, which can take a finite
set of values (Cervantes et al, 2005). Here, swarms learn the rule for classifying the
test samples. In our method, binary classification is posed as QCQP and swarms
are used to solve this QCQP problem. The input feature space is considered as
the particle swarm space.
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Fig. 3 Hyperplanes obtained by SVM, neural networks and our method are shown for a
synthetic dataset for two classes. The hyperplane estimated by our method is closely aligned
with that obtained by the SVM with a linear kernel. Other hyperplanes are arrived at by two
neural networks (perceptron) and are not optimal.

Figure 3 shows a simulated data set for two classes synthesized using two Gaus-
sian distributions with means µ1 = [8; 0];µ2 = [0; 8] and the same covariance
matrix Σ1, Σ2 = [2 1; 1 2]. A generic decision boundary for a binary classifica-
tion problem is a hypersurface. The classes in the data are linearly separable thus
reducing a hypersurface to a hyperplane. The equation of a hyperplane for this
kind of data is given by,

z = w1x1 + w2x2 + w0 (13)
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where w1,w2 are the weights for the individual features and w0 is the bias of the
hyperplane. This hyperplane equation is used for classification:

If z ≥ 0, (x1, x2) ∈ Ω1

If z < 0, (x1, x2) ∈ Ω2

(14)

where Ω1 and Ω2 are the regions for the classes 1 and 2, respectively.

The MATLAB programming platform is used to implement and test our method
and also a SVM and neural network for comparison. We trained the SVM with a
linear kernel and a neural network on this synthetic data. The hyperplanes learnt
by the SVM and the neural network are shown in Figure 3. A single layer per-
ceptron with 2 weights, 1 bias and log sigmoid transfer function is used with 100
epochs for training the neural network. SMO algorithm is used for training the
SVM with linear kernel (Duda et al, 2001).

We now explain the determination of the optimal hyperplane for binary clas-
sification by our method. The values of sample mean and covariance for the two
classes are calculated from the simulated samples. Mahalanobis distance (Duda
et al, 2001) is determined from the mean value of a class to the data points of the
other class and the closest data point of the other class label is found. This closest
point is used to fix the reference boundary of the search space (ellipsoid) of the
other class. This process is repeated from the other class and the boundary of the
first class is also determined. With the boundaries, ellipsoidal regions are formed
with estimated means of classes as the centers. This is posed as a QCQP prob-
lem formulated in Eq (6) with the estimated covariance matrices normalized to
boundary points as P1 and P2. Our algorithm is implemented by placing particle
swarms near the mean value of the classes and evaluating the optimization func-
tion for 300 iterations. The shortest path and the closest point on each boundary
are estimated.

minimize (x− y)T (x− y)

subject to xT E[(x− µ1)(x− µ1)
T ] x ≤ 1, x ∈ X

yT E[(y − µ2)(y − µ2)
T ] y ≤ 1, y ∈ Y

(15)

Eq (15) is optimized using the proposed algorithm. The intersection between
the two ellipsoidal regions is assumed to be zero to eliminate a situation where
particles reach to different solutions. Once the closest points on the boundaries are
determined, the perpendicular bisector of the line joining the closest points is the
hyperplane. The hyperplane obtained for binary classification is shown in Figure 3.
We can observe that the optimal hyperplane calculated by SMO algorithm and our
method are closely placed, while other hyperplanes are not optimal. The estimated
weight and bias values for each method are tabulated in Table 5. The estimated
weight values can be normalized as

w1

1 = w1 /
√

w2

1
+ w2

2

w1

2 = w2 /
√

w2

1
+ w2

2

(16)

The normalized weights of SVM and our method are equal and they are w1

1 =
0.6875 and w1

2 = −0.7260.
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Table 5 Weights and bias values calculated by SVM with a linear kernel, neural networks
(perceptron) and our method for the binary classification problem with synthetic data.

Algorithm w1 w2 w0

Neural Network-1 -13.2972 7.6540 6.5689
Neural Network-2 -6.2830 7.4473 3.5954

SVM 0.2718 -0.2868 0.1838
Our method 1.6697 -1.7638 1.4376

4.3 Performance on real datasets

Our algorithm is also tested on some of the datasets available from UCI ML
repository (UCIMLR, 2014). The datasets used in our experiments are Iris, Wine,
Pima, Thyroid, Balance, Bupa, Haberman, and Tae. These eight datasets have
been chosen based on the consideration of minimal number of datasets with the
maximum coverage of the different types of attributes (namely, binary, categorical
value as integer, and real values). Further, the number of classes in each case is 2 or
3. So, the maximum number of hyperplanes to be obtained for any of these datasets
is limited to three. The main characteristics of these datasets are tabulated in
Table 6. The cross-validation performance on these datasets is compared with
those of a SVM with linear and RBF kernel, a neural network, and GSVM. GSVM
(Gonzalez-Abril et al, 2014) estimates a classification hyperplane and is developed
on the fundamentals of optimizing the SVM problem. GSVM modifies the bias
(w0) obtained from SVM by moving the hyperplane such that the geometric mean
of recall and precision is improved.

Table 6 The characteristics of datasets chosen for experimentation from UCI ML repository
(UCIMLR, 2014) with varied nature of attributes.

Dataset No. of No. of No. of Nature of
samples Attributes classes attributes

Iris 150 4 3 real
Wine 178 13 3 real & integer
Pima 768 8 2 real & integer

Thyroid 215 5 3 real & binary
Balance 625 4 3 integer
Bupa 345 6 2 real & integer
TAE 151 5 3 integer

Haberman 306 3 2 integer

4.3.1 Iris Dataset

The Iris dataset consists of four different measurements on 150 samples of iris
flower. There are 50 samples of three different species of iris forming the dataset.
The features, whose values are available from the dataset, are length and width
of leaves and petals of different iris plants. Out of the three species, two are not
linearly separable from each other, whereas the third is linearly separable from the
rest of the species. The classification task is to determine the species of the iris
plant, given the 4-dimensional feature vector.
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4.3.2 Wine Dataset

The Wine dataset contains the different physical and chemical properties of three
different types of wines derived from three different strains of plants. Some of the
physical properties such as hue and colour intensity have integer values, whereas
chemical properties such as ash or phenol content have real values. The feature
vector has 13 dimensions and there are a total of 178 samples. The classification
task is to determine the type of wine, given the values of the content of the thirteen
physical and chemical components.

4.3.3 Pima Indians Diabetes Dataset

The Pima dataset contains eight different parameters measured from 768 adult
females of Pima Indian heritage. Once again, some of them are integer valued,
such as age and number of pregnancies. Certain other parameters, such as serum
insulin, are real valued. It is a two-class classification problem of identifying normal
and diabetic subjects, given the 8-dimensional feature vector as input.

4.3.4 Thyroid Disease Dataset

This dataset contains ten distinct databases of different dimensions. The particular
database chosen for our study contains 5 different parameters measured from 215
individuals. Some of the variables have binary values, while others have real values.
The classification task is to assign an individual to one of 3 classes, given the 5-
dimensional feature vector as input.

4.4 Balance Scale Weight & Distance Dataset

The dataset consists of 625 samples from a modeled psychological experiment.
There are four attributes and they are the left weight, the left distance, the right
weight, and the right distance. The classification task is to assign the sample into
one of 3 classes namely, balance tip to the right, balance tip to the left, and be
balanced.

4.5 BUPA liver disorders Dataset

Bupa dataset consists of 345 samples related to liver disorders. There are six
attributes in the dataset, where the first 5 variables are all blood test values
thought to be sensitive to liver disorders that might arise from excessive alcohol
consumption. The last attribute is related to the number of drinks consumed. The
classification task is to decide whether a sample belongs to a liver disorder or not.

4.6 Teaching Assistant Evaluation Dataset

This dataset contains the evaluations of 151 teaching assistants (TA) for their
teaching performance over three regular semesters and two summer semesters at
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the Statistics Department of the University of Wisconsin-Madison. The attributes
are categorical. The classification task is to assign a test assistant into one of the
following three performance categories: low, medium, and high.

4.7 Haberman’s Survival Dataset

This dataset consists of 306 patients surviving from the breast cancer disease. The
attributes are numerical and they are age, year of operation and the number of
positive axillary nodes detected. The classification task is to assign whether the
patient survived more than 5 years or not.

4.7.1 Data projection

We perform a preprocessing step on these real datasets. This step is necessary
since,

– Some of the attributes of the dataset have larger variance than others. This
may result in skewed ellipsoid formation at the mean value of the dataset.

– The number of samples available in the datasets is also less.

To overcome these two problems, we perform the two steps given below.

– Eigen value decomposition is performed on dataset covariance matrix. The
dataset is projected on to these Eigen vectors. Scaling is performed in such a
way that each component in the new projected dataset has unit variance.

– This step is performed independently on each of the subsets used in the cross-
validation stage. We project the subset of samples into two dimensions. First
is the direction of the vector joining the sample means of the classes. The
equation for this vector is,

p = (µ1 − µ2) (17)

where p is the projected vector, µ1 and µ2 are the sample means of classes-1 and
2, respectively. The second direction is that of the eigen vector corresponding
to the largest eigen value of the covariance matrix of the subset.

The projected samples are used in the estimation of new sample means and
covariance matrices. The estimated hyperplane is used to classify the test samples.

4.7.2 Cross-validation

These datasets do not have separate training and test samples; hence we perform
cross-validation. In cross-validation, a small subset is used for testing while the
remaining are used as training samples. We use ten fold cross-validation: split the
datasets into ten subsets and use one of them for testing and the others for training
at a time and then rotate the subsets. Equation (15) is used in the estimation of
the hyperplane, which in turn is used to classify the test samples. Ten trials are
performed and the average cross-validation errors are reported in Table 7.

The performance of our method is close to that of the variants of SVM and is
superior to that of the neural network. We notice that in Iris andWine datasets, the
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Table 7 Cross-validation (CV) error (in %) using our method for different datasets from UCI
ML repository (UCIMLR, 2014) compared with those reported in (Gonzalez-Abril et al, 2014)
and our own implementation of SVM and neural network.

Dataset CV error by CV error CV error in CV error in CV error
Our method in SVM with Neural SVM with RBF in GSVM

linear kernel Network kernel
Iris 2.20 3.20 3.60 4.21 3.92
Wine 1.06 1.22 1.56 1.60 0.93

Pima 25.15 23.06 64.78 24.64 25.85
Thyroid 4.32 3.04 9.20 2.05 1.73

Balance 29.03 9.03 32.74 7.44 12.52
Bupa 36.76 32.94 42.05 29.56 28.93

TAE 42.66 49.33 66.00 24.20 29.73
Haberman 27.66 26.00 74.00 32.03 32.47

cross-validation error obtained by our technique is better than those achieved by
SVM with linear and RBF kernels and also the neural network. In Pima, Balance,
Bupa, TAE, and Haberman datasets, the cross-validation error is higher than the
best.

5 Conclusion and Future work

We have developed a classification method and optimization algorithm for solving
QCQP problems. The novelty in this method is the application of particle swarms,
a swarm intelligence technique, for optimization. The results indicate that our
approach is a possible method in solving general QCQP problems without gradient
estimation. We have shown the results of our algorithm under quadratic constraints
by evaluating different optimization functions. The issue with PSO based methods
is their computational complexity and the need for parameter tuning. The number
of function evaluations linearly increases with the number of particles employed
and the number of iterations carried out.

The results show that the new approach proposed gives better solutions for
some problems, but it is not always the case. Deeper analysis is needed to under-
stand why the method performs poorly for certain problems and how this can be
overcome.

In future, we intend to learn multiple hyperplanes by placing multiple ker-
nels in each class and evaluating the performance against multiple-kernel learning
algorithms. The hyperplanes estimated for different kernels may reduce the cross-
validation error for the Pima, Balance, Bupa, TAE and Haberman datasets.
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Fernández A, López V, Galar M, Jesus M J, Herrera F 2013 Analysing the clas-

sification of imbalanced data-sets with multiple classes:Binarization techniques
and ad-hoc approaches. Knowledge-Based Systems pp 97–110

Forero P A, Cano A, Giannakis G B 2010 Consensus-based distributed support
vector machines. Journal of Machine Learning Research 11:1663–1707

Galar M, Fernández A, Barrenechea E, Herrera F 2013 EUSBoost: Enhancing en-
sembles for highly imbalanced data-sets by evolutionary undersampling. Pattern
Recognition

Gonzalez-Abril L, Velasco F, Angulo C, Ortega J A 2013 A study on output
normalization in multiclass SVMs. Pattern Recognition Letters pp 344–348
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