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Abstract
We study the influence of using class-specific dictionaries for
enhancement over class-independent dictionary in phoneme
recognition of noisy speech. We hypothesize that, using class-
specific dictionaries would remove the noise more compared
to a class-independent dictionary, thereby resulting in better
phoneme recognition. Experiments are performed with speech
data from TIMIT corpus and noise samples from NOISEX-
92 database. Using KSVD, four types of dictionaries have
been learned: class-independent, manner-of-articulation-class,
place-of-articulation-class and 39 phoneme-class. Initially, a
set of labels are obtained by recognizing the speech, enhanced
using a class-independent dictionary. Using these approximate
labels, the corresponding class-specific dictionaries are used to
enhance each frame of the original noisy speech, and this en-
hanced speech is then recognized. Compared to the results ob-
tained using the class-independent dictionary, the 39 phoneme-
class based dictionaries provide a relative phoneme recognition
accuracy improvement of 5.5%, 3.7%, 2.4% and 2.2%, respec-
tively for factory2, m109, leopard and babble noises, when av-
eraged over 0, 5 and 10 dB SNRs.
Index Terms: speech enhancement, robust speech recognition,
sparse coding, dictionary learning, phoneme recognition.

1. Introduction
In the past decade, there has been tremendous improvements in
the field of automatic speech recognition (ASR). Despite these,
the performance of an ASR system degrades significantly in the
presence of noise due to the mismatch between the training and
test environments, for example, when training is done on clean
speech and testing is performed on noisy speech. The presence
of noise distorts the spectrum of speech and hence degrades the
performance.

Several techniques have been proposed to address this prob-
lem, and improve the recognition performance in noisy envi-
ronments. One such method is to employ model adaptation
schemes, like parallel model combination [1] and HMM adap-
tation [2, 3, 4]. Another approach is to analyze the existing fea-
tures and enhance them to make them more noise robust, like
cepstral mean subtraction [5], RASTA filtering [6] and vector
Taylor series [7]. A third approach is to enhance the speech as a
front end processing, using methods such as spectral subtraction
[8] or Wiener filtering [9] before it is fed into a recognizer. This
obviates the need to retrain the ASR systems for different types
of noisy inputs since the same ASR trained on clean speech can
be used. A comparative study [10] has also been reported on
the performance of ASR system with various enhancement ap-
proaches. Recently, sparse coding techniques have gained pop-

ularity. A speech enhancement scheme based on sparse coding
has been proposed by Sigg et al. [11], who show that it performs
better than techniques like geometric spectral subtraction[12].
Several exemplar based techniques [13, 14] have also been pro-
posed in the past for robust speech recognition.

In sparse coding, the basic assumption is that we can rep-
resent structured signals like speech as sparse linear combina-
tions of prototype vectors or basis. Speech signal is composed
of several sounds which can be categorized in various ways,
like manner-of-articulation (MOA) [15], place-of-articulation
(POA) [16, 17] or phonemes (PHN). Some of these classes
might correlate well with certain noise types more than the other
classes. Hence the bases in a dictionary learned using these
classes may represent noise power to varying degrees and con-
sequently result in poor speech reconstruction. By removing
the contribution from bases of these classes that correlate well
with noise, one could improve the enhancement performance.
One way to achieve this is to learn different dictionaries for dif-
ferent classes and intelligently select a particular dictionary for
a segment. Raj et al. [18] propose a similar approach, where
they use phoneme-dependent non-negative matrix factorization
(NMF) for separation of music from speech. In this work, we
extend their idea to sparse coding to analyze how, using class-
specific dictionaries, the performance of an ASR system could
be improved over that obtained using a dictionary learned in
a class-independent manner. Wang et al [19] investigated the
use of class-specific, ideal ratio mask estimation for speech en-
hancement. But the recognizer used as well as the mask esti-
mator are trained using noisy speech. However, we consider a
more realistic scenario where the noise level is not known a-
priori and a recognizer trained on clean speech is used.

2. Enhancement using learned dictionary
Under additive model, noisy speech can be represented as,

yt(m) = st(m) + nt(m) (1)

where yt(m), st(m) and nt(m) are the mth samples of the
time domain noisy speech, clean speech and noise, respectively.
Considering the short time Fourier transform (STFT),

y(ωk) = s(ωk) + n(ωk) (2)

where ωk = 2πk
R

, k = 0, 1, 2...R − 1 , R is the number of
frequency bins and k is the index. Taking the magnitude STFT,
the noisy speech can be approximated as y ≈ s + n ∈ RR×1,
where s and n represent the spectra of the clean speech and the
noise, respectively. An estimate of the STFT of the noisy speech
is given by

ŷ = Ds × cs +Dn × cn (3)



whereDs ∈RR×L andDn ∈RR×L , L > R, denote the speech
and noise overcomplete dictionaries of L atoms each. cs and
cn are the corresponding sparse coefficient vectors. Thus the
enhanced speech is estimated as ŝ = Ds × cs .

2.1. Sparse coding

For a given dictionary D and the spectrum y of a given noisy
speech frame, the sparse coefficients can be obtained by solving

c∗o = argmin
co

‖y −Dco‖2; s.t. ‖co‖0 ≤ t; t� R (4)
The above problem can be solved by various schemes like or-
thogonal matching pursuit [20], which is a greedy iterative ap-
proach. Applying a convex relaxation of `0 norm to `1 norm,
the problem becomes
c∗o = argmin

co

‖y −Dco‖2; s.t. ‖co‖1 ≤ t1; t1 � R (5)

This formulation is known as least absolute shrinkage and se-
lection operator (LASSO) [21]. Least angle regression (LARS)
[22] is a very efficient algorithm, which gives a solution very
close to LASSO. For the present work, we use LARS with a
slight modification called batch LARS with coherence criterion
(LARC) [11]. In LARC, a threshold is applied on the residual
coherence as a stopping criterion.

2.2. Dictionary learning

We have used K-singular value decomposition (KSVD) based
dictionary learning [23]. It is an iterative algorithm, which tries
to sparsely represent a given data matrix X. It involves both
sparse coding and dictionary update stages. The algorithm tries
to solve the following problem,

min
D,C
‖X −DC‖2F ; s.t. ‖ci‖0 ≤ t ∀i; t� R (6)

where ‖.‖2F indicates the squared Frobenius norm. We use an
approximate KSVD [24], with reduced complexity.

3. Phoneme recognition on speech
enhanced with class specific dictionaries

The performance of an ASR system on the enhanced speech
depends not only on how much noise reduction is obtained but
also on the amount of distortion of the speech components in the
enhanced speech. We analyze how the ASR performance varies
when we use class-specific dictionaries for enhancement rather
than a class-independent one. Figure 1 shows the block dia-
gram summarizing the steps of class-specific dictionary based
enhancement for phoneme recognition proposed in the present
study. At first, the class label of each frame is obtained by rec-
ognizing the speech enhanced using the class-independent dic-
tionary. Using this approximate label, the corresponding class-
specific dictionary, which was learned from the training data,
is used to enhance the noisy speech in each frame, and this en-
hanced speech is recognized again. Three different categories of
dictionaries are considered. Let there be c dictionaries in each
category. In the first category, separate dictionaries are learned
based on manner-of-articulation of speech where c = 5, de-
noted by DMOA

1 , ...DMOA
5 . In the second category, dictionar-

ies are learned based on place-of-articulation of speech where
c = 14, denoted by DPOA

1 , ...DPOA
14 . In the third case, sepa-

rate dictionaries are learned for 39 different phonemes [25, 26]
with c = 39, denoted by DPHN

1 , ...DPHN
39 . The enhancement

and recognition stages are explained in Algorithm1.
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Figure 1: Phoneme recognition on speech enhanced with class
specific dictionaries

Algorithm 1
1. Enhance the noisy data using a class-independent dic-

tionary:
Let y ∈ RR×1 be the noisy speech spectrum. Dind
∈RR×L and Dn ∈RR×L be the dictionaries for class-
independent speech and the noise, respectively. Using
the composite dictionary D = [Dind Dn] , the sparse
coefficients of the noisy speech are obtained as

[cinds cn] = LARC(y,D, µcoh) (7)

where µcoh is the threshold on mutual coherence and
cinds represents the sparse coefficient vector correspond-
ing to Dind. Clean speech is estimated as

ŝ = Dind × cinds (8)

2. Find the phoneme labels using a phoneme recognizer on
this enhanced speech. From the phoneme labels, obtain
both the MOA and POA class labels of each frame.

3. Perform class-specific enhancement of the original noisy
data using the dictionary corresponding to the obtained
class label:
Three different enhancements are carried out based on
the MOA, POA and PHN labels of the frame obtained
from step 2.
Method 1: In this method, depending on the MOA class
label the enhanced speech observation ŝ is assigned to,
the corresponding dictionary is chosen for enhancing the
original noisy speech observation y. Let the class label
be c∗; 1 ≤ c∗ ≤ 5. Thus, the sparse coefficients and the
clean speech estimate obtained using composite dictio-
nary D1 = [DMOA

c∗ Dn] are

[cMOA
s cMOA

n ] = LARC(y,D1, µcoh) (9)

ŝMOA = DMOA
c∗ × cMOA

s (10)
where cMOA

s corresponds to DMOA
c∗

Method 2: In this method, we use dictionaries based on
POA, depending on the assigned label c∗; 1 ≤ c∗ ≤
14, of ŝ. The sparse coefficients and the clean speech
estimate obtained using the composite dictionary D2 =
[DPOA

c∗ Dn] are

[cPOAs cPOAn ] = LARC(y,D2, µcoh) (11)

ŝPOA = DPOA
c∗ × cPOAs (12)

where cPOAs corresponds to DPOA
c∗

Method 3: This method employs dictionaries based on
the assigned PHN labels; 1 ≤ c∗ ≤ 39, of ŝ. Using the
composite dictionary D3 = [DPHN

c∗ Dn], the sparse
coefficients and the clean speech are estimated as

[cPHNs cPHNn ] = LARC(y,D3, µcoh) (13)

ŝPHN = DPHN
c∗ × cPHNs (14)

where cPHNs corresponds to DPHN
c∗



4. Find the performance of the MOA, POA and PHN recog-
nizers on the enhanced speech in each case; (10), (12)
and (14).

ss 4. Experiments and results
4.1. Experimental setup

All the experiments are conducted on the TIMIT [27] speech
corpus consisting of 6300 sentences from 630 speakers with
train and test sets containing 4620 and 1680 utterances, respec-
tively. The sampling frequency is 16 kHz. The sa utterances
are not used, since they are common to both training and test-
ing sets. The ASR is trained on the entire clean TIMIT training
data and its performance is obtained on the entire TIMIT test
set. We use factory2, m109, leopard, babble and volvo noises
from the NOISEX-92 [28] database after downsampling to 16
kHz, to synthesize noisy test speech signals. For the recogni-
tion experiments HTK [29] is used. The size of analysis frame
is chosen to be 30 ms with 10 ms frame shift. 39-dimensional
mel frequency cepstral coefficients (MFCC) [30] are used with
zeroth coefficient, delta and delta-delta coefficients. Cepstral
mean normalization (CMN) is applied. A three-state mono-
phone HMM model with diagonal covariance matrix is used for
the recognizer. The number of Gaussian mixtures per state is
set to 32, since increasing it further does not improve the recog-
nition performance significantly. A bigram phoneme language
model is used. For phoneme recognizer, the 61 phonemes in
TIMIT are mapped to a reduced set of 39 phonemes [25, 26]
and the results are reported on this reduced set.

The dictionaries are learned on the magnitude STFT com-
puted using a frame size of 30 ms with 10 ms frame shift. A
512-point FFT is taken and we use only the first 257 points
for learning the dictionary because of symmetry in the spec-
trum. We use approximate KSVD algorithm with LARC coding
[11] for learning the dictionaries. The number of iterations for
KSVD is set to 30. The dictionaries are speaker independent
and each dictionary is trained to have 512 basis vectors. The
class-independent dictionary is learned on a subset of 2 × 105

frames, which are randomly sampled from the training data.
For learning class-specific dictionaries, the training frames are
classified into different classes, using the TIMIT labels. MOA,
POA, as well as PHN specific dictionaries are learned from the
spectra of corresponding training frames. For MOA class, vow-
els, diphthongs and semivowels are grouped together [15]. For
POA class, consonants and vowels are classified as per [16] and
[17], respectively. For PHN specific dictionary, we learn only
39 dictionaries based on the reduced phoneme set.

4.2. Results and discussion
Improvements in the phoneme recognition accuracies are com-
pared across the three enhancement methods for 0, 5 and 10
dB SNRs. Figures 2 (a-e) show the phoneme recognition ac-
curacies for factory2, m109, leopard, babble and volvo noises,
respectively. We compare the recognition accuracies of our
method with class-independent enhancement scheme and also
with four other enhancement schemes; multi-band spectral sub-
traction (MBSS) [31], non causal apriori SNR estimator (NC)
[32], harmonic regeneration noise reduction (HRNR) [33] and
geometric spectral subtraction (GA) [12]. Our method achieves
superior performance over all the methods.

Figure 2 shows that enhancement using class-specific dic-
tionaries outperforms the class-independent enhancement in
terms of phoneme recognition accuracies. This is true not only
when we use class labels from the ground truth but also from the

recognition of speech enhanced using class-independent dictio-
nary (referred to as approximate labels). For phoneme recogni-
tion, PHN based enhancement using approximate labels gives
a relative accuracy improvement (RAI) of 5.5%, 3.7%, 2.4%
and 2.2%, respectively for factory2, m109, leopard and babble
noise over class-independent enhancement method, when aver-
aged over SNRs 0, 5 and 10 dB. MOA based enhancement gives
average RAI of 2.7%, 2.3%, 1.6% and 2.2%, respectively. Sim-
ilarly for POA based enhancement, the average RAIs are 4.3%,
2.5%, 1.8% and 2.1%.

The recognition accuracies obtained from the speech en-
hanced using ground truth labels (Figure 2), show that, we get
higher performance as the number of classes c increases. It is to
be noted that cs in Eq. (3) need not be zero even if the speech
component in y is zero. We refer this contribution of speech
bases for representing noise as noise confusion. We observe
that, as we increase the number of classes and use only one class
dictionary per frame the noise confusion reduces1. When we
use approximate labels, the performance improvement also de-
pends on the accuracy of ASR, which usually goes down as the
number of classes increases. Hence to achieve the best recog-
nition performance, one needs to choose an optimal number of
classes by trading off ASR accuracy and noise confusion. It is
observed that, PHN based enhancement outperforms MOA and
POA based enhancements in most cases. This indicates that
the approximate PHN labels obtained from the ASR are good
enough to get a performance better than that from the MOA and
POA labels.

For babble noise, at 0 dB SNR, no significant improvement
is observed when we use the approximate labels. This could be
due to the very low recognition accuracy that we obtain after the
enhancement using class-independent dictionary resulting in a
poor choice of dictionary for most frames.

In the case of volvo noise, it is observed that after CMN,
the recognition accuracy using noisy speech outperforms the
class-independent and class-dependent schemes. For phoneme
recognition, our PHN based enhancement using approximate
labels shows an average relative degradation of -0.8% over the
noisy performance. However, it is to be noted that the results for
class-dependent schemes are still better than the class indepen-
dent scheme. For phoneme recognition, the average RAIs over
class-independent scheme are 2.2%, 1.6% and 1.6% for PHN,
MOA and POA based enhancements, respectively. However
when we use the PHN labels obtained from the noisy speech
itself, PHN based enhancement using approximate labels gives
an average RAI of 2.1% over the noisy case.

Figure 3 shows the log magnitude spectral plots of a few ex-
emplary frames which are correctly recognized after PHN based
enhancement using ground truth labels (PHN-gnd) but wrongly
recognized after class independent enhancement, for the noises
factory2, m109 and leopard at 0 dB SNR. The spectral plots and
the corresponding Itakura-Saito (IS) distortion measures with
the clean spectrum show that the spectrum recovered after PHN-
gnd enhancement matches more closely with the clean speech
spectrum than that after the class-independent enhancement.

Instead of performing enhancement followed by recogni-
tion only once, one can think of a multi-stage enhancement-

1A small experiment with a total of 300 Factory2 noise frames
demonstrates that the fraction corresponding to the energy of the co-
efficients for class-independent dictionary is 0.025 when both class-
independent and noise dictionaries are used for sparsely representing
the noise frames. However, the fraction reduces to 0.0184 (averaged
over all 39 phonemes classes) when the phoneme-specific dictionaries
are used in place of a class-independent dictionary.
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spectrum is also shown. The phoneme and noise types of each
exemplary frame is given at the top of the column.

recognition scheme, where class-specific enhancement is per-
formed in each stage and the required class labels are taken
from the recognition output of the previous stage. Experiment
with a two-stage scheme, with PHN enhancement demonstrates
that the second stage gives a relative improvement in phoneme
recognition accuracies over the first stage by 1.0%, 0.8%, 1.0%
and 0.7% (averaged over 0, 5, and 10 dB SNRs) for factory2,
m109, leopard and babble noises, respectively.

We also analyze the performance improvements for MOA
and POA recognizers for the single-stage scheme. In the case of
MOA recognition, PHN based enhancement gives average rel-
ative recognition accuracy improvements of 2.4%, 2.1%, 2.3%
and 2.8% for factory2, m109, leopard and babble noises, re-
spectively, over class-independent enhancement, while MOA
based enhancement gives improvements of 1.3%, 1.1%, 1.7%
and 2.1%. Also for POA based enhancement, the average RAIs

are 1.7%, 0.8%, 1.3% and 2.4%, respectively.
For POA recognition, PHN based enhancement gives av-

erage RAIs of 2.9%, 2.1%, 2.4% and 0.7%. MOA based en-
hancement achieves improvements of 2.3%, 1.8%, 1.9% and
0.9%. For POA based enhancement, we get improvements of
3.3%, 2.2%, 2.7% and 0.8%. This suggests that except for POA
recognition, the PHN based enhancement yields better recogni-
tion accuracy than MOA and POA based enhancements.

5. Conclusions
We have analyzed how the recognition performance of noisy
speech varies when we use class-specific dictionaries for en-
hancement rather than a class-independent dictionary. The ex-
periments are carried out in a speaker independent scenario.
With the ground truth class labels, there is significant improve-
ment in recognition accuracy for class-specific enhancement
over the class-independent scheme. When ground truth labels
are used, the 39-PHN based enhancement gives average RAI
in phoneme recognition of 21.5%, 17.6%, 12.1%, 29.2% and
9.3% for factory2, m109, leopard, babble and volvo noises, re-
spectively, over class-independent enhancement.

The 39-PHN based enhancement outperforms the MOA and
POA based schemes in most of the cases. Using the approxi-
mate labels obtained from the ASR gives better recognition ac-
curacy than the class-independent enhancement, although it is
lower than that using the ground truth labels. In our future work,
we intend to employ an MLP-HMM framework with other fea-
tures like multistream features [34] for recognition and exam-
ine the benefit of class-specific enhancement, since it has been
shown to perform significantly better than GMM-HMM frame-
work with MFCC features. Also we would like to examine the
usefulness of our algorithms on a more realistic scenario involv-
ing real world speech mixed with noise.
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