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ABSTRACT 

In our (knowledge-based) synthesis system [I], we use single in- 
stances of basic-units, which are polyphones such as CV, VC, VCV. 
VCCV and VCCCV, where C stands for consonant and V for vowel. 
These basic-units are recorded in an isolated manner from a speaker 
and not from continuous speech or carrier-words. Modification of 
the pitch, amplitude and duration of basic-units is required in our 
speech synthesis system I I] to ensure that the overall characteris- 
tics of the concatenated units matches with the true characteristic 
of the target word or sentence. Duration modification is carried out 
on the vowel parts of the basic-unit leaving the consonant portion 
in the basic-unit intact. Thus, we need to segment these polyphones 
into consonant and vowel parts. When the consonant present in any 
basic-unit is a plosive or fricative, the energy based method is good 
enough to segment the vowel and consonant parts. However, this 
method fails when there is a co-articulation between the vowel and 
the consonant. We propose the use of orientedprincipal comporierir 
analysis (OPCA) to segment the co-articulated units. The test fea- 
ture vectors (LPC-Cepsrmm & Mel-Cepsrmm) are projected on the 
consonant and vowel subspaces. Each of these subspaces are repre- 
sented by generalized eigenvectors obtained by applying OPCA on 
the training feature vectors. Our approach successfully segments 
co-articulated basic-units. 

1. INTRODUCTION 
For the purpose of synthesis. speech often needs to be segmented 
into phonetic units. Manual segmentation is tedious, time consum- 
ing and error prone. Due to variability both in human visual and 
acoustic perceptual capability, it is almost impossible to reproduce 
the manual segmentation results. Hence manual segmentation is in- 
herently inconsistent. Automatic sementation is not faultless, but 
it is inherently consistent and results are reproducible. Ideally, one 
likes to have an automatic segmentation which can handle basic- 
units uttered by different speakers. There are two broad categories 
of speech segmentation 121 namely, implicit and explicit. Implicit 
methods split up the utterance without explicit information, such as 
the phonetic transcription, and are based on the definition of a seg- 
ment as a spectrally stable part of a signal. In 121, a segment is de- 
fined as a number of consecutive frames whose spectra are similar. 
Here, the normalized correlation C;,j between the LPC smoothed 
log-amplitude spectra of the i ih  and jih frames in the utterance is 
used as the measure of similarity. If the correlation equals I ,  then 
the e l h  and jih frames are identical. A heuristically chosen thresh- 
old value defines the beginning and end of the significant part of 
the correlation curve. This threshold defines the extent to which the 
correlation is allowed to drop within one segment. Explicit segmen- 
tation methods split up the utterance into segments that are defined 

by phonetic transcription. In general, explicit methods have the dis- 
advantage that the reference patterns need to be generated before 
the method can be used 121. The results obtained in [Z] show that 
the explicit scheme is inaccurate as compared to the implicit one. 
Finally, a combination of the two methods is proposed in [Z]. 
1.1. Motivation for OPCA based Segmentation 
In our synthesis scheme, concatenation is always performed across 
identical vowels. Changes in duration, pitch and amplitude are ob- 
tained by processing the vowel parls only. Thus, the segmentation 
of basic-units into vowel and consonant parts is needed to keep the 
consonant portion of the waveform intact. Plosives, affricates and 
fricatives have a common property of low energy when compared 
with any of the vowels. Figure 1 shows the performance of energy 
based segmentation for plosive and co-articulated basic-units. As 
shown in Figs. I(a) and (b), accurate segmentation is obtained for 
non co-articulated units, and not for co-articulated basic-units. The 
m e  consonant part /y/ in the signal ley01 is shown in Fig. I (b) with 
the boundaries dotted. In  our implicit approach, we avoid thresh- 
olding of intermediate result to obtain V and C boundary. We col- 
lect an ensemble of feature vectors of length N corresponding to 
different vowels and obtain the N x N vowel covariance matrix 
C,,. Similarly we obtain the consonant covariance matrix C,. The 
generalized eigen vectors (GEV) of C, and C, are arranged in the 
decreasing order of eigenvalues. The GEV corresponding to G 
and 6, are used to project the feature vectors of a given basic-unit 
on to vowel and consonant subspaces and the projection norms are 
evaluated. This approach is effective for co-articulated basic-units. 

2. FEATURE TRANSFORMATION 
When we consider an individuaLvowel or consonant, there exist 
techniques like LPC to model their statistical properties. While seg- 
menting the vowel pan of a basic-unit, we can consider the vowel 
information (VI) in the feature vectors as the signal and the conso- 
nant information (CI) as noise. Similarly when the segmentation of 
the consonant part is required, we can view CI as signal and VI as 
noise. We present a linear feature transformation that aims at find- 
ing a subspace, of the feature space, in which the Signal-to-Noise 
ratio (SNR) is maximum. Such a decomposition can be anived at 
by representing VI and C1 by training vectors obtained using man- 
ual seamentation of the basic-units exlracted from the data base 
collected by us for Tamil synrhesis sysfem. The directions in the 
feature space where the SNR is maximum can be obtained by the 
generalized eigenvalue decomposition of the covariance matrices of 
the above vectors. Consider a linear transformation matrix W that 
maps the original feature vectors x on to 2. 

P = lYTz (1) 
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by N .  In the transform domain, the convolution in Eq.11 can be 
written as 

We know that LPC-Cepstrum is the inverse Fourier transform of 
the logarithm of the all-pole LPC spectrum. Thus, when the input 
features x(n) are the LPC-cepsual vectors, X(ej"') represents the 
log spectrum. Therefore, according to Eq.13, the transformation 
process can be seen as a multiplication of the log spectrum by the 
frequency response of the filters Hk(z). Since the transformation 
matrix is derived from the data (through generalized eigenvalue de- 
composition), the frequency response of the filters corresponding to 
the largest eigenvalues indicates the relative importance of different 
frequency bands for basic unit segmentation. The first four pincipal 
component filters for vowels and consonants are shown in Figs 3 
and 4, respectively. From Figs 3 and 4, we see that the frequency 
response of the first four principal filters indicate the relative impor- 
tance of mid-frequency region of the speech spectrum for vowels 
and low and high frequency regions for consonants. In [ S ] ,  it is 
demonstrated that the low and high frequency regions of the speech 
spectrum convey more speaker information than the mid-frequency 
regions. Combining our results with those of 151, we can say that 
the speech i!fonnafion in the mid-frequency region of the speech 
spectrum corresponds to vowel infoniiafion. Similarly, speaker in- 
foniiafiori in the low and high frequency regions corresponds to con- 
sonanr infonnafion. From this, we can conclude that the consonants 
have more speaker infomation. 

The GEVV and GEVCs are obtained by solving equations 5 and 6. 
The test signal is divided into overlapping frames and the feature 
\'ector zk corresponding to the kth frame is obtained using LPCC 
or MCC. We evaluate the norm-contours as follows. 

I 

Xk(eJw)  = X(ej"')H,(eJ") (13) 

4. OPCA METHOD FOR V-C SEGMENTATION 

,=I ,=I 

N,, and N, give the norm-contours from V and C subspaces. Norms 
of the projections of the feature vectors (derived from the test basic- 
unit) on GEVV and GEVC give the iionn-confours. One of them 
represents the vowel information and the other, the consonant in- 
formation. The resulting norm contours obtained for a test signal 
cross each other at the beginning and end of consonant region of a 
given test basic-unit. The segmentation points are the ones where 
N,(k) = N,(k). We found that optimum results were obtained 
when M=3. 

5. RESULTS AND DISCUSSION 
Basic-unit segmentation experiments were conducted on database 
collected from a female volunteer for our Kannada syirhesis sys- 
tem. The database has isolated utterances of VC, CV, VCV, VCCV 
and VCCCV. GEVV and GEVC were obtained from our Tamil 
database recorded from a male volunteer. In the case of all the In- 
dian languages, diphthongs have distinct symbols and are grouped 
with and called as vowels. Our notations and analysis follow this 
system tm.  Feature vectors were obtained for each frame of a test 
basic-unit. Duration of each frame of speech was 30 ms, with an 
overlap of 20 ms between successive frames. Each frame of speech 
was Hamming windowed and processed to yield a 13-dimesional 
feature vector. For obtaining MCC, the Mel-scale was simulated 
using a set of 24 triangular filters and for LPCC, a l Z i h  order LPC 
analysis was performed after preemphasis with a = 0.95. We 
have seen in Fig.l(b) that energy based segmentation fails to iden- 
tify consonant regions in co-articulated basic-units. Results of our 

Fig. 3. Frequency responses of the first four principal filters for 
vowels. 
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Fig. 4. Frequency responses of the first four principal filters for 
consonants. 

Fig. 5. (a) Speech signal Ieyol. (b) Its segmentation into vowel 
(/el and lo/) and consonant (/yo regions, using both the vowel and 
consonant norm-contours. (c) Spectrogram of Ieyol. 
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Fig. 6. (a) Speech signal laimiil. (b).lts segmentation into vowel 
(/ail and hi/) and consonant ( I d  regions, using our algorithm. (c) 
S p e c t r o m  of laimiil. 

Fig. 7. (a) Speech signal Iaullol. (b) Its segmentation into vowel 
(Iaul and 101) and consonant (1110 regions, using vowel and conso- 
nant subspaces. (c) Spectrogram of Iaullol. 

Fig. 8. (a) Speech signal Ioymol. (b) Its seapentation into vowel 
(lo0 and consonant (lyl and Iml) regions, using our algorithm. (c) 
Spectrogram of Ioymol. 

segmentation algorithm are shown in Figs. 5 to 8, along with the 
respective spectrograms. These test basic-units cover most of the 
classes of speech. For the same basic-unit shown in Fig. I(b), 
consonant region has been correctly identified (see Fig. 5 )  using 
our algorithm. Here, the consonant is a glide, "IyP. In the basic- 
unit shown in Fig. 6, vowel /ail is diphrhong and the consonant 
is nasal. In Fig. 7, consonant is a liquid, "nlf'. Fig. 8 shows 
the segmentation of a VCCV basic-unit, where the consonants l y l  
and Id ,  are glide and a nasal respectively. The classes of speech 
considered here are difficult to segment because they possess high 
co-articulation in combination with vowels. We found that the seg- 
mentation performance with MCC features is better than that with 
LPCC features. So, the results shown here have been obtained us- 
ing MCC features. The figures show that the transition of the sec- 
ond formant frequency clearly matches with the duration between 
norm crossovers in all the spectrograms. In 171, it is shown that 
data-driven Principal component analysis P C A )  approach, though 
significantly easier to implement than Linear discriminant analysis 
(LDA), gives a comparable performance as LDA. So, we considered 
data-driven OPCA approach for basic-unit segmentation. 

We applied our technique on 600 co-articulated units involving 
consonants such as lyl.  I d ,  Id and N, in combination with 
vowels. When tested on the basic-units (distinct from the training 
set) from the same male speaker (Tamil mother tongue). we obtain 
correct segmentation of the V-C boundary in more than 85% of the 
cases. Further, when the same is applied on units from a speaker of 
opposite sex, speaking a different language (Kannada), resulted in 
correct segmentation in 80% of the co-articulated units tested. 

6. CONCLUSION 
We have proposed a segmentation algorithm that effectively han- 
dles co-articulated basic-units. The filter bank interpretation of the 
feature transformation throws light on the relative significance of 
different frequency bands for vowels and consonants. We found 
that mid-frequency region in the speech spectrum has more vowel 
information; low and high frequency regions have higher consonant 
information. The vowel norm-contour clearly shows a dip in the 
consonant region and is not affected by speaker variations in a test 
basic-unit. Consonant norm-contour is, to some extent, affected by 
speaker variations in a test basic-unit. This can be explained by the 
presence of speaker information in low and high frequency regions 
of speech spectmm as shown in [5 ] .  
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