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Abstract

In the analysis of recordings of conversations, one of the moti-
vations is to be able to identify the nature of background noise
as a means of identifying the possible geographical location
of a speaker. In a high noise environment, to minimize man-
ual analysis of the recording, it is also desirable to automati-
cally locate only the segments of the recording, which contain
speech. The next task is to identify if the speech is from one
of the known people. A dictionary learning and block spar-
sity based source recovery approach has been used to estimate
the SNR of a noisy speech recording, simulated at different
SNRs using ten different noise sources. Given a test utter-
ance, a noise label is assigned using block sparsity approach,
and subsequently, the speaker is classified using sum of weights
recovered from the concatenation of speaker dictionaries and
the identified noise source dictionary. Using the dictionaries
of the identified speaker and noise sources, framewise speech
and noise energy are estimated using a source recovery method.
The energy estimates are then used to identify the segments,
where speech is present. We obtain 100% accuracy for back-
ground classification and around 90% for speaker classification
at a SNR of 10 dB.
Index Terms: noise source, speaker, classification, dictionary,
ASNA, segmental SNR, detection, speech segments

1. Introduction
Real life speech signals generally contain foreground speech
by a particular speaker in the presence of a background envi-
ronment like factory or traffic noise. In this work, we address
classification of the speaker and background noise source, and
then frame-wise energy estimation of the audio sources. Iden-
tification of background noise can help us to narrow down to
possible geographical locations of the speaker. Apriori estimate
of speaker and the background noise is useful for speech en-
hancement, separation and speech recognition; which has been
of common interest to research community and finds many ap-
plications in the real world. Frame-wise energy estimation of
speech source is useful for identifying speech segments. If this
is possible, then the low SNR recordings can be automatically
processed to extract only the speech regions. These speech seg-
ments can then be processed by human experts, in defense ap-
plications. Other applications are hearing aids [1], forensics [2]
and robotic navigation systems [3]. In this work, we address
the problem of speaker as well as noise classification of noisy
speech signals using the concept of block sparsity [4] and sparse
non-negative recovery [5]. We also estimate the segmental SNR
and detect the speech segments in a noisy speech signal.

1.1. Literature review

There has been a lot of work on audio content analysis and
scene classification. Lu et. al. [6] classified audio into speech,
music, environment sound and silence using K-nearest neigh-
bor and line spectral pairs-vector quantization. Barchiesi et.al.
[7] presents a review of the state of the art in acoustic scene
classification. Giannoulis et al. [8] evaluated 11 algorithms
along with a baseline system for acoustic scene classification.
The algorithms extracted time and frequency domain features
from the audio signal followed by a statistical model or major-
ity vote based classifier. Cauchi [9] classified auditory scenes
using non-negative matrix factorization.

Machinery noise diagnostics was explored in [10] while
acoustic signature classification of aircrafts or vehicles was sur-
veyed in [11]. Noise was classified for hearing aid applications
based on variation of signal envelope as features in Kates [12].
Line spectral frequencies were used as features for classifica-
tion of different kinds of noise and speech by Maleh et. al. [13].
Casey [14] devised a system using a hidden Markov model clas-
sifier and log-spectral features to classify twenty different types
of sounds. Chu et al. [15] combined matching pursuit based
features with mel-frequency cepstral coefficients to recognize
14 different environmental sounds. Chachada et. al. [16] sur-
veyed techniques for stationary and non-stationary environmen-
tal sound recognition.

Tzagkarakis et. al. [17] used sparsity based speaker identi-
fication using discriminative dictionary learning while Joder et.
al. [18] explored non-negative matrix factorization for feature
extraction. Malkin [19] explored machine listening research to
solve real world problems in perceptual computing. Our paper
addresses some components of machine listening like scene and
speaker identification, and SNR estimation.

Kim et. al. [20] estimated the SNR based on the analysis
of waveform amplitude distribution. Narayanan et. al. [21] es-
timated SNR based on computational auditory scene analysis.
Liu et. al. [22] estimated the SNR of clipped signals based on
the audio amplitude distribution. Tchorz et. al. [23] estimated
SNR in different frequency channels using amplitude modula-
tion spectrograms.

Dictionary learning is a method of representing features
from a large training data using a weighted linear combina-
tion of vectors called as atoms. Estimating weights correspond-
ing to these atoms is termed as sparse coding or source re-
covery. Audio signals are represented as a linear combination
of non-negative dictionary atoms for audio source separation
[24, 25, 26], recognition [27, 28, 29], classification [30, 31]
and coding [32, 33]. The simplest dictionary learning (DL)
method is a random selection of features from the training data



[5]. Matching pursuit [34], orthogonal matching pursuit (OMP)
[35], focal underdetermined system solver (FOCUSS) [36] and
basis pursuit [37] are some of the source recovery algorithms.

In our work, we have used active-set Newton algorithm
(ASNA)[5] for source recovery. The training phase for the clas-
sification problem is DL from various speaker/ noise sources.
The dictionary atoms capture the variation in the spectral char-
acteristics of the speech and noise sources.

1.2. Contributions

The major contributions of this paper are: (1) Block sparsity
and concatenated dictionary based classification of speech and
noise sources from noisy speech (2) Exploiting low and high en-
ergy segments of noisy speech signal for noise and speaker class
estimation (3) A novel algorithm to detect speech segments and
measures to quantify the segment detection and segmental SNR.

2. Proposed Approach
2.1. Problem definition

Noisy speech signal, s[n] is simulated as a linear combination
of two sources, a speech, ssp[n] and a noise source, sns[n].

s[n] = ssp[n] + sns[n] (1)

The speech and noise are constrained to belong to a specific set
of speakers and noise sources, and the test signal is classified as
belonging to one of the predefined speaker and noise sources.
Figure 1 shows a part of an utterance from a female speaker,
factory noise and the noisy speech signal at an SNR of 0 dB .
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Figure 1: Illustration of speech, noise and the noisy speech sig-
nal. Star marks in (c) indicate frame-wise energies.

2.2. Feature extraction and dictionary learning

From the training set of speech and noise sources, frames of 60
ms duration are extracted with a shift of 15 ms. The magnitude
of the short-time Fourier transform of these frames are used as
the features. A dictionary is a matrix D ∈ IRp×K containing K
column vectors denoted as atoms, dk, 1 ≤ k ≤ K. A given
feature vector y can be represented as a linear combination of a
few dictionary atoms as y ≈ Dx, where x ∈ IRK is the vector
of weights for the atoms. Dictionary is learnt by random selec-
tion of K(= 500) features as atoms. Features for each speaker

and noise source are extracted separately and the correspond-
ing dictionaries are built. The dictionaries for Nsp speaker and
Nns noise sources are denoted as Di

sp, 1 ≤ i ≤ Nsp and
Di

ns, 1 ≤ i ≤ Nns, respectively.

2.3. Classification using block sparsity and source recovery
of the mixed signal

Since the test signal is assumed to have at most two sources, the
features extracted can be approximated as a linear combination
of atoms belonging to two source dictionaries. Let y be the test
feature containing the nth speaker and the mth noise source,
which can be represented as

y ≈ ŷ = [Dn
sp Dm

ns][x
′
n x′

m]′ (2)

where n, m and the weight vectors xn, xm are unknown, and
are estimated. Estimation of n, m simultaneously is difficult as
there are Nsp ×Nns combinations of audio sources, which can
form the mixed signal. We estimate the noise source first, and
then the speech source as explained below.

2.3.1. Noise classification stage

The background noise source is normally stationary in nature,
while the speech foreground is non-stationary. Also the speech
component consists of voiced, unvoiced and silence segments.
So, when speech and noise sources are mixed at a particular
SNR, the frames containing silence segments of speech are the
ones with least energy since they contain only the noise compo-
nents as illustrated in Fig.1(c). These low energy frames give a
higher confidence in the estimation of the noise class. Given l
frames from s[n], and the corresponding features yi, 1 ≤ i ≤ l,
the energy of each frame is Ey(i) = ||yi||22. Ten features hav-
ing the lowest Ey(i) are extracted as Ymin = [y(1)... y(10)]. A
concatenated dictionary is constructed from the individual noise
source dictionaries as Dns = [D1

ns..D
Nns
ns ], and let Ymin cor-

respond to the mth noise source. The jth column in Ymin can
be represented as

y(j) ≈ [D1
ns..D

Nns
ns ][x′

1...x
′
Nns

]′ (3)

where x = [x′
1...x

′
Nns

]′ is block-sparse [4, 38], i.e. ||xm||2
is non-zero and ||xi||2 = 0, ∀i 6= m, Dm

ns is the dictionary
block corresponding to xm having non-zero Euclidean norm.
The noise source is estimated as the index m̂, which gives the
maximum absolute sum of correlation between the dictionary
atoms and the ten features (similar to block-OMP [38]):

m̂ = argmax
i

10∑
j=1

||(Di
ns)

T y(j)||1 (4)

2.3.2. Speaker classification stage

To estimate the speaker index, we approximate the test feature
yi as the linear combination of the dictionary atoms from the
estimated noise source, Dm̂

ns and the concatenated dictionary of
speech sources [D1

sp....D
Nsp
sp ]. Since speech comprises silence,

unvoiced and voiced regions, we use only those features having
higher energy (60% of the total number of features) for speaker
classification. Since speech is non-stationary and noise further
corrupts it, the speaker source index is determined by compar-
ing the weights estimated in the representation:

y ≈ [D1
sp....D

Nsp
sp Dm̂

ns][x
′
1...x

′
Nsp

x′
m̂]′ = Dx (5)



and the weight vector, x is estimated by minimizing the dis-
tance dist(y,Dx) using ASNA [5], where dist() is the KL-
divergence between y and Dx.

minimize
x

KL(y||ŷ), ŷ = Dx s.t. x ≥ 0 (6)

The weight vector x recovered using ASNA is non-negative and
sparse. A new measure Total Sum of Weights (TSW) is defined
as the total absolute sum of elements of xi, 1 ≤ i ≤ Nsp for
all the selected features yj ,

TSWi =
∑
j

||xi||1, ∀y = yj , 1 ≤ j ≤ l (7)

n̂ = argmaxTSWi (8)

TSWi is observed as the reliable measure for estimating
the speaker source index, n̂ as the x recovered using ASNA
[5] tends to pick up atoms corresponding to the original source
dictionary Dn

sp and Dm̂
ns iteratively, and also assigns higher

weights for Dn
sp. Figure 2 shows the plot of sum of weights

over all the features for each speaker source dictionary. It is
seen that the highest sum of weights is obtained for the original
speaker fl0d0, except for the SNR of −10 dB.
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Figure 2: Weights estimated for each speaker source.

2.4. Estimation of SNR and the speech segments

Using the estimated speaker and noise source indices, m̂, n̂, the
speech and noise components of the features corresponding to
the noisy speech signal are recovered by using a concatenated
dictionary, D = [Dn̂

sp Dm̂
ns] and recovery algorithm ASNA

similar to eqn.(6). So the estimated feature ŷ and estimates of
speech, ŷsp and noise features, ŷns are

ŷ = [Dn̂
sp Dm̂

ns][x
′
n̂ y′

m̂]′ (9)

ŷsp = Dn̂
spxn̂, ŷns = Dm̂

nsxm̂ (10)

Segmental SNR is defined as the ratio of the total energy
of the speech to noise features in decibel, for segments in the
signal, where speech is present. Estimates of frame-wise SNR,
SNRi

fr for the ith frame and the segmental SNR, SNRseg are
defined as

SNRi
fr = 10 log

||yi
sp||22

||yi
ns||22

(11)

SNRseg = 10 log

∑
i ||y

i
sp||22∑

i ||yi
ns||22

(12)

Figure 3 shows the plot of frame-wise energies for the orig-
inal, estimated and noisy speech features, and also indicates the
frames, where speech segments are present, for an SNR of 0 dB.
It is seen from the figure that high energy frames actually con-
tain speech. The reasoning for this is that speech definitely has
voiced regions, which have high energy. Also the voiced frames
are interspersed with unvoiced and silence frames. So, the lo-
cal maxima in the speech region corresponding to voiced frames
are significantly higher than the local maxima in the frames cor-
responding to noise segments. This demarcation between the
maxima in speech and noise frames helps to extract the speech
segments by using k-means clustering algorithm to extract the
significant maxima and the corresponding speech region around
the same.

We propose a novel algorithm for extracting the speech seg-
ments as shown in Algorithm 1. The number of clusters, k can
be increased so as to get more distinct segments, which is to be
handled in the future. Figure 3 shows the local maxima and the
two clusters, where it can be seen that black squares (elements
of cluster 2) are a subset of the speech frames.
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Figure 3: Frame-wise energy of original and estimated speech.

Algorithm 1 Detection of the speech segments

1: Pick the local maxima of the frame energies.
2: Do k-means clustering of the local maxima with k=2

and initialize centroids as the maximum and minimum
among the local maxima.

3: Pick the cluster elements with higher centroid value and
assign them as clustermax which correspond to the
voiced segments of the speech.

end

We define measures Miss Rate and False alarm rate with
respect to the detection of the speech segment :

• Miss rate (MR): Percentage of number of speech
segments, which do not encompass any element of
clustermax with respect to the total number of speech
segments.

• False alarm rate (FAR): Percentage of number of
clustermax which are outside the speech segments with
respect to the total number of clustermax.

3. Results and discussion
The database for speech sources is taken from randomly se-
lected ten speakers from dialect 5 of the training set of the
TIMIT database. For each speaker, 8 utterances are used for



training and the rest 2, for testing. The duration of each utter-
ance is 2-4 seconds. The ten noise sources are taken from NOI-
SEX database [39]. The first 10 seconds of each noise source is
used for testing and the rest is used for training. Test utterances
for each speaker are equally divided into two segments so that
we get four speech segments. These segments are added to the
noise test signal at randomly selected locations ensuring a min-
imum of 200 ms gap between successive speech segments. So,
the test signal consists of noise signal interspersed with speech
segments added at segmental SNR of −10, 0, 10 and 20 dB.

Table 1 shows the estimated sources for all the combina-
tions of speaker and noise sources at a SNR of 0 dB. It is
seen that the speaker sources in the presence of white noise are
misclassified the most, followed by the factory and jet cockpit
noise.

Table 1: Confusion matrix showing the estimate of speaker and
noise sources for all the combinations of speaker and noise
sources at a SNR of 0 dB. ∗ marked cells are combinations
which are correctly classified. All noise sources are correctly
classified, so only misclassified speakers are shown in the ta-
ble. All speakers are correctly classified in the presence of bab-
ble, car interior, tank, military vehicle and destroyer operations
noises, which are not shown.

Noise >
Speaker white factory1 hfchnl f16 jet

fsms1 * * * * *
flod0 fbjl0 * * * *

mmab1 fbjl0 mmwb0 * mtat0 mtat0
fbjl0 * fsms1 fsms1 * fsms1

mmwb0 * * * * *
mmdm1 * * * * *
mges0 fbjl0 mmwb0 * mtat0 mmwb0
mtat0 fbjl0 * * * *
ftbw0 fbjl0 * * * *

mram0 fbjl0 mmwb0 mges0 * *
Note- f16: f16 cockpit, jet: jet cockpit, hfchnl: high frequency
channel

Table 2 shows the overall classification accuracies for
speaker and noise sources for SNR of −10 to 20 dB. 100%
accuracy is achieved for noise sources at all SNR since we ex-
ploit the low energy frames of the mixed signal to estimate the
noise class. Speaker classification accuracy is above 80% for
SNR above 0 dB but degrades at lower SNRs. Using higher
energy frames instead of all the frames of the test signal for
speaker classification increased the accuracy significantly from
62% to 83% at 0 dB SNR. Joder et. al. [18] reported a speaker
classification accuracy of 98.9 % for eight speakers with clean
speech, while we achieve 100% accuracy at 20 dB SNR. Figure
4 shows the plot of mean absolute value and standard deviation
of the error between the estimated segmental SNR and actual
SNR averaged over all the combinations of noise with speech
segments from each speaker. The overall mean absolute and
standard deviation of the error is 1.39 and 1.08 at 0 dB SNR.
The error in the estimated SNR is due to the noise component
being represented by the atoms of speech dictionary or vice

Table 2: Classification accuracy of speaker and noise sources
SNR (dB) -10 0 10 20

Speaker ( %) 37 83 99 100
Noise (%) 100 100 100 100
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Figure 4: Mean absolute and standard deviation of error be-
tween the original and the estimated segmental SNR for each
speaker, for different simulated SNRs.

versa. Loizou [40] performed speech enhancement and eval-
uated improvement in segmental SNR in speech with speech-
shaped noise while we estimate the original segmental SNR in
the noisy speech signal.

Table 3 shows the variation of miss and false alarm rates
for the detection of speech segments. We get a miss rate of
0.75% and FAR of 0.17% at a SNR of 0 dB. Wak et. al. [41]
studied the voice activity detection (VAD) techniques and per-
formed spectral subtraction for speech enhancement before us-
ing energy based VAD. Fukuda et. al. [42] proposed a statistical
model based noise robust VAD algorithm, where they reported
speech segment detection rate of 95% averaged over high and
low SNR while we report average miss rate of 3.25% for SNR of
-10, 0 and 10 dB (the measures used are not exactly the same).

Table 3: Miss and false alarm rates in speech segment detection
SNR (dB) -10 0 10 20
MR (%) 8.50 0.75 0.50 0.50
FAR (%) 8.84 0.17 0.00 0.00

4. Conclusion and future work
We have shown speaker and noise classification from noisy
speech signals with good classification accuracy using a sim-
ple dictionary learning method and sparse representation. We
have also shown SNR estimation and detection of speech seg-
ments with very low miss and false alarm rate at various SNRs.
We plan to explore other dictionary and discriminative learn-
ing methods. Also, the numbers of speakers and noise sources
can be increased so as to test the scalability of the proposed ap-
proach. Further, the adaptation of dictionaries in the case of an
unknown source is planned as a future work.
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