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Abstract
Detection of error-free glottal closure instants (GCI) is a criti-
cal requirement for many applications including text-to-speech
synthesis, causal anti-causal decomposition and voice morph-
ing. Many existing GCI detection algorithms commit errors
under certain conditions. In this paper, we propose a post-
processing scheme for correcting errors of any GCI detection
algorithm. The proposed error correction scheme works on
the principle that the fundamental frequency over a voiced seg-
ment is slowly varying. The error correction is, thus, formu-
lated as an optimization problem such that the pitch contour
from the corrected GCIs has the least high frequency compo-
nents. The proposed error correction scheme is experimentally
evaluated on speech corpus with simultaneous EGG recordings
using three state-of-the-art GCI detection algorithms viz., Dy-
namic Plosion Index (DPI), Zero Frequency Resonator (ZFR),
and Speech Event Detection using the Residual Excitation And
a Mean-based Signal (SEDREAMS). It is found that the pro-
posed error correction scheme improves the performance of the
GCI detection in clean speech as well as noisy conditions at
different SNRs.
Index Terms: GCI detection, error correction, missing location
estimation, epoch extraction.

1. Introduction
Pitch-synchronous analysis of the voiced speech signal
is a popular technique in which the glottal closure in-
stants (GCIs or epochs) are used to define the analysis
frames. Epochs are utilized in various applications includ-
ing pitch tracking, voice source estimation [1], speech synthe-
sis [stylianou2001applying, lakkavalli2010continuity], prosody
modification [2, 3, 4, 5], voiced/unvoiced boundary detection
[6] and speaker identification [7]. A primary requirement for
such an analysis is the knowledge of the precise locations of
the GCIs. Hence, the automatic detection of the GCIs from the
voiced speech signal is considered to be an important problem
in speech research [8]. GCI detection algorithms that offer very
high performance include the Zero Frequency Resonator-based
method (ZFR) [9], the Speech Event Detection using the Resid-
ual Excitation And a Mean-based Signal (SEDREAMS) [10]
and the Dynamic Plosion Index (DPI) algorithm [11]. While
these techniques have high performance under clean as well
as noisy conditions [12], they suffer from certain limitations
which may affect the performance of the systems incorporating
them. For example, if an algorithm misses a few GCIs within
a vowel region, sudden glitches are perceived in a speech sig-
nal, synthesized using a method involving these GCIs. A com-

plex cepstrum-based speech deconvoluter is another example
where even a single missing GCI causes high distortions [13].
Hence, it is necessary to have a GCI detection scheme as error-
free as possible. Most of the popular state-of-the-art GCI detec-
tors commit errors under some conditions. For example, ZFR
and SEDREAMS, which are based on filtering the speech sig-
nal around the fundamental frequency, may perform poorly on
speech with very-low fundamental frequency content such as
in telephone quality speech [11]. Further, these two algorithms
depend on the a-priori estimated value of the average pitch pe-
riod. Thus, if the average pitch period is estimated wrongly,
these algorithms commit errors. Also, the temporal accuracy
of the ZFR is observed to be low [12]. The DPI algorithm, on
the other hand, is shown to offer very high-temporal accuracy
and reasonable performance in the presence of noise. However,
the integrated linear prediction residual (ILPR) [14] forms the
basis for the DPI computation and the DPI algorithm may fail
when the estimation of the ILPR is erroneous. ILPR may not
be accurate for phonemes like nasals which do not adhere to
the all-pole assumption of the LP-model. Thus, it is required
to correct the errors committed by these algorithms to ensure
better performance for systems that employ GCI detectors. In
this paper, we propose an error-correction scheme for a GCI de-
tection algorithm using a missing location estimation approach
formulated as an optimization problem. We evaluate the pro-
posed scheme on three recent and popular GCI detectors viz.,
DPI, ZFR, and SEDREAMS using speech with simultaneous
electroglottograph (EGG) recordings in both clean and noisy
conditions.

2. Proposed method

2.1. Motivation

It is well known that the speech signal exhibits quasi-periodicity
during the production of voiced sounds, due to the presence of
periodic vibrations of the vocal folds. The frequency of this
vibration is termed as the pitch or the fundamental frequency.
The inverse of the interval between two successive epochs or
GCIs is the pitch for the laryngeal cycle described by such suc-
cessive epochs. It is noticed in the literature that the pitch fre-
quency does not vary very rapidly, over an utterance [15]. In
other words, the contour of the inter-epoch-intervals (IEI) is
typically smooth, in that it is predominantly low-pass in nature.
This forms the basis for formulating an optimization problem
to perform GCI error correction in the IEI sequence domain as
described in the following subsection.
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Figure 1: An illustration of the erroneous groups in an IEI se-
quence. Solid blue circles form the IEI sequence obtained from
a GCI detection algorithm.

Let x[n], 1 ≤ n ≤ N , be an IEI sequence obtained from a
GCI detection algorithm (as shown in Fig. 1) on a voiced seg-
ment of an utterance. We assume that the erroneous groups in
x[n] are known a priori. An erroneous group is a set of IEI in-
dices n, where the GCI detection algorithm has made ‘errors’.
Let there be K such groups of erroneous IEIs in the consid-
ered voiced segment (as illustrated in Fig. 1). Let the i-th erro-
neous group begin at sample index ni,b and end at ni,e. Also
let the number of IEIs in the i-th erroneous group be Li. Let
L =

∑K
i=1 Li and si =

∑ni,e
n=ni,b

x[n]. We would like to esti-
mate the IEIs in the erroneous groups such that after estimation,
the entire IEI sequence is slowly varying with minimal high fre-
quency contents. Let the estimate of the actual number of IEIs
in the i-th erroneous group be L̃i and L̃ =

∑K
i=1 L̃i. Thus the

length of the entire IEI sequence (denoted by x̃[n]) after error
correction is N − L+ L̃.
Let xi

m be a L̃i-dimensional column vector whose j-th element
is denoted by xi,j

m , representing the estimate of the j-th IEI in the

i-th erroneous group. Let xm = [x1
m

T
, x2

m
T
, . . . , . . . , xK

m
T
]T

be the L̃-dimensional vector whose elements are obtained by
concatenating the estimates of all the erroneous IEIs. ‘T’ de-
notes the transpose of a vector. Thus, the problem of GCI error
correction is equivalent to the estimation of xm.
In order to minimize the high frequency components of x̃[n],
we formulate the estimation of xm as an optimization problem
where the energy of high frequency content of x̃[n] is mini-
mized. Let h[n] be the impulse response of a causal high-pass
filter with cut-off frequency fc. Thus the objective function of
the proposed minimization can be written as follows:

f(xm) =

∞∑
n=1

(x̃[n] ? h[n])2, (1)

where x̃[n] is identical to x[n] in the non-erroneous regions of
the IEI sequence and denoted by the elements of xm over the
erroneous groups. In Eq. 1, ? denotes the convolution operator.
Thus, the objective function is the energy of the sequence ob-
tained after high-pass filtering the re-estimated IEI.
It should be noted that the estimation of xm needs to be con-
strained by the fact that the estimated IEIs (xi

m) in the i-th erro-
neous group should satisfy the duration constraint

∑L̃i
j=1 xi,j

m =
si so that the GCIs in the non-erroneous groups remain un-
altered. Also, the optimized vector xm should have positive
integer-valued elements since the IEIs are computed in number
of samples. Thus, the proposed optimization problem has two
constraints as follows:

x∗m = argmin f(xm)

subject to
L̃i∑
j=1

xi,j
m = si, 1 ≤ i ≤ K and xm ∈ ZL̃

+ (2)

The objective function can be re-written in a matrix-vector form
as

f(xm) =
1

2
xT
mAxm + BT xm + const. (3)

A is a symmetric L̃×L̃matrix and B is a L̃×1 vector. The (i, j)-
the element of A and i-th element of B are given respectively by

Aij = Rh
(i−j)

4
=

∞∑
n=0

h[n]h[n− (i− j)], and

Bi =

∞∑
n=i

(
∞∑

k=0

x̂[n− k]h[k]

)
h[n− i] = x̂[n] ? Rh

n at i,

where, x̂[k] =

{
0, if the k-th term is missing
x̃[k], otherwise

Rh is the autocorrelation sequence of the impulse response
of the filter h[n]. Since A is an autocorrelation matrix, it is
Toeplitz and positive semidefinite.
The constraint can be also written in the matrix-vector form as

Cxm = s , where C is a K × L̃ matrix and

Cij =

{
1, if

∑i−1
k=1 L̃k ≤ j ≤

∑i
k=1 L̃k

0, otherwise.
(4)

Thus, the optimization problem now becomes

x∗m = argmin
1

2
xT
mAxm+BT xm + const.

subject to Cxm = s, xm ∈ ZL̃
+ (5)

This problem fits into the well-known optimization frame-
work of Mixed Integer Quadratic Programming (MIQP) prob-
lem. Several approaches have been proposed in the literature
for MIQP problem [?, ?, ?, ?]. In this work, we use the OPTI
toolbox [16] for solving the above optimization problem. Once
the IEIs are estimated, they are converted to GCIs.

2.3. Implementation details

In the proposed GCI error correction scheme, it is assumed that
the erroneous groups are known a priori. Also, the average pitch
period (APP) is required to be known for estimating the actual
number of IEIs in each erroneous region. If a GCI detection
algorithm uses the APP a priori (for example, ZFR and SE-
DREAMS), it is also used in the GCI correction scheme; APP
is estimated using the ground truth GCIs as explained in section
III. If the GCI detection algorithm does not require the APP (for
example DPI), it is estimated from the GCIs given by the algo-
rithm. This is done by first computing IEIs from the GCIs and
then finding the mode of IEIs over an utterance. The APP de-
rived in this manner is assumed to be a good approximation to
the actual APP. That is, if θ is the APP in an utterance, a sample
in the IEI sequence is considered to be erroneous if it is δ away
from θ. For the experiments considered here, the δ is taken to



be 20% of θ, based on the assumption that the pitch of an utter-
ance can vary between±20% of the APP 1. A set of contiguous
erroneous IEIs is treated as an ‘erroneous group’. The IEIs in
all the erroneous groups are re-estimated using Eq. 5.

We estimate the number of missing samples (L̃i) in each
erroneous segment as follows: an initial estimate is computed
as the ratio of si to the APP (θ). Then the optimal number of
missing samples in each segment is estimated without altering
the estimated values of the remaining segments. In order to find
the optimal number of missing samples for the i-th segment,
we search from b{si/(θ + δ)}c to d{si/(θ − δ)}e with a step
size of 1 and L̃i is determined to be the one where the objective
function achieves the minimum value.

The high-pass filter h[n] is chosen to be an FIR filter of or-
der 200. Figure 2 shows an illustrative example of how the pro-
posed GCI error correction scheme works on a voiced speech
segment at 5 dB additive noise, when DPI is used for GCI de-
tection. The true IEIs obtained from the ground truth are shown
in Fig. 2(a). The IEIs estimated by the DPI algorithm and those
obtained after applying the proposed post-processing technique
are shown in Figs. 2 (b) and (c), respectively. It is seen that
the errors in GCIs caused by the GCI detection algorithm are
corrected by the proposed post-processing technique.
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Figure 2: Illustration of the results of error correction scheme on
a voiced segment of an utterance. IEIs obtained by the ground
truth, DPI algorithm before and after pre-processing are shown
in traces (a), (b) and (c), respectively. The horizontal dot-dash
lines in Fig. (b), represents the ± 20% values around the aver-
age pitch period

3. Experiments and results
3.1. Database, experimental setup and performance mea-
sures

The dataset provided with the book ‘Speech processing and
Synthesis toolboxes’ by D. G. Childers [17] is used for evalua-
tion in this work (henceforth referred to as the Childers’ data).
Childers’ data includes speech and simultaneously recorded
EGG signals from 52 speakers (25 male and 27 female, with
ages ranging from 20 to 80 years) in a single-wall sound room.
The speech material consists of utterances of 12 sustained vow-
els, 16 sustained fricatives, an utterance counting one to ten (one
utterance) with comfortable pitch, one counting one to ten with

1This choice is made empirically for the databases considered. How-
ever, the threshold for deciding the erroneous group can be set depend-
ing upon the data by considering the maximum extent of pitch variation
in a given utterance.

a progressive increase in loudness, singing the musical scale us-
ing ‘la’ and three sentences. In this study, fricative stimuli are
not used. We use a negative threshold (1/6 of the maximum
value [18]) on the differentiated EGG (DEGG) signal to distin-
guish the voiced from the unvoiced speech. The negative peaks
of DEGG provide the ground truth GCIs for validation. A total
of 392015 true epochs were obtained by this procedure.

We consider three state-of-the-art GCI detection algorithms
viz. DPI, ZFR and SEDREAMS for our experiments. For this
study, we use the standard performance measures namely iden-
tification rate (IDR), miss rate (MR), false alarm rate (FAR) and
identification accuracy (IDA) or the standard deviation of error
(SDE) 9, 10, 11], which are illustrated in Fig. 6 of [12]. The
cutoff frequency for the high-pass filter is optimized for each of
the GCI detection algorithms separately by performing a grid
search from 2 Hz to 12 Hz with a step size of 1 Hz. The op-
timal cut-off frequencies corresponding to the highest IDR are
found to be 3, 4 and 10 Hz for DPI, ZFR and SEDREAMS
respectively, by optimizing on a development set comprising
four speakers from the Childers’ data. The remaining data from
48 speakers is used for validation in clean as well as in noisy
conditions (white and babble). Noise samples are taken from
Noisex-92 database [19] and SNRs of -20 to 20 dB are consid-
ered. DEGG signal is used for estimating the APP for ZFR and
SEDREAMS algorithms.

We also compare our results with two naive methods of cor-
recting the GCI errors described as follows - (i) Once the erro-
neous groups are found out by the method described earlier, the
erroneous GCIs are corrected by forcing them to follow a lin-
ear contour obtained by fitting a line to the pitch-contour in the
neighborhood of the erroneous group. (ii) smoothing the erro-
neous GCI contours by the median of the GCI values within the
entire erroneous GCI group. Note that neither of these process
involve optimization as in the case of the proposed method.

3.2. Results and discussion

Figure 3 compares the performances of the GCI detection al-
gorithms with (involving both the proposed method and the
naive schemes) and without the error correction scheme. SE-
DREMS is abbreviated as SED in the figure and hereafter. FAR
is not shown in the figure since it can be obtained by calculating
1−IDR−MR. In the clean condition, the improvement in the
IDR, after post-processing is about 1, 4 and 0.1 % (absolute) for
DPI, ZFR and SED respectively. This is expected because, in
clean speech, the IDRs are already on the higher side (more than
97%), except for ZFR, for which IDR increases from 93% to
97%. In the case of additive white noise, IDR increases consis-
tently with post-processing for DPI, ZFR, and SED at all SNRs.
The scenario is similar in the case of the babble noise, but the
improvement in IDR is less than that in the case of white noise.
It is observed that the improvement is more at lower SNRs for
both noises. It is noteworthy that, the proposed post-processing
technique improves the IDR while not altering the SDE signif-
icantly. This implies that the post-processing not only rectifies
the erroneous GCIs but also places the rectified GCIs closer to
the ground truth. Note that the MR values in the case of DPI and
SED (a range of 3 to 38 %), in additive white noise are higher
than that (a range of 1.2 to 1.6 %) in the case of ZFR. However,
IDR values for DPI, SED and ZFR are similar; this suggests
that ZFR commits more insertion errors than DPI and SED.
Following the error correction scheme, the MR drops largely
in the case of DPI and SED (26 and 24% respectively) lead-
ing to improvement in their IDRs. But there is no such scope
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Figure 3: Results of the proposed post-processing technique on DPI, SEDREAMS and ZFR at two different noisy conditions under
several SNRs. It is seen that the postprocessing always improves the IDR while SDE is maintained close to the original value. The solid
blue and the red box lines in the figures denote the results without and with postprocessing, respectively. The dotted line represents the
results with the GCI correction using the naive linear interpolation method. The solid black line with round beads represent the GCI
correction using median filtering approach.

in the case of ZFR. The improvement in IDR for ZFR comes
mainly from correcting the insertion errors. Lower improve-
ment in IDR for ZFR than for DPI and SED at low SNR could
be because the post-processing scheme rectifies more miss er-
ror than insertion error. Careful examination reveals that many
of the insertion errors are not detected in the first place, while
that is not the case with miss errors. This is because, in this
work we are using a simple detector which detects error if an
IEI is outside the 20% frequency band (a factor of 0.8 to 1.2)
around the APP. Such a detector detects a miss more reliably
than an insertion. For example, suppose an erroneous group of
s sample duration has M correct GCIs. Thus the APP is s/M .
If a GCI detection algorithm makes an insertion error the aver-
age IEI becomes s/(M + 1). While in the case of miss error
it is s/(M − 1). Thus, on average, the IEI due to insertion er-
ror is less than s/M by a factor of 1/(M + 1), while that is
1/(M−1) for miss error. Since 1/(M−1)> 1/(M+1), fac-
tor for miss error will have higher chance of being greater than
1.2 than that for insertion error being lower than 0.8. Assum-
ing equal number of insertion and miss errors, the simple GCI
error detector would fail to detect insertion errors more than
miss errors. Figure 3 also depicts the results for GCI correc-
tion using naive linear interpolation method described earlier. It
can be seen that for the DPI algorithm, the proposed method is
marginally better than the linear interpolation method whereas
for the ZFR and SEDREAMS algorithms, the improvement in
IDR with the proposed method is better than that with the lin-
ear interpolation. This is may be explained by the following
empirical observation: It is seen that the proposed method of
GCI correction works better when the erroneous groups contain
significant number of GCI errors in series (typically of order of
5-10) whereas it is comparable to the linear interpolation when
the erroneous groups comprises fewer GCI errors. It is also ob-
served that the erroneous groups arising out of errors committed
by the DPI algorithm tend to contain lesser number of serial er-
roneous GCI locations compared to the other two algorithms for
which erroneous groups contain higher number of serial GCI lo-

cations. Thus, it may be concluded that the proposed algorithm
is favored over the linear interpolation when the GCI detector
imposes significant number series of GCI errors. In the case of
median filtering approach, the IDR is comparable or better than
the proposed method for some algorithms at some SNRs. How-
ever, the SDR performance measure is consistently lower than
that for the proposed method. This implies that even though a
median filtering approach corrects erroneous GCIs, they offer a
poorer accuracy compared to the proposed method.

It is also important to note that the genuine pitch doubling
and halving may be treated as errors by the simple error de-
tection scheme used in this work. Thus, the GCIs obtained
using the error correction scheme would be erroneous in re-
gions which contain genuine pitch doubling and halving while
the original GCI detection algorithm may not incur any error.
Thus, the effectiveness of the proposed error correction scheme
depends on the accuracy of the erroneous IEI detection as well
as the accuracy of the estimate of APP. However, if a fairly accu-
rate estimate of the APP is known a priori using technique other
than the GCI estimates, the proposed post-processing technique
could have a better performance.

4. Conclusion
In this paper, we have proposed an error correction scheme
for any GCI detection algorithm. The GCIs errors within er-
roneous groups are estimated by minimizing the high-pass en-
ergy in the corrected IEI contour. Experiments are carried out
on the speech data from 52 speakers, comprising simultane-
ous EGG recordings, using three state-of-the-art GCI detec-
tion algorithms. It is found that the proposed post-processing
technique improves the performance of the GCI detection al-
gorithms compared to naive methods of linear interpolation of
the erroneous GCIs and median filtering. The proposed error
correction scheme could be made more robust by designing a
better detector of the erroneous IEI regions as well as a better
estimate of APP particularly at low SNRs.
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