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ABSTRACT

In our (knowledge-hased) synthesis system |1], we use single in-
stances of basic-units, which are polyphones such as CV, VC, VCV.
VCCV and VCCCV, where C stands for consonant and V for vowel.
These basic-units are recorded in an isolated manner from a speaker
and not from continuous speech or carrier-words. Modification of
the pitch, amplitude and duration of basic-units is required in our
speech synthesis system |17 to ensure that the overall characteris-
tics of the concatenated units matches with the true characteristic
of the target word or sentence. Duration modification iscarried out
on the vowel parts of the basic-unit leaving the consonant portion
in the basic-unit intact. Thus, we need to segment these polyphones
into consonant and vowel parts. When the consonant present in any
basic-unit is a plosive or fricative, the energy based method is good
enough to segment the vowel and consonant parts. However, this
method fails when there is a co-articulation between the vowel and
the consonant. We propose the use of oriented principal component
analysis (OPCA) to segment the co-articulated units. The test fea-
ture vectors {LPC-Cepstrum & Mel-Cepstrum) are projected on the
consonant and vowel subspaces. Each of these subspaces are repre-
sented by generalized eigenvectors obtained by applying OPCA on
the training feature vectors. Our approach successfully segments
co-articulated basic-units.

1. INTRODUCTION

For the purpose of synthesis. speech often needs to be segmented
into phonetic units. Manual segmentation is tedious, time consum-
ing and error prone. Due te variability both in human visual and
acoustic perceptual capability, it is almost impossible to reproduce
the manual segmentation results. Hence manual segmentation is in-
herently inconsistent. Automatic sementation is not faultless, but
it is inherently consistent and results are reproducible. ldeally, one
likes to have an automatic segmentation which can handle basic-
units uttered by different speakers. There are two broad categories
of speech segmentation [2} namely, implicit and explicit. Implicit
methods split up the utterance without explicit information, such as
the phonetic transcription, and are based on the definition of a seg-
ment as a spectrally stable part of a signal. In [2], a segment is de-
fined as a number of consecutive frames whose spectra are similar.
Here, the normalized correlation Cy,; between the LPC smoothed
log-amplitude spectra of the ét* and 5*" frames in the utterance is
used as the measure of similarity. If the correlation equals 1, then
the #*® and j** frames are identical. A heuristically chosen thresh-
old value defines the beginning and end of the significant part of
the correlation curve. This threshold defines the extent to which the
correlation is allowed to drop within one segment. Explicit segmen-
tation methods split up the utterance into segments that are defined

by phonetic transcription. In general, explicit methods have the dis-
advantage that the reference patterns need to be generated before
the method can be used {23. The results obtained in (2] show that
the explicit scheme is inaccurate as compared tc the implicit one.
Finally, a combination of the two methods is proposed in [2).

1.1. Motivation for OPCA based Segmentation

In our synthesis scheme, concatenation is always performed across
identical vowels. Changes in duration, pitch and amplitude are ob-
tained by processing the vowel parts only. Thus, the segmentation
of basic-units into vowel and consonant parts is needed to keep the
consonant portion of the waveform intact. Plosives, affricates and
fricatives have a common property of low energy when compared
with any of the vowels. Figure 1 shows the performance of energy
based segmentation for plosive and co-articulated basic-units. As
shown in Figs. I¢a) and (b), accurate segmentation is obtained for
non co-articutated units, and not for co-articulated basic-units. The
true consonant part /y/ in the signal feyof is shown in Fig. |(b) with
the boundaries dotted. In our implicit approach, we avoid thresh-
olding of intermediate result to obtain V and C boundary. We col-
lect an ensemble of feature vectors of length N corresponding to
different vowels and obtain the N x N vowel covariance matrix
C.. Similarly we obtain the consonant covariance matrix C.. The
generalized eigen vectors {GEV) of C, and C,. are arranged in the
decreasing order of eigenvalues. The GEV corresponding to Cy
and C,, are used to project the feature vectors of a given basic-unit
on to vowel and consonant subspaces and the projection norms are
evaluated. This approach is effective for co-articulated basic-units.

2. FEATURE TRANSFORMATION

When we consider an individual.vowel or consonant, there exist
techniques like LPC to model their statistical properties. While seg-
menting the vowel part of a basic-unit, we can consider the vowel
information (VI) in the feature vectors as the signal and the conso-
nant information (CI) as noise. Similarly when the segmentation of
the consonant part is required, we can view CI as signal and VI as
noise. We present a linear feature transformation that aims at find-
ing a subspace, of the feature space, in which the Signal-to-Noise
ratio (SNR) is maximum. Such a decomposition can be arrived at
by representing VI and CI by training vectors obtained using man-
ual segmentation Of the basic-units extracted from the data base
collected by us for Tamil synrthesis system. The directions in the
feature space where the SNR is maximum can be obtained by the
generalized eigenvalue decomposition of the covariance matrices of
the above vectors. Consider a linear transformation matrix W that
maps the original feature vectors X on toz.

T=wTz ¢))]
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Fig. 1. Basic-unit segmentation using energy based method. (a)
Speech signal /aka/, (b) Co-articulated signal /eyo/ (continuous ver-
tical line: segmentaion using energy based method).

where X is M n-dimensional vector, T is an m-dimensional vector,
m < n, and W is on = X m matrix with m linearly jndependeni
columns. Let 4, and d. represent the training vectors containing V1
and CI, respectively, in the original feature space. The covariance
martices for |bese training vectors can be written as

€. = Bl(dy— &)du— &5)7)
€. = E{d.- d)d.~ )]

where d, and d. represent the means (y dy, and d. respectively. We
wish to And a W |ba| maximizes I1be ratio gg the variance g V1
to that og CI after the transformation. If the density functions of d,
and d. ase assumed to be normally distributed, 1ben their covariance
matrices after transformation are given by

——

(2)

c, = wlew @3
C. = wlew

A simple measure or the variance oc the "scatter” is the determinant
of the covariance matrix |3]. Thus, the criterion function to be max-
imized is given by

_ G _ [WTC,W
JW) = \c.l IWTCw|

@

The columns of the optimum W are obtained as generalized eigen-
vectors for vowels (GEVV), comresponding to the largest eigenval-
ues 1n

Cow'™ = MCow!” )
Similarly, we obtain generalized e1gen\'ectors for consonants (GEVC)
as

Cew'® = XiCyw!® 6)
In 14], Malayath er al imroduced a SNR measure, defined as the ra-
tio of these variances when the original feature vectors are projected
onto ul”

T C,

= T A ) 0
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If the first m eigenvectors are used, the SNR becomes
trace(WTC, W
— ( ) ®
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Fig. 2. Variation of SNR for GEVV as a function of feature dimen-
sion. (a) for LPC-cepstrum. (b) for Mel-cepstrum.

The SNR of the original feature vectors can be calculated from Eq.
8 by making W an identity matrix. Figs. 2(a) and (b) show the
SNR before and after transformation for LPC-Cepstrum (LPCC)
and Mel-Cepstral Coefficients (MCC), respectively. From the fig-
ures, it can be seen that the SNR of the transformed feature vectors
is substantially higher than that of the original feature vectors. Since
the eigenvalues are ordered as a decreasing sequence, the SNR after

m

N P s .
transformation v = E’i‘- decreases with increase in the dimen-
sion of the feature vectors.

3. FEATURE TRANSFORMATION AS FILTER BANK

It has been shown in [6] that block orthogonal transforms, such as
DFT, DCT and KLT, can be interpreted as uniform perfect recon-
struction filter banks. We will use this relationship to arrive at an
understanding of the feature transformation process in the log spec-
tral domain. In a uniform N-channel filter bank, the input signal
is decomposed through a set of filters Ho(z), ...., Hx—1(z). Each
subband signal is then decimated by N. The reverse process at the
synthesis bank reconstructs the signal. Now consider a N x N
transformation matrix W7 such that

g=WTz )
Let wy be the &' column of W. The k** component of T is the
inner product of = with wy. That is

N-1

= Z z{i)wsy,

=0

o

where w;y, is the i*® component of wy. This summation can be
interpreted as filtering of x(n) advanced by IV — 1 samples [6]:

N-1
Zy(n) =Y aln+ N —1-i)h(i) (1)
i=0
where
he(i) = wy_1-ik (12)

are the impulse response coefficients of the filter Hy(z). The se-
quences Ik (n) are obtained by downsampling the sequences /. {n)



by N. In the transform domain, the convolution in Eq.i1 can be
written as o

X (™) = X H (V) a3
We know that LPC-Cepstrum is the inverse Fourier transform of
the logarithm of the all-pole LPC spectrum. Thus, when the input
features z(n) are the LPC-cepstral vectors, X (e*) represents the
log spectrum. Therefore, according to Eq.13, the transformation
process can be seen as a multiplication of the log spectrum by the
frequency response of the filters H,.(z). Since the transformation
matrix is derived from the data (through generalized eigenvalue de-
composition), the frequency response of the filterscorresponding to
the largest eigenvalues indicates the relative importance of different
frequency bands for basic unit segmentation. The first four pincipal
component filters for vowels and consonants are shown in Figs 3
and 4, respectively. From Figs 3 and 4, we see that the frequency
response of the first four principal filtersindicate the relative impor-
tance of mid-frequency region of the speech spectrum for vowels
and low and high frequency regions for consonants. In [5), it is
demonstrated that the low and high frequency regions of the speech
spectrum convey more speaker information than the mid-frequency
regions. Combining our results with those of [5], we can say that
the speech information in the mid-frequency region of the speech
spectrum corresponds to vowel information. Similarly, speaker in-
Sformarion inthe low and high frequency regions corresponds to con-
sorant information. From this, we can conclude that the consonants
have more speaker information.

4. OPCA METHOD FOR V-C SEGMENTATION

The GEVV and GEVCs are obtained by solving equations 5 and 6.
The test signal is divided into overlapping frames and the feature
vector zx corresponding to the k" frame is obtained using LPCC
or MCC. We evaluate the norm-contours as follows.

M M
No(k) =3 () e & Nelk) =y ) o (19)

i=1 i=1

N, and N, givethe norm-contours from V and C subspaces. Norms
of the projections of the feature vectors (derived from the test basic-
unit) on GEVV and GEVC give the narm-contaurs. One of them
represents the vowel information and the other, the consonant in-
formation. The resulting norm contours obtained for a test signal
cross each other at the beginning and end of consonant region of a
given test basic-unit. The segmentation points are the ones where
Ny (k) = N:(k). We found that optimum results were obtained

when M=3,
5. RESULTSAND DISCUSSION

Basic-unit segmentation experiments were conducted on database
collected from a female volunteer for our Kannada synthesis sys-
tem. The database has isolated utterances of VC, CV, VCV, VCCV
and VCCCV. GEVV and GEVC were obtained from our Tamil
database recorded from a male volunteer. In the case of all the In-
dian languages, diphthongs have distinct symbols and are grouped
with and called as vowels. Our notations and analysis follow this
system too, Feature vectors were obtained for each frame of a test
basic-unit. Duration of each frame of speech was 30 ms, with an
overlap of 20 ms between successive frames. Each frame of speech
was Hamming windowed and processed to yield a 13-dimesional
feature vector. For obtaining MCC, the Mel-scale was simulated
using a set of 24 triangular filters and for LPCC, a 12** order LPC
analysis was performed after preemphasis with a = 0.95. We
have seen in Fig.1(b) that energy based segmentation fails to iden-
tify consonant regions in co-articulated basic-units. Results of our
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Fig. 5. (a) Speech signal /eyo/. (b) Its segmentation into vowel
(fe/ and /ofy and consonant (fy/) regions, using both the vowel and
consonant norm-contours. (¢) Spectrogram of /eyol.
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Fig. 6. (a) Speech signal /aimii/. (b)-Its segmentation into vowel
(/ai/ and /ii/y and consonant {/m/} regions, using our algorithm. (c)
Spectrogram of /aimil/.
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Fig. 7. (a) Speech signal /zulle/. (b) Its segmentation into vowel
(fau/ and /o/) and consonant (/11/) regions, using vowel and conso-
nant subspaces. {c} Spectrogram of /aullo/.
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Fig. 8. (a) Speech signal foymo/. (b} lts segmentation into vowel
(/o/) and consonant (/y/ and /m/) regions, using our algorithm. (¢)
Spectrogram of /oymo/.

segmentation algorithm are shown in Figs. 5 to 8, along with the
respective spectrograms. These test basic-units cover most of the
classes of speech. For the same basic-unit shown in Fig. 1(b),
consonant region has been correctly identified (see Fig. ) using
our algorithm. Here, the consonant is a glide, *fyf". In the basic-
unit shown in Fig. 6, vowel /ai/ is diphrhong and the consonant
is nasal. In Fig. 7, consonant is a liquid, *“/11/°. Fig. 8 shows
the segmentation of a VCCV basic-unit, where the consonants /y/
and /m/, are glide and a nasal respectively. The classes of speech
considered here are difficult to segment because they possess high
co-articulation in combination with vowels. We found that the seg-
mentation performance with MCC features is better than that with
LPCC features. So, the results shown here have been obtained us-
ing MCC features. The figures show that the transition of the sec-
ond formant frequency clearly matches with the duration between
norm crossovers in all the spectrograms. In {7], it is shown that
data-driven Principal component analysis (PCA) approach, though
significantly easier to implement than Linear discriminant analysis
(LDA}, gives a comparable performance as LDA. So, we considered
data-driven OPCA approach for basic-unit segmentation.

We applied our technique on 600 co-articulated units involving
consonants such as /x/, v, fm/f, f/nf and N, in combination with
vowels. When tested on the basic-units (distinct from the training
set) from the same male speaker (Tamil mother tongue). we obtain
correct segmentation of the V-C boundary in more than 85% of the
cases. Further, when the same is applied on units from a speaker of
opposite sex, speaking a different language (Kaimrtada), resulted in
correct segmentation in 80% of the co-articulated units tested.

6. CONCLUSION

We have proposed a segmentation algorithm that effectively han-
dles co-articulated basic-units. The filter bank interpretation of the
feature transformation throws light on the relative significance of
different frequency bands for vowels and consonants. We found
that mid-frequency region in the speech spectrum has more vowel
information; low and high frequency regions have higher consonant
information. The vowel norm-contour clearly shows a dip in the
consonant region and is not affected by speaker variations in a test
basic-unit. Consonant norm-contour is, to some extent, affected by
speaker variations in a test basic-unit. This can be explained by the
presence of speaker information in low and high frequency regions
of speech spectrum as shown in [5].
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