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Abstract
This paper proposes acoustic-phonetic features for classifica-
tion of place-of-articulation of stop consonants derived from
their temporal structures. The speech signal corresponding to
a stop is characterized by several temporal features such as
sub-band zero-crossings and envelope fits. Classification ex-
periments on the stops from the TIMIT (read speech) and the
Buckeye (conversational speech) databases using a support vec-
tor machine classifier demonstrate that the performance of the
proposed features (84.6 %) is comparable to that obtained by
MFCCs (85.1 %) in many aspects. Further, the classification
accuracy is boosted (90.1 %) with the combination of temporal
and MFCC features, which substantiates their supplementary
nature.
Index Terms: stop consonants, place of articulation, temporal
features, sub-band crossings, acoustic phonetics

1. Introduction
1.1. Background

Studies on stop consonants have attracted the focus of several
researchers due to their challenging nature. Stop sounds are
produced by building up pressure behind a complete closure of
the vocal tract followed by a rapid release of air-flow through
the constriction resulting in a sudden rise in the energy which
is termed as the burst [1]. Depending upon the place at which
the constriction occurs, stops in English are divided into three
categories namely, bilabials (/p/ and /b/ - closure is formed by
the lips), alveolars (/t/ and /d/ - closure is formed by tongue
blade and alveolar ridge) and velars (/k/ and /g/- closure formed
by tongue body and soft palate). In the case of aspirated stops,
the burst is followed by an interval during which the glottis is
spread letting the air flow, resulting in a noise-like signal re-
ferred to as the aspiration noise. If the stop is followed by a
voiced phone, the vocal folds start to vibrate a short interval
after the burst release, which is called the voicing onset time.

1.2. The problem of classification of stops

Automatic classification of stop consonants based on their the
place of articulation (PoA), or equivalently, the automatic iden-
tification of PoA of stops, from the acoustic signal is a classical
problem in speech analysis. It finds application in many areas
such as automatic speech recognition (ASR), speech pathology
and phonetic studies. ASR systems can be broadly classified
into two categories - statistical modeling based systems and
distinctive-feature based systems [2]. It has been shown that
the detection of PoA of stops plays an important role in both

the kinds of systems: while the accuracy of a statistical ASR
can be improved by incorporating the PoA information[3], de-
tection of PoA is an integral part of a distinctive-feature based
speech recognizer [4]. Automatic classification of stops can aid
computer-based speech therapies and also phonetic and percep-
tual studies.

1.3. Previous work

The problem of classification of stops has a long history in
speech science. Divergent views on acoustic invariance arose
amongst speech scientists because of studies on stops. Broadly,
the acoustic cues proposed for the classification of stops fall into
two categories: (i) features based on the spectral characteristics
of stop-burst and (ii) features based on formant transitions from
onset to mid-point of the following vowel. Some studies argue
that context-independent acoustic cues exist [5] for stops while
some contend this view [6, 7]. Studies such as those by Delat-
tre et. al. [8] and Alwan [9] emphasize on the transitions of
the second formant as a cue for automatic identification of PoA.
Winitz et. al. [10] chose burst-based cues instead of the formant
transitions for the classification of unvoiced stops. Studies by
Blumstein and Stevens [11, 5] suggested that the gross shape
of the burst spectrum considered over the first few milliseconds
from the burst serves as a sufficient cue for stop classification.
They argue that velars have a ‘compact’ spectral shape, whereas
bilabials and alveolars possess a ‘diffuse-falling’ and ‘diffuse-
rising’ spectral shapes, respectively. Other than the above de-
scribed cues, some studies make use of auditory-front end based
features along with the spectral cues such as spectral center of
gravity [7] and time varying spectral cues [12]. The role of a few
temporal cues such as VOT and closure duration are also exam-
ined in stop classification [13]. Numerous other works exist on
stop classification as may be found in the study by Suchato [4].

1.4. Objectives of this work

It is believed that cues derived from both the burst and the for-
mant transitions contribute to the identification of PoA of stops.
However, there is evidence to show that the features derived
from the signal spanning the burst interval are sufficient [14].
Burst features are preferred to formant transitions since these
facilitate classification in all the contexts i.e., even when stops
do not succeed or precede vowels. Further, despite the wealth
of literature on stop classification, there have not been many at-
tempts to extract temporal features of the signal around the stop
bursts despite references to the usefulness of temporal features
[15]. However, on examination of several stop segments, one
can visualize distinct differences between the temporal struc-
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Figure 1: Differences between the temporal structures of three
classes of stops. The bilabial stop /p/ (top trace) resembles an
ideal impulse; the alveolar stop /t/ (middle trace) is dense in
terms of zero-crossings and the velar stop /k/ (bottom trace) is
lesser dense in terms of zero-crossings.

tures of stops with different PoA. Further, the relative energy of
the source component can be expected to be different for dif-
ferent stops due to the differences in the type of release [1].
Nonetheless, source features have seldom been utilized for clas-
sification of stops. Motivated by the above facts, in this paper,
we propose features derived from the characteristics of the tem-
poral structures and the excitation source component around the
burst, for the classification of stops based on their PoA. The fea-
tures are used in a support vector machine (SVM) classifier to
classify the stops from two large speech corpora viz., the TIMIT
database [16] and the Buckeye corpus [17] comprising read and
conversational speech, respectively. We compare our results
with those obtained using the spectral feature Mel Frequency
Cepstral Coefficients (MFCC) (in the rest of the paper, we in-
terchangeably use the terms MFCCs and spectral features since
MFCCs are derived from smoothing the mel-filtered magnitude
spectrum of the speech signal) and also examine the supplemen-
tary information in the temporal and spectral features.

2. Proposed method
2.1. Distinct temporal structures of stops - An illustration

Figure1 depicts a typical waveform each for each class of stop,
taken from the TIMIT database. On examination of the acoustic
waveforms corresponding to several such stops having differ-
ent PoA, the following empirical observations may be made on
their temporal structures.

Alveolar stops are very ‘dense’ in that the number of zero-
crossings per unit time is higher than those of other stops. Velar
stops are sparser than alveolars in terms of zero-crossings with a
spread burst. Also, it is observed that the pattern of the concen-
tration of energy around the burst-onset contains discriminative
information. For a labial, most of the energy is concentrated
around the burst which makes it tend to be like an impulse
whereas the energy is spread throughout the burst-interval for
alveolars. Thus intuitively, we believe that the zero-crossing
patterns and the pattern of the concentration of energy around
the burst-onset can classify the PoA of stops.

2.2. Sub-band zero-crossings for signal discrimination

The zero-crossing rate (ZCR) of a zero-mean stationary random
process is known to correspond to its weighted spectral cen-
troid. However, the complete spectral profile of a given signal is
not obtained from the ZCR alone. For instance, the ZCRs for a
sinusoid and a square wave of the same fundamental frequency

are the same while they have different frequency distributions.
Hence, the ZCR alone cannot yield the required discriminability
between stops with different PoA. However, as stated in the arti-
cle by Kedem [18], the sequence of higher-order crossings can
uniquely determine the normalized spectral distribution func-
tion of a Gaussian process. Here, the term higher-order cross-
ings refers to the ZCR in the linear-filtered versions of a given
time series.

As an illustration, consider two signals, s1[n] and s2[n]
obtained as the superposition of two sinusoids of different fre-
quencies f1 = 100 Hz and f2 = 2000 Hz, i.e., let s1[n] =
A1sin(2πf1n)+A2sin(2πf2n) withA1 = 10A2 and s2[n] =
B1sin(2πf1n) + B2sin(2πf2n) with B2 = 10B1 , n =
1, 2, .., 2000. Now, due to the dominance of f1 in s1, ZCR
for s1 corresponds directly to f1 while it has no information re-
garding f2. Similarly ZCR for s2 can estimate f2 but not f1.
However, the number of extremum points in s1 or equivalently
the ZCR in its first-differenced (high-pass filtered) version will
give the estimate of the higher frequency component (f2). Sim-
ilarly, the lower of the frequencies (f1) can be estimated from
s2, using the ZCR of its integrated (low-pass filtered) version.
Thus, it may be ascertained that information regarding the fre-
quency profile of a given signal can be obtained by ZCRs in
different frequency bands. In other words, the ordered set of
ZCRs in different sub-bands can discriminate signals with dif-
ferent frequency profiles (in this case s1[n] and s2[n]).

Motivated by the above facts, for the current problem, we
consider the set of ZCRs in several sub-bands of the speech
signal as one of the feature sets. Specifically, ZCRs in the
speech signal filtered using a Mel-filter bank is used in this
work which we term the sub-band zero-crossing rate (SZCR).
Mel-filter banks are chosen to account for the auditory process-
ing involved in the human perceptual system. According to
the dominant-frequency principle [18], the ZCR of a given sig-
nal admit values in the neighborhood of the frequency which is
significantly dominant in the spectral distribution of the signal.
Therefore the SZCR in each sub-band corresponds to the spec-
tral centroid of the speech signal within that sub-band. Since
the center frequencies of the filters in the Mel-bank progres-
sively increase, the SZCR coefficients will be ordered. Further,
it has been shown that for a discrete-time signal, the higher or-
der crossings approach a degenerate state as the number of coef-
ficients increases [18]. Thus we hypothesize that these temporal
features (we prefer to call SZCR as temporal features since they
are computed in the time domain) provide useful information
about the PoA of stops with lesser length of feature vector than
conventional MFCCs.

2.3. Burst structure and source features

From Fig. 1, we see differences in the distribution of the energy
around the burst, which can possibly distinguish one kind of
stop from another. In this section, we define features for quan-
tifying the distribution of the energy around the burst of a stop
consonant.

1. Kurtosis and skewness measures: As discussed earlier,
the bursts of labial stops are peakier in nature than those
of the other stops. The peakedness of a distribution can
be quantified by the fourth standardized moment or the
kurtosis measure. Further, the asymmetry of the signal
around the burst can be quantified using the third stan-
dardized moment or the coefficient of skewness. Thus
we include the kurtosis and skewness measures of the
normalized Hilbert envelope (HE) of the burst in the fea-



ture set. Normalized HE of the burst is used because it
ensures that it mimics a probability mass function in that
it has all positive values and sums to unity. Fig. 2 il-
lustrates the use of kurtosis and skewness measures in
discriminating the burst envelopes of different stops.
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Figure 2: Illustration of the use of kurtosis and skewness mea-
sures in discriminating the burst envelopes of different stops.
The top, middle and bottom traces, respectively, depict the nor-
malized HE of a labial (/b/), velar (/k/) and an alveolar (/t/) stop.
It can be seen that the kurtosis for the labial stop is higher than
that for the alveloar stop indicating that the labial stop is more
‘peaky’ in nature. Also the labial burst has higher absolute
skewness than alveolar stop, indicating that the labial burst is
more asymmetric in nature compared to the alveloar burst. The
skewness of the velar stop is positive indicating that the enve-
lope is more tilted to the right.

2. Source feature: To quantify the differences in the source
component, the ratio of the l2 − norms of the inte-
grated linear prediction residual (ILPR, an estimate of
the source signal [19, 20, 21]) and the speech signal cor-
responding to the burst interval is used as another fea-
ture.

2.4. Implementation details of feature extraction

The burst and voicing onsets for stops in a given utterance are
automatically detected using the algorithms reported in our ear-
lier works [22, 23]. Since the objective of this study is to an-
alyze the temporal structure for stop classification, we chose
the speech signal of 50 milliseconds duration starting from
20 milliseconds prior to the closure-burst transition for analy-
sis. This 50 millisecond interval generally corresponds to the
burst-interval for most unvoiced stops without including the as-
piration interval, if any. However for some stops, especially
voiced ones, this interval may include the following vowel too,
in which case, only the interval up to the vowel-onset is con-
sidered for analysis. Further, a hanning window is applied to
smooth out the edges to facilitate the envelope-based analysis.
The signal used for analysis is normalized with respect to its
l2 − norm to make sure that all the tokens have the same en-
ergy (unit norm vectors). Although burst-energy is known to be
a parameter of significance, it is deliberately not considered in
this study since our motive is to examine the usefulness of the
temporal structure alone.

The filter-banks used for the computation of SZCR are im-
plemented in the frequency domain, spaced according to the
Mel-scale spanning the entire frequency range. To avoid the in-
fluence of low-energy noisy components on the computation of
SZCR, instead of actual zero crossings in each band, the cross-
ings at the level of 10 % of the maximum value of the unfiltered

signal on both positive and negative sides are considered. In
summary, given a signal corresponding to a stop, the SZCRs,
envelope features and the source feature are computed and con-
catenated to form the final temporal feature vector (of dimen-
sion equal to number of filters used for SZCR + two for kurtosis
and skewness + one source measure).

2.5. SVM-RBF for classification

We use a support vector machine (SVM) for classification of
the PoA of stops. The radial basis function kernel is used which
is implemented using the LibSVM package [24]. All the fea-
tures are z-scored before training and testing to ensure proper
normalization.

3. Experiments and results
3.1. Baseline system

To compare the performance of the proposed features with the
spectral features (SF), we build a baseline system with Mel-
frequency cepstral coefficients (MFCC) along with the delta and
delta-delta coefficients as the feature vector with the SVM clas-
sifier. These features are used widely in the state-of-the-art ASR
systems. MFCCs quantify the average spectral energy of a sig-
nal in different auditory frequency bands thereby characterizing
the spectral shape of the signal, which is a distinguishing fac-
tor among the stops. MFCCs are computed for the same frame
location and duration for which the temporal features are com-
puted.

3.2. Databases and experiments

For all our experiments, we consider two large corpora namely,
(i) the TIMIT database [16] containing 6300 utterances spo-
ken by 630 speakers of different dialects of North America and
(ii) the Buckeye corpus[17] comprising several hours of spon-
taneous American English speech of 40 speakers from central
Ohio, USA. Both are labeled at the phone level which provides
the ground truth for validation. All the stops in the TIMIT
database and a large subset from the Buckeye corpus are con-
sidered for evaluations, irrespective of their position of occur-
rence, leaving those occurring in the stop-stop clusters, since it
is known that burst may be absent in some such cases [25, 26].
The task is a three-class classification problem by placing bil-
abials (/p/ and /b/), velars (/k/ and /g/) and alveolars (/t/ and /d/)
in a class each. The accuracies reported here are obtained by
performing a grid search on the parameters of the SVM kernel.

In our first experiment, we conduct three-fold cross-
validation tests on stops (around 25, 000 in number) from both
the databases for the cases of voiced, unvoiced and combined
cases separately. For all these experiments, accuracies are re-
ported for temporal features alone (TF), spectral features alone
(SF) and both the temporal and spectral features concatenated
with each other (CF). In this experiment, the number of sub-
bands used for the computation of SZCR and MFCCs are fixed
at 12 and 13, respectively. However, in our second experiment,
we vary the number of sub-bands used for SZCR computation
and number of MFCCs, and report the consequent variation in
the accuracy on the TIMIT test set. This examines the discrim-
ination capabilities of the SZCR vis-a-vis MFCCs. In our final
experiment, we compare the learning abilities of the features by
reporting the classification accuracies on a test-set by varying
the number of training samples. For this experiment, the train-
ing samples are taken from the training set and the entire test set



is used for testing. The second experiment is carried out on the
TIMIT test database and the third using TIMIT training and test
databases for training and testing, respectively. For the third
experiment, a given number of training samples are randomly
selected for training every time.

3.3. Results and discussion

Table 1 reports the cross-validation accuracies separately for
stops from the TIMIT and Buckeye databases obtained using
the proposed temporal features (TF), spectral features (SF) and
the combined features (CF). The first and the second entries
in each cell correspond to the TIMIT database and the Buck-
eye corpus, respectively. The following observations may be
made from Table 1: (a) In general, the accuracy (for all the
features) are better for unvoiced stops than their voiced coun-
terparts. This is due to the fact that the bursts are more pro-
nounced and of longer duration in the case of unvoiced stops
and hence the features are better manifested. (b) The accuracies
offered by the TF alone are almost equal to those offered by SF
alone for all the cases. This suggests that TF possess as much
information about the PoA as the SF. (c) When the TF and SF
are combined, the accuracy increases by about 4-5 % in all the
cases, confirming the presence of complementary information
between the temporal and spectral features. (d) The accuracy
for the stops in TIMIT (90.1 %) is better than that for stops
in Buckeye (73.3 %) by 14-17 %. This is because the TIMIT
database contains read-speech, where the bursts are known to
manifest better than in free-style conversations which consti-
tute the Buckeye corpus. Further, TIMIT has been carefully
hand-labeled whereas most of the labels in Buckeye have been
obtained by force alignment. It is interesting to note that the
unanimous agreement between six transcribers on PoA of stops
in Buckeye is 74 % as well [17]. It is also noted that the accura-
cies on the TIMIT set using only SZCR, SZCR+source features,
SZCR+kurtosis and skewness are respectively, 79.6 %, 82.6 %
and 81.8 %. From these observations, it can be inferred that
the SZCR contributes the most for the classification accuracy
compared to other features.

Table 1: Cross-validation accuracies, of the proposed tempo-
ral features (TF, 12 bands), spectral features (SF, 13 MFCCs)
and the combined features (CF). The first and second entries in
each cell of the table correspond to the result on the TIMIT and
Buckeye corpus, respectively.

Feature type TF (%) SF (%) CF (%)
All stops 84.6, 68.6 85.1, 67.2 90.1, 73.3
Unvoiced stops 86.8, 69.9 87.2, 68.8 91.5, 74.1
Voiced stops 81.2, 67.2 81.6, 65.6 87.2, 70.5

Table 2: Confusion matrix for the identification of PoA of stops
from the TIMIT (first entry in each cell) and Buckeye (second
entry in each cell) databases, using CFs.

Alveolars Bilabials Velars
Alveolars 92.3, 64.2 2.7, 11.2 5.0, 24.6
Bilabials 5.2, 27.3 90.0, 56.6 4.8, 16.1
Velars 6.8, 11.2 4.0, 9.4 89.1, 79.4

Table 2 is the confusion matrix for the different classes of
stops from both the databases. Bilabials are classified with least
accuracy in the case of Buckeye corpus, probably because /b/
tend to have weak burst in conversational speech.

Figure 3 illustrates the results of the second and third exper-
iments. It is seen that the accuracies with TF are always better
than those with SF for all the sizes of the feature vector. SZCRs
computed using only six-bands offer an accuracy of around 83
% which saturates after nine sub-bands. This corroborates that
higher-order crossings degenerate around 9-10 bands for speech
signal as stated in Kedem’s study [18]. Also the TF needs lesser
training samples (per-class) than SF to offer a given accuracy as
shown by Fig. 3.

Our results compare well with those reported in the litera-
ture. Halberstadt’s perception studies [27] report 6.3% as the
average error made by human subjects in a PoA identification
task which might be considered to be a rough benchmark. Our
study offers 90.1 % accuracy which is about 3 % less than that.
Many previous works, including those by Ali [7], Nathan and
Silverman [12] and Suchato [4] report accuracies in the range
of 82-91 % which compare well with our study. However, our
study considers 25, 000 stops for analysis while most of the pre-
vious studies analyze a smaller number of stops, ranging from
a few hundred to one or two thousand. Given that our study ex-
amines all the stops irrespective of their position, does not take
into account the formant transition features and considers only
temporal features, the results seem significant.
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Figure 3: Illustration of classification accuracies for stops on the
TIMIT test database for two different experiments. (i) Accuracy
as a function of the number of training samples (lower abscissa)
for temporal (TF, 12 sub-bands) and spectral features (SF, 13
MFCCs). (ii) Accuracy Vs. feature dimension (upper abcissa)
for TF and SF (500 training examples each). Note that both the
plots share the same ordinate or y-axis.

4. Conclusion
In this paper, we proposed temporal features for identification
of place-of-articulation of stop consonants. Motivated by the
differences in the temporal structures and the excitation source
signal of the stops around the burst-onset, we employed sub-
band zero-crossings, kurtosis and skewness measures and rel-
ative source energy as features. Several classification exper-
iments on the TIMIT database of read speech and the Buck-
eye corpus of conversational speech confirmed that temporal
features are as effective as the spectral features, whereas com-
binedly they can boost the classification accuracy. Further, it
was shown that temporal features perform well with lower num-
ber of features and training samples than the spectral features.
Future research may aim towards (i) further improving the ac-
curacies on conversational speech, (ii) combining the contex-
tual information such as formant transitions with the proposed
features to improve the performance and (iii) studying the inter-
corpus variability of the proposed features.
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