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Abstract— In this paper, we present two new methods for
Vowel-Consonant segmentation of a co-articulated basic-
units employed in our Thirukkural Tamil Text-to-Speechsyn-
thesis system [1]. The basic-units considered in [1Jare CV,
VC, VCV, VCCV and VCCC, where C stands for a consonant
and V for any vowel. In the first method, we use subspace-
based approach for vowel-consonant segmentation. It uses
orientedprincipal component analysis (OPCA) where the test
feature vectors are projected on to the VV and C subspaces.
The crossover of the norm-contours obtained by projecting
test basic-unit onto the V and C subspaces give the segmen-
tation points which in turn helps in identifying the V and
C durations of a test basic-unit. In the second method, we
use probabilistic principal component analysis (PPCA) [2] to
get probability models for V and C. We then use Neymen-
Pearson (NP) test to segment the basic-unit into V and C.
Finally, we show that the hypothesis testing turns out to be an
energy detector for V-C segmentation which is similar to the
first method.

1. INTRODUCTION

For the purpose of recognition or synthesis, speech often
needs to be segmented into phonetic units. Manual segmen-
tation is tedious, time consuming and error prone. Due to
variability both in human visual and acoustic perceptual ca-
pability, it is almost impossible to reproduce the manual seg-
mentation results. Hence manual segmentation is inherently
inconsistent. Automatic sementation is not faultless, but it
is inherently consistent and results are reproducible. Ideally,
one likes to have an automatic segmentation which can han-
dle basic-units uttered by different speakers. There are two
broad categories of speech segmentation [3] namely, implicit
and explicit. Implicit methods split up the utterance without
explicit information, such as the phonetic transcription, and
are based on the definition of a segment as a spectrally stable
part ofa signal.

Motivationfor Subspace bused Segmentation

In our synthesis scheme [I], concatenation is always per-
formed across identical vowels. Changes in duration, pitch
and amplitude are obtained by processing the vowel parts of

the basic-units only. Thus, the segmentation of basic-units
into vowel and consonant parts is needed to keep the conso-
nant portion of the waveform intact. Plosives, affricates and
fricativeshave a common property of low energy when com-
pared with any of the vowels. Figure | showsthe performance
of energy based segmentation for plosive and co-articulated
basic-units. As shown in Figs. i{a) and (b), accurate segmen-
tation can be obtained for non co-articulated units, and not for
co-articulated basic-units. The ttue consonant part /y/ in the
signal /feyo/ is shown in Fig. 1(b) with the boundaries dotted.

We propose two methods for co-articulated basic-unit seg-
mentation. In the first method, we use subspace approach us-
ing orientedprincipal component analysis (OPCA) for basic-
unit segmentation. In the second method, we use probabilis-
ticprincipal componentanalysis (PPCA) [2] to obtain proba-
bility models for vowel (V) and cconsenants {C). We employ
Neymen-Pearson (NP} test using the probability models for
basic-unit segmentation.

2, SUBSPACE BASED SEGMENTATION

When we consider an individual vowel or consonant, there
exist techniques like LPC to model their statistical proper-
ties, While segmenting the vowel part of a basic-unit, we can
consider the vowel information (V1) in the feature vectors as
the signal and the consonant information (CI) as noise. Simi-
larly when the segmentation of the consonant part is required,
we can view C! as signal and V1 as noise. We present a lin-
ear feature transformation that aims at finding a subspace, of
the feature space, in which the Signal-to-Noiseratio (SNR) is
maximum. Such a decomposition can be arrived at by repre-
senting VI and CI by training vectors obtained using manual
segmentation. The directions in the feature space where the
SNR is maximum can be obtained by the generalized eigen-
value decomposition of the covariance matrices of the above
vectors. Considera linear transformation matrix A' that maps
the original feature vectors iz on to Z.

F=WwTs (1}

where z is an n-dimensional vector, % is an ri-dimensional
vector,m < n, and W is an v x 7n matrix with m linearly
independent columns. Let d, and d. represent the training
vectorscontaining V1 and C1, respectively,in the original fea-
ture space. The covariance martices for these training feature
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Figure 1.  Basic-unit segmentation using energy based

method. (a) Speech signal /aka/. (b) Co-articulated signal
feyol (continuous vertical line: segmentaion using energy
based method).

vectors can be written as

Co = Eld~d)d—d)T] . (2
Cc = Eflde - d)(de - )]

where dy and d; represent the means of d, and d. respec-
tively. We collect an ensemble of feature vectors of length
N correspondingto different vowels to estimate the N x N
vowel covariance matrix ¢,,. Similarly we estimate the con-
sonant covariance matrix C',. We wish to find a W that n@x-
imizes the ratio of the variance of VI to that of CI after the
transformation. If the density functions of 4, and d. are as-
sumed to be normally distributed, then their covariance ma-
trices after transformationare given by

¢, = wice,w 3
C. wTc.w
A simple measure of the variance or the 'scatter' is the de-

c, =
terminant of the covariance matrix [4]. Thus, the criterion
functionto be maximized is givenby

Gl WTC,W|

= T W

)

The columns of the optimum W are obtained as generalized
eigenvectorsfor vowels (GEVV), corresponding to the largest

eigenvalues in )
CU'UJi = A{chsu) 3)

Similarly, we obtain generalized eigenvectors for consonants
(GEVC) as

chgc’ = A,-va,-(c) ()]
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Figure 2. (a) Speech signal feyo/. {b) Its segmentation into
vowel (/¢/ and /o/) and consonant (/y/) regions, using both
the vowel and consonant norm-contours. {¢) Spectrogramof
feyol.

Evaluatior @ Norm-Contours

The GEVV and GEVCs are obtained by solving equations
5 and 6. The test signal is divided into overlapping frames
and the feature vector 2, corresponding to the k** frame
is obtained using LP-Cepstral coefficients (LPCC) or Mel-
Cepstral coefficients (MCC). We evaluate the norm-contours
as follows.

M M .
No(k) = S @i op&eNe(k) = 3 (i) o (D)
i=1 i=r |

N, and ¥, give the norm-contours from V and C subspaces.
Norm 0f the projection of the feature vectors derived from the
test basic-uniton GEVV and GEVC givethenorm-contours.
One of them represents the vowel information and the other,
the consonant information. The resulting norm contours ob-
tained for a test signal cross each other at the beginning and
at the end of consonant region of a given test basic-unit. The
segmentation points are the ones where Ny (k) = N.(k}. We
found that optimum results were obtained when M = 3.

3. STATISTICAL TESTING_,F@R SEGMENTATION'

Here, we view the basic-unit segmentation as classifying
frames of a given test basic-unit into one of two classes: vow-
els and consonants. This indeed iS a hypothesis testing (two-
class) problem and it requires probability models for vowel &
consonantanda robust thresholdas well. Tippingand Bishop
{2] proposed PPCA, to emphasize the advantages of associ-.
ating a probability model with principal component analysis
(PCA), rather than considering the algorithmic perspectiveof
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Figure 3. (a) Speech signal /oymo/. (b) Its segmentation into
vowel (/o/) and consonant (/y/ and /m/) regions, using both
the vewel and consonant norm-contours. (¢) Spectrogram of
/oymo/.

determining principal components. Using PPCA approach
[2], we generate probability model for V and C.

Motivation for Hypothesis based Segmentation

In the section 2, we saw the performance of eriented principal
component analysis based basic-unit segmentation. Although
the performance of OPCA is good, the crossovers (threshold)
are not robust. So, segmenﬁatioﬁ becomes difficult when there
are multiple crossovers. Figure 4(a) shows a basic-unit /au-
mai/, and Fig. 4(b) shows the norm-contours obtained after
projecting the basic-unit in Fig. 4(a) on V and C subspaces.
One can see from Fig. 4(b) that there are multiple crossovers,
making it difficult to choose an appropriate threshold for seg-
mentation, Here, classical decision theory [5] can be used
to find the robust threshold. Along with the crossover infor-
mation, decision regarding vowel or consonant class is used
to obtain correct segmentation points by eliminating the false
crossovers. The class decision is shown in Fig. 4(d).

Probability Models using PPCA

Unlike in PCA, PPCA gives a probability density for the
data through a latent variable model. A latent variable
model relates a d-dimensional observed data vector t to a g-
dimensional (¢ < d) latent vecter x by defining a noise model
and a prior on the distribution on the latent variables in the
form, ,

t=Uz+pu+e, ®

where € is'an x-independent noise process and U is the (d x ¢)
generative matrix. It-is common that the prior distribution

of the latent variables is a sample Gauissian distribution x ~
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Figure 4.  Segmentation of basic-unit using OPCA and
PPCA. (a) Test basic-unit /aumai/. (b)Vowel and consonant-
norm contours after projecting the test basic-unit into V & C
subspaces. (c) Test statistics T(y), along with the threshold
for a given Prg & 1 ~*. (d) V & C decision after the class
testing. (€) Spectrogram of /aumai/.

(0, 1) over the latent space. The noise model may also be
Gaussian with ¢ ~ N(0, ¥). The model is restricted to having
a non-zero mean by the parameter g, These aspects mean
that the observed data vectors are normaily distributed by t ~
N(y, C), where the model covariance is given by

C=v¢+U0UT (9)

If ¢ = &1, the latent variable mode] is called PPCA [2]. In
this terminology, conventional PCA is recovered when 0% —
0. One of the ways of estimating the parameters of these la-
tent variable models is by the Expectation-Maximization al-
gorithm, Tipping and Bishop [6] have recently formulated
PCA within a maximum-likelihood framework based on a
specific form of Gaussian latent variable model. They also
showed that with C = 21 + UU7, the only stationary points
occur when - .

U= We(A,~c*I)2R. (10
Here W, has g eigenvectors of 8 (sample covariance matrix,
givenby S = & Zf(tn — m){t, — )7 ) as column vectors,
A, is 2 diagonal matrix with the corresponding eigenvalues,
and R is an arbitrary g X ¢ orthogonal rotation matrix. Tip-
ping and Bishop prove that when W contains the principal
eigenvectors of 8, global maximum of the likelihood occurs.
So with U in Equation 10, the latent variable model defines



a mapping from the latent space into the principal subspace
of the observed data. The maximum likelihood estimator for
noise variance o? is given by the average variance lost for
each discarded dimension, and can be formulated as

Z A an
J =q¢+1
To sum up, a Probabilistic PCA is obtained by finding the ¢
principal eigenvectors and eigenvalues of the sample covari-
ance matrix 8, while Gaussian distribution with sample mean
& and covariance matrix ¢ 21 + UU7', gives the density model.

2
TrL =

Vowel-Consonant Segmentation as Hypothesis Testing

To bring the segmentation problem into a Hypothesis testing
framework, we need to have a probability model for vowels
and consonants. This can be accomplished by calculating U,
using equation 10 and plugging U into the covariance model
given by C =o?1 + UU”. Let us call the probability model
for vowels and consonants as C,, and C,, respectively. We
have,

Cpy = oI + U UF 12

Cpc = 0§I+ UCU;{' (12)

We use GEVV (Wi™), GEVC(WSf)) and the corresponding
eigenvalue matrices (Af,”’ & AE,“’) to obtain the parameters
Uy, Ue, opand . using equations 1 ¢ and | 1. These param-
eters are in turn used to generate probability model C e and
Cpe Using equation 12. Assuming the V and C features to be
zeromean Gaussian random processes with covariance matri-
ces Cyy and C,, the segmentation problem is to distinguish
between the hypotheses

~ { N(0,Cye) under Hy
v N(0,Cpy) under Hy

Here, X isa zero mean fest basic-unit. A NP detector decides
H, if the likelihood ratio exceeds a threshold or if

_ plaH)
Lh(z) = plz; Ho)
where,
(s Hy) = = oxp[—32" Cyila),
P Hh) = o exblg Cov
g = 1 _loro-
plz; Ho) = (zﬁ)dicpc{ exp[ Zx Cp.clm]a

1 exp[—iz¥C k)

,7 2m)e|C, 2 ol

Lh(w) = (hr)ll % 1,71
e P17 Cie 2]

the log-likelihood ratio (LLR) becomes
\/ pu

Y ICpc

Ihiz) = {(z"Clz) - @TCla))} > 2l [y

Hence, we decide H; if

v
0 ’_ICpcl] (13)

Tc) = xT(C‘p}] - Cp',,l)z >l fn2

Evaluation d fhe Threshold

By simplifying the test statistics T°() (eq. 13)into a standard
distribution form, then the threshold (!} can be evaluated
[5]. LetA =Cp‘c1 and B = C‘PI,‘ ,equation i3 becomes

T(z) =27(4 - B)z >N, (14)

Define G = A~ B. Let the eigenvalue decomposition of G,
be

GV =AYV,
such that .
VIAV = A
VTBY = A, (13)

where, A, Ay and A2 are diagonal matrices. Writing equation
15in terms of A and B, we have

A
Substituting eq. 16into 14, we have
T(z} = " VA1 — AV T (17
Lety = ¥z Then equation 17 becomes
T(y) =y Ay (18)

where, A= Ay — Az, We know that x iszero mean. Therefore
y is also zero mean, i.e., E{y} = 0 and the covariance ofy is

, VT E{zzT IV
E{ny} = { VT{C'II‘/}

If x is a vowel, then Czz=C,, and VT,V = A7t sim-

ilarly, If x is a consonant, then Cge= C,, and V7CpV =
A;*'. So,we can write equation 18as
¥ ()
T(y) = (19}
W)= ,;n"'(n)

where {F}m, E’%?_""’ ﬁ!!h} are diagonal elements of A.
Because y is i.i.d., T(y) is x> (Chi-square) distributed and
the detector tums out to be an energy’'detector. The required
threshold, ~!l, for segmentation is computed by using an op-
timization algorithm for the fixed probability of false alarm,
Pra[5).

o0 poo N )dwd
P =/ ex juwt t
FA » Nr;[:[ ,—1——2—-— p(—J
(20
PD_-/ / Hexp( jwt)—dt o@en
A X =1
where,
1
& T Pmy

Now, the decision (segmentation) rule is
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Figure 5. Segmentation of basic-unit using OPCA and
PPCA. (a) Test basic-unit /ollaa/. (b)Vowel and consonant-
nor meontours after the projection of test basic-unitinto V &
C subspaces. (C) Test statistics T'(y), along with the threshold
foragiven Pr4 & 1 % (d) V & C decision after the class
testing. (e) Spectrogramoflollad.

Decide Vowel (H;) if

otherwise decide Consonant (Hg).

4. RESULTS AND DISCUSSION

Speech segmentationexperiments were conducted on a Kan-
nada speech database spoken by a female volunteer. GEVV’s
and GEVC’s were obtained from a Tamil speech database
spoken by a male volunteer using the method discussed in
section 2. Feature vectors were obtained for each frame of
a test basic-unit. Duration of each frame of speech was 30
ms, with an overlap of 20 ms between successive frames.
Each frame of speech was Hamming windowed and pro-
cessed to yield a 13-dimensional feature vector. The fea-
ture vectors used were MCC and LPCC. We have seen in
Fig. 1(b) that energy based segmentation fails to identify the
co-articulated consonant region. On the oth8er hand, in Fig.
2, the same consonant region has been correctly identified
using subspace-based method. Figure 2{c) also displays the
spectrogramofthe basic-unit/eyo/. Here, spectrogram shows
clear second formant transition from the frontal vowel /e/ to
the back vowel /o/ and the transition region corresponds to

the consonant/y/. Basic-unit considered in Fig. 3 is VCCV
and both C’s are glide and a nasal (lyl and /m/).

Probability models for V and C were obtained using equa-
tions 10, | | and 12. Here, the observed feature vector t, and
its dimension is 13, the, latent variable x has dimension of 3.
ie, d = 13and ¢ = 3. Dimension of the latent variable
x has been chosen based on the dimensions of GEVV and
GEVC. The multiple crossovers present some uncertainty in
classifyingthe basic-units into vowel and consonantparts. By
employing classical decision theory, we can remove this un-
certainty by choosing a threshold on a statistical basis. In
plot 4(d), the basic-unit is seen to he clearly segmented. In
Fig. 4(b), there are multiple crossovers and using the class
decision approach shown in Fig. 4(d), we can eliminate false
crossovers. We used fixed Pr4 = 10~* to calculate the
threshold, v!!. Figure 4(e) shows the spectrogram of /aumai/.
Figure5(a) showsthe co-articulated basic-unit/ollad. In Fig.
5(b) we can see the multiple cross overs of the norm-contours.
Fig. S(c) shows the test statistics along with the threshold and
V & C decision is shown in Fig. 5(d). Figure 5(e) shows the
spectrogramof /ollaa/.

5. CONCLUSION

We have presented subspace and hypothesis based methods
for co-articulated basic-unit segmentation. The first method
uses crossovers of norm-contours for segmentation. Norm-
contours give a measure of energy in the projected sub-
spaces. There may be an ambiguity when there are multiple
crossovers. In the second method this ambiguity is resolved
by finding a statistical threshold. The test statistic using NP
criterion turns out to be an energy detector as in the first
method but without any ambiguity in segmentation. PPCA
method can be further extended to classify within the vowel
or consonant segments in a basic-unit using mixture-PPCA
[6].
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