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Abstract

Hidden Markov models (HMM) are widely used in speech
recognition these days. For all practical purposes, viz,
mathematical tractability and reducing computational com-
plexity, the observation density function in a continuous
HMM is assumed to be mixture gaussian with diagonal co-
variance matrices. The feature transformation plays an im-
portant role in achieving this decorrelation. Different fea-
ture transformations like discrete cosine transform (DCT)
and principal component analysis (PCA) have been tried.
DCT is a suboptimal transform that nearly diagonalizes the
covariance matrix and retains higher order correlations.
PCA on the other hand diagonalizes the covariance matrix
but again retains the higher order dependencies. Indepen-
dent component analysis (ICA), used widely in blind source
separation problems can be used as a feature transform.
ICA makes the feature vectors independent and thereby fully
decorrelated. Experiments are conducted on a 50 word vo-
cabulary in a multi-speaker mode. The results are compared
with the baseline system where DCT is used as a feature
transform. A 2% increase in recognition accuracy is ob-
served using ICA as a feature transformation over DCT.

1 Introduction

The idea behind Independent Component Analysis (ICA) is
to reduce the redundancy in the original feature vector com-
ponents (log spectral energies). The data model for linear
ICA is [4] ������� (1)

where � is the observed feature vector, � is the underlying
independent sources and � is the mixing matrix. The ICA
algorithm estimates a demixing matrix � such that com-
ponents of � are independent.� � � �	� � ��� (2)

When � � � 
 we have achieved perfect indepen-
dence. Generally unsupervised methods of implementing
ICA framework can ensure independence fulfilling the re-
laxed condition � ������ (3)

where � is the permutation matrix and � is the diagonal
scaling matrix.

2 Baseline System

In the baseline system, features are extracted using the mel
frequency cepstral coefficients (MFCC) [8]. The speech
signal, sampled at 8000 Hz, is windowed using a Hamming
window of 20 msec duration, with an overlap of 10 msec.
This is Fourier transformed using a 256-point FFT and fil-
tered using a 20 channel mel filter bank and energy in each
filter is then calculated. These log spectral energies are then
decorrelated using DCT and 13 MFCC coefficients are re-
tained.

Hidden Markov model pattern classifier is used for
recognition. The observation density in each state is as-
sumed to be a mixture gaussian with diagonal covariance
matrices.
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where
4

is the number of states, 6 the number of mix-
tures,  � � the mixture weight and " ���7$�% � � +8, � � � gaus-
sian distribution with mean

% � � and covariance matrix, � � �:9�;*<�=?>A@CB� �D�FEGEGE @CB� ��H�I . J is the dimensionality of
the feature. Training is done using segmental K-means al-
gorithm. A 6 state, 5 mixture left to right HMM without
skips is used.

The system is trained using segmental K-means algo-
rithm which has the following steps: model initialization,
state sequence segmentation using Viterbi algorithm and
model re-estimation. A transition probability matrix is ini-
tialized randomly. In the first iteration, observations are
segmented equally into different states. In the subsequent
iterations, the segmentation is by applying the Viterbi algo-
rithm [6][5][7]. All the observations falling into one state
are clustered into M mixtures using K-means clustering al-
gorithm. The weight, mean and variances of each cluster
are estimated using the following equations:

 � ��KMLK N � / +8OP+ EGEQEGE 6 (5)



% � � /R � K L�S �T�VU � S N � / +WO!+ EQEGE 6 (6)

, � � /R ��X / KML�S �T� � U � S X % � �Y� U � S X % � �[Z (7)

N � / +WO!+ EQEGE 6
where 6 is the number of mixtures,

R � is the number
of samples in the N]\_^ cluster and

R
is the total number

of samples in a state. Eqn. 7 gives us the estimate of the
covariance matrix. Because we have assumed a diagonal
covariance matrix, the cross variances are made zero. The
transition matrix is updated using the re-estimation equation

<(` � �ba[cAa <(d a*e <gfihj; a ; c fihlk eFc N h a < a[m ; a[c h a < a[m 2a[cAa <(d a*e <gfihj; a ; c fihnk eFc N h a < a[m ;
(8)

During K-segmental training procedure, a word model is
generated for each of the o words. These word models
are represented by p � + p B + EQEGE prq E When a new test pattern
is encountered, the likelihood of its observation, given each
of the word model is computed. The test pattern is assigned
that class, ots whose likelihood is maximum.

o s �vuxw�y{z|u~}q � � �#��� prq �*� (9)

3 Independent component Analysis

Modeling the output probability density function as a Gaus-
sian mixture with diagonal covariance matrix is equivalent
to the assumption that the feature vectors are statistically
uncorrelated [3]. Independent Component Analysis (ICA),
like PCA, is an unsupervised, linear, data dependent trans-
formation. However, unlike PCA which removes only sec-
ond order correlation, ICA removes all higher order statis-
tical dependencies making the feature vector truly uncorre-
lated.

Let ��� � h � + h B + EGEQE h�� � Z be a
4

-dimensional zero-mean
vector, with the components h ` being mutually independent.
Its multivariate p.d.f. can be written as [4][2]

kA� � h � + EQEGEQE h�� � � ��` �T� k ` � h ` � (10)

The data vector ��� � � � + � B + EGEGE � � � Z is observed, such
that ������� (11)

where � is a full rank
4	��4

scalar matrix. The compo-
nents of the observed vectors are no longer independent and
multivariate p.d.f. will not satisfy the p.d.f. product equal-
ity as in eqn. 10. The mutual information of the observed

vector is given by Kullback-Leibler divergence of the mul-
tivariate density from the product of the univariate densities
[4]. � � � � ���bk � � �(�G� k � � �� �` �T� k ` � � ` � 9�� (12)

The mutual information is always positive and becomes
zero when the components are independent. The goal of
ICA is to find a linear transformation o of the mixed sig-
nal � that makes the outputs as independent as possible

� � � ��� � ��� (13)

where � is the estimate of the sources. The sources are
exactly recovered when � is the inverse of � up to a per-
mutation and scale change. The fundamental restriction in
ICA is that the independent components must be nongaus-
sian. The classical measure of nongaussianity are kurtosis
and negentropy. The kurtosis of � is defined by�(� eAa � � � ����> ��� I X�� � ��> � B I � B (14)

Even though kurtosis can be easily estimated, it is not an
robust measure of nongaussianity because when kurtosis is
estimated from a measured sample, its value may depend on
the few samples in the tails of the distribution.

In the FastICA algorithm, negentropy is used as the
measure of nongaussianity. Negentropy is based on the
information-theoretic quantity of differential entropy. Ne-
gentropy � is defined as

� �_�	� ��� �_���~� X � ����� (15)

where
�

is a continuous random vector and
� �

is a Gaus-
sian random vector of the same covariance matrix. � � � � is
the differential entropy of

�
and is defined as

� ����� � X � k � � �(�G  y¡k � � � 9 � (16)

where k � � � is the probability density function of the ran-
dom variable

�
. Gaussian variable has the largest entropy

among all random variables of equal variance. Hence ne-
gentropy is always positive and zero for a gaussian random
vector. Estimating negentropy using eqn. 15 would require
an estimate of the pdf and therefore, simpler approxima-
tions are used. The most general approximation of negen-
tropy is given by

� �_���£¢ ¤� ` �T� � ` � ��>�¥�` ����� I X �|>�¥�` �_¦T� I � B (17)

where
� ` are some positive constants, and

¦
is a Gaussian

random variable of zero mean and unit variance, and the
functions ¥ ` are some nonquadratic functions. In the case



where we use only one nonquadratic function ¥ , eqn. 17
reduces to

� �����¨§ � �|>�¥ ����� I X �|>�¥ ��¦�� I � B (18)

Taking © �_ªP� � ª � , we obtain a kurtosis based approxima-
tion, which is not very robust. By choosing ¥ that does not
grow very fast, we obtain more robust estimators [1]. The
following nonquadratic functions have been used in our ex-
periments: ¥ � �_«(� � �¬ �Q  y£  g®&¯ < « (19)¥ B �°«g� � X]± }!² � X « Bj³ O�� (20)

where < is a suitable constant such that
/�1 < 1 O .

4 Fast ICA Algorithm

The FastICA uses negentropy as the measure of nongaus-
sianity. The data must be centered and whitened in order
to simplify the algorithm [2][5]. Centering is by subtract-
ing the mean ´ �µ�|> U I so as to make U a zero-mean
variable. After estimating the mixing matrix � using the
centered data, we add mean vector of ¶ i.e, ��· � ´ back to
the centered estimates of ¶ .

The centered data is whitened using the Eigen Value De-
composition of the covariance matrix. We use the transfor-
mation ¸U � ¸� U such that ��> ¸U ¸U Z I �v
 where

¸���v¹º� ·¼»¾½ ¿ ¹ Z � (21)

where ¹ is the orthogonal matrix of the eigenvectors of��> U�U Z I and � is diagonal matrix of its eigenvalues,�À�Á9�;*<�=?>A9 � + 9 B EQEGE 9 H I . Whitening reduces the number of
parameters to be estimated from J B to J � J X / � ³ O , whereJ is the dimensionality of the mixing matrix Â .

FastICA for one unit

Here ”unit” refers to an artificial neuron, having a weightÃ that it is able to update by a learning rule. The FastICA
learning rule finds a direction, i.e, a unit vector such that
the projection Ã Z � maximizes nongaussianity. We have
used negentropy � � Ã Z � � given by eqn 18 as a measure of
nongaussianity. The variance of Ã Z � is constrained to be
unity. For whitened data, this is equivalent to constraining
the norm of Ã to be unity.

The FastICA is based on a fixed point iteration scheme
for finding the maximum of nongaussianity of Ã Z � , as in
eqn 18. Let = denote the derivative of the nonquadratic
function ¥ used in eqn 20 and

/Ä1 < 1 O
is a suitable

constant. Thus = � �_«(� �ÄÅWu �P¯i� < «g� (22)= B �_«(� � « ± }!² � X « B ³ Ox� (23)

The basic form of FastICA algorithm is as follows:
Let Ã7ÆQÇ~È denote the weight vector after f iterations and =PÉ
denote the first derivative of = .

1. Set f�� /
Initialize weight vector Ã ÆËÊ¾È randomly

2. Ã7ÆQÇ~Ì � È{�v�|>j�r= � Ã Z ÆQÇ~È�� � I X ��>j= É � Ã Z ÆQÇ~È�� � I Ã7ÆQÇ~È
3. Ã7ÆQÇ~Ì � È{��Ã7ÆGÇ~Ì � È&³ºÍÍ Ã7ÆQÇ~Ì � ÈAÍÍ
4. If Ã Z ÆQÇ~È�Ã7ÆQÇxÌ � È is close to unity, then stop.

Else f7�vf|Î / ; Go to step
O
.

FastICA for several units

The one-unit algorithm estimates only one of the indepen-
dent components. To estimate several independent compo-
nents, we need to run one unit FastICA algorithm using sev-
eral units (neurons) with weights Ã � + Ã B + EQEGE Ã�� .

Deflation technique is used to decorrelate the outputsÃ Z � � + Ã ZB � EGEQE Ã Z� � after every iteration to prevent different
vectors from converging to the same maxima. The deflation
scheme is based on Gram-Schmidt decorrelation technique.
The independent components are calculated one by one.
When Ï independent components are calculated, the one-
unit fixed point algorithm is run for Ã ¤ Ì � and after every
iteration, subtract from Ã ¤ Ì � the projections Ã Z¤ Ì � Ã � Ã � ,2 � / +8OP+ EGEQE Ï of the previously estimated Ï vectors, Ã ¤ Ì � is
normalized

Ã ¤ Ì � �vÃ ¤ Ì � X ¤� ` �T� Ã Z¤ Ì � Ã ` Ã ` (24)

Ã ¤ Ì � �vÃ ¤ Ì � ³PÐ Ã Z¤ Ì � Ã ¤ Ì � (25)

5 Experimental results and discus-
sion

The proposed technique was tested in a multi-speaker, lim-
ited vocabulary, recognition scenario. It was plugged to
the speech recognition unit of a voice controlled ultrasound
scanner used for diagnostic purposes. The vocabulary con-
sisted of 50 phrases, most of them containing two or three
words. Fig. 1 gives the plot of the duration of the phrases
and its frequency of occurrence. The database for the ex-
periment was recorded from 5 speakers. Each speaker has
uttered a word 8 times. Speech was recorded at a sampling
frequency of 8 kHz and stored at 16 bits per sample. 5 rep-
etitions of each word from a speaker were used for training
and the rest 3 for testing. The FastICA package was down-
loaded from the internet [9] and used for this work.

Figs. 2 and 3 show the improvement in the recognition
accuracy using ICA over DCT as feature transformation in
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Figure 1: Plot of the relative frequency of the duration of
each phrase in the vocabulary
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Figure 2: Plot of recognition accuracy verses states for ICA
and DCT as feature transformation (No. of training sam-
ples/speaker = 3)

MFCC. The graphs have been plotted for different number
of states. DCT as a feature transform gave a maximum ac-
curacy of 89% while ICA gave 91% accuracy. The improve-
ment in accuracy is more pronounced in Fig. 2 where only
three training samples per word per speaker has been used.

6 Conclusions

In this work we have used a used a simple pattern classifier
wherein we have forced the same number of states for each
of the words. The improvement in the recognition accu-
racy is because of the sophisticated feature extraction. ICA
transforms the features such that it removes all higher or-
der dependencies. This satisfies the assumptions made in
the continuous HMM based recognition framework. This is
confirmed by the increase in the recognition accuracy. The
improvement is achieved at the expense of higher computa-
tional complexity during training. However, there is no in-
crease in the computational complexity during testing. The
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Figure 3: Plot of recognition accuracy verses states for ICA
and DCT as feature transformation (No. of training sam-
ples/speaker = 5).

performance can be improved further by using noise model
in the ICA framework.
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