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Abstract
Speaker verification using limited data is always a challenge
for practical implementation as an application. An analysis on
speaker verification studies for an i-vector based method using
Mel-Frequency Cepstral Coefficient (MFCC) feature shows that
the performance drops drastically as the duration of test data is
reduced. This decrease in performance is due to insufficient
phonetic coverage when we capture only the vocal tract feature.
However the same can be improved if some source characteris-
tics are taken into consideration. This paper attempts to improve
the speaker verification performance using source characteris-
tics. A recently proposed characterization of the voice source
signal called the discrete cosine transform of the integrated lin-
ear prediction residual (DCTILPR) has been found to be useful
as a speaker-specific feature. Speaker verification is performed
over short test utterances in the NIST 2003 database using both
the DCTILPR and MFCC features, and their score-level combi-
nation is found to give a significant performance improvement
over the system using only the MFCC features.

Index Terms: speaker verification, short utterances, source fea-
tures, DCTILPR, MFCC

1. Introduction
Research on speaker verification (SV) has expanded signifi-
cantly over the years since its inception. However, while it
comes to deployment as an application, the amount of speech
data plays a significant role. Existing SV systems require a min-
imum amount of speech data so that sufficient phonetic content
is covered for robust modeling. In some applications, we may
not get this required amount of data, leading to poor system
performance.

The i-vector [1] system has demonstrated the state-of-the-
art approach for NIST speaker recognition evaluation (SRE).
Its compact representation, computational efficiency and easy
channel/session compensation makes it a benchmark for the SV
task. The significant improvement in performance, achieved
through the i-vector based system over other conventional SV
systems [1] shows the potential for using it for SV under limited
data conditions. In [2], an analysis of i-vector based SV system
for short utterances is shown for different durations of train as
well as test segments. From a practical system point of view,
we consider sufficient training data and limited test data condi-
tions. The analysis given in [2] for very less amount of test data
(<10 s) shows that the performance drops significantly even
though sufficient speech data is used during training. This trend

of downfall in performance for limited test data motivates us to
consider a speaker-specific feature which captures the speaker
information with limited data. The literature shows that, though
the voice source features are not as discriminative as vocaltract
(or system) features, the fusion of the two can improve the ac-
curacy [3,4]. Also, studies of [5, 6] suggests that the amount of
train/test data for the voice source features can be less compared
to the amount of amount of data required in case vocal tract fea-
tures.This is due to the fact that the voice source features do not
depend much on phonetic content, where as the the robustness
of vocal tract feature depends on the amount of phonetic con-
tent that it captures for a particular utterance. This showsthe
significance of using voice source features for limited dataSV
along with the conventional vocal tract features.

This paper concentrates on considering a source feature
along with a vocal tract feature for improving the SV system
performance for limited data test conditions. The studies in [7]
have shown that the source feature discrete cosine transform
of the integrated linear prediction residual (DCTILPR) captures
relevant speaker information and gives significant performance
in the case of speaker identification over standard NIST dataset.
When it comes to limited data SV, using this source feature can
certainly help to improve the system performance as it does not
require sufficient phonetic coverage for robust modeling, which
motivated us to consider the same. The performance evaluation
is reported over NIST 2003 SRE database [8] for the state-of-
the-art i-vector based SV system. Linear discriminant analysis
(LDA) and within class covariance normalization (WCCN) [1]
are applied as channel/session compensation techniques. Two
parallel systems are developed using both DCTILPR and Mel-
Frequency Cepstral Coefficient (MFCC) features for the stated
i-vector based SV system. The SV system using only the MFCC
features is considered as the baseline. The fusion of the above
mentioned features is done at the score level, and it is found
to give a significant improvement over the baseline results ob-
tained for short utterance cases.

The rest of the paper is organized as follows. Section 2
describes the development of the i-vector based SV followed
by channel/session compensation techniques for robust speaker
modeling in case of sufficient data conditions. Section 3 pro-
vides the details of recently proposed DCTILPR feature used
for SV and its significance for short utterances. In section 4,
the SV experiments performed using MFCC and DCTILPR fea-
tures and the combination of the two at the score level for short
utterances are explained and their results are reported. Finally,
a brief conclusion is presented in section 5.
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Figure 1: Block diagram of the i-vector based text-independent baseline SV system

2. Development of i-vector based baseline
SV system: sufficient data conditions

The i-vector based speaker modeling has evolved from joint
factor analysis(JFA) [9] which showed significant improvement
over the traditional SV techniques. In contrast to JFA, i-vector
based speaker modeling [1] considers both speaker and ses-
sion space into a common space called total variability space
which covers all the variabilities. In this kind of modeling, the
Gaussian mixture model (GMM) mean supervectors [10] for a
particular utterance are projected onto a low dimensional space
called the total variability space, which gives a robust compact
representation. These low dimensional vectors are called iden-
tity vectors or i-vectors. The matrix used for this transforma-
tion, which accounts for the dominant speaker as well as ses-
sion/channel variabilities, is termed as Total variability matrix
(T-matrix).

The i-vector based SV system as described in [1] is de-
veloped using the NIST SRE 2003 database. The NIST 2003
dataset contains data of 356 speakers (144 males and 212 fe-
males) for training their speaker models and 2559 test utter-
ances for evaluating the performance of the SV system. Fig-
ure 1 shows the block diagram representation for the i-vector
based text-independent baseline SV system. Both the train as
well as test utterances undergo similar processing in this kind
of system building. Preprocessing of the speech signals is done
considering them as blocks of 20 ms with a shift of 10 ms. En-
ergy based voice-activity detection (VAD) is performed forthe
speech utterances and the speech frames having energy greater
than 0.07 times the average energy of the utterance are selected
as frames of interest. 13 dimensional MFCC features including
their first and second order derivatives are extracted for each
of the frames, thus making up a 39 dimensional feature vec-
tor. The extracted features are then normalized to fit zero mean
unit variance, i.e., cepstral mean subtraction (CMS) and vari-
ance normalization are performed for further processing.

For the purpose of building the universal background model
(UBM) [10] and the T-matrix, Switchboard Corpus II cellular
data of 1872 utterances is used as development data. The de-
velopment data undergoes the same kind of preprocessing as
mentioned in the case of train/test data. A gender-independent
UBM of 1024 mixtures is trained using a subset of the devel-
opment data of approximately 10 hours with equal amount of
male and female speech. The entire development data is used

to train a T-matrix of 400 columns which captures all the vari-
ability present in the speech data. Since the low dimensional i-
vector representation is derived from the T-matrix, the i-vector
based speaker modeling has both the speaker and channel in-
formation, and it requires some channel/session compensation
methods for modeling only the speaker information for robust
SV. For this purpose, 150 dimensional LDA and full dimen-
sional WCCN are applied by learning the respective matrices
using the development data.

The zeroth and the first order statistics (GMM mean super-
vectors) are computed from the train and test feature vectors
which are then used along with the T-matrix to estimate the i-
vectors as mentioned in [1]. LDA and WCCN are then applied
on the i-vectors for channel/session compensation. Finally, co-
sine kernel scoring is done between the channel compensated
train and test i-vectors to get the similarity scores. Table1
shows the i-vector baseline system performance under sufficient
data conditions. We can observe that the system performance
improves significantly after the channel/session compensation
is done using LDA and WCCN.

Table 1: Performance of the baseline i-vector system on the
NIST SRE 2003 dataset for sufficient data conditions

Without Compensation With Compensation
EER(%) DCF EER(%) DCF

4.74 0.0858 2.4 0.0474

3. Source features: DCTILPR
The voice source-based feature we extract from the speech sig-
nal is called the DCTILPR. The integrated linear prediction
residual (ILPR) [11] is used as a voice source estimate, and its
pitch synchronous discrete cosine transform (DCT) coefficients
are taken as the feature vector. The DCTILPR has been shown
to perform on par with existing voice source-based speaker-
specific features in a speaker identification task [7]. Here,we
use the DCTILPR features in a SV task on the NIST SRE 2003
database.

Figure 2 [7] shows the block diagram to extract the DC-
TILPR. The energy-based VAD described in section 2 is applied
on the speech signal to get the frames with significant voice ac-
tivity. On these frames, an epoch extraction algorithm [11]is



Figure 2: Block diagram of the method to extract DCTILPR

applied, and using these epochs, a voiced/unvoiced (V/UV) de-
cision based on maximum normalized cross-correlation is ap-
plied as in [12]. Only the voiced regions are retained for further
processing, and the ILPR is extracted on the voiced regions as
in [11]. Using the epochs in the voiced regions as glottal clo-
sure instants (GCIs) and considering the interval between two
successive GCIs as a pitch period, pitch synchronous DCT-II
is obtained to get the DCTILPR. As shown in [7], the first 24
DCT coefficients capture the speaker information containedin
the voice source, and are taken as the feature vector.

It has also been shown in [7] that the DCTILPR cap-
tures speaker-specific information which is not captured bythe
MFCCs. Thus, we combine the classifiers trained using the
MFCCs and the DCTILPR as follows:

Scombi = αSdctilpr + (1−α)Smfcc (1)

whereSdctilpr andSmfcc represent the scores obtained
using DCTILPR and MFCC features respectively, with the i-
vector based SV system.α is a scalar between 0 and 1, the
optimal value of which is chosen for fusion of the two scores to
giveScombi.

4. Experimental results and analysis
The significant performance of the i-vector based system for
the sufficient data conditions as discussed in section 2 moti-
vates us to use this system for the case of short utterances too.
The test segments for NIST 2003 SRE range between 15-45
s of duration. The i-vector based system is then evaluated by
varying the duration of test data from 2 s to 10 s to analyze
the performance in the case of short test utterances for MFCC
features. From Table 2, we can see that, as the duration of the
test utterance is decreased, the SV performance degrades signif-
icantly. Also, we can see that the results improve significantly
after channel/session compensation is done for short utterances.

Table 2: Results of i-vector system for different duration test
segments on NIST 2003 dataset using MFCC features

Test System Performance
Utterance Without Compensation With Compensation
Duration EER(%) DCF EER(%) DCF

Full 4.74 0.0858 2.4 0.0474
20 s 5.51 0.1021 3.38 0.0606
15 s 6.41 0.1188 4.33 0.0813
10 s 8.85 0.1620 5.8 0.1090
5 s 13.91 0.2631 10.52 0.1977
3 s 19.82 0.3662 16.94 0.3100
2 s 25.38 0.4784 22.31 0.4128

Table 3: Results of i-vector system for different duration test
segments on the NIST 2003 dataset using DCTILPR features

Test System Performance
Utterance Without Compensation With Compensation
Duration EER(%) DCF EER(%) DCF

10 s 24.93 0.45 13.91 0.25
5 s 27.59 0.52 18.65 0.35
3 s 31.84 0.58 22.13 0.41
2 s 34.73 0.65 27.78 0.52

An i-vector based SV system is developed using DCTILPR
features in the same way as described in section 2. As we are
concentrating on SV for short utterances, we evaluate the per-
formance of this system only for cases of 10 s or less. The
results obtained for short utterances using DCTILPR features
are shown in Table 3. It is clearly visible from Table 3 that the
system using only DCTILPR features performs poorly in com-
parison to the system using MFCC features as shown in Table 2.
This has been shown to be mainly due to the ILPR having more
handset variability than the MFCCs [7].

The fusion of the MFCC and DCTILPR features are done
at the score level using Equation 1 for the optimal value ofα

in the range 0 to 1. The Table 4 shows the performance of the
system for the combination of the stated source and system fea-
tures for short utterances. It can be inferred from Table 4 that
the performance improves significantly over that of the base-
line for short utterances after fusion of the DCTILPR due to
the additional speaker information present in it, which is not
captured by the vocal tract features.αopt varies between 0.15
and 0.4 for different cases, which shows that the DCTILPR fea-
tures must be given a weightage in that range for optimal per-
formance. We can observe that the improvement in EER over
the baseline is more and more pronounced as the duration of
the test data decreases (5.81%-5.33%= 0.48% in the 10 s case
to 22.31%-17.71%= 4.6% in the 2 s case, with compensation).
Also, αopt increases as the duration of the test data decreases
(0.15 in the 10 s case to 0.4 in the 2 s case, with compensa-
tion). Thus, the importance of the source feature increasesas
the test data duration decreases. As ILPR has handset variability
issues, the performance improvement is more significant after
the channel/session compensation. Figure 3 shows the evolu-
tion of equal error rate (EER) vs alpha(α) for the 2 s case with
channel/session compensation by applying LDA and WCCN.
We can see that, if an optimal weightage of 0.4 is given to the
DCTILPR features, they improve the EER by 4.6%. Thus, com-
bining information from a source feature improves the system
performance in case of limited data SV.



Table 4:Performance comparison of i-vector system for short test segments on NIST 2003 dataset for the baseline system vs. proposed
system of fusing both DCTILPR and MFCC features

Test Performance- Baseline System Performance- Proposed System
Utterance Without Compensation With Compensation Without Compensation With Compensation
Duration EER(%) DCF EER(%) DCF αopt EER(%) DCF αopt EER(%) DCF

10 s 8.85 0.1620 5.81 0.1090 0.25 7.90 0.1491 0.15 5.33 0.0971
5 s 13.91 0.2631 10.52 0.1977 0.3 12.20 0.2290 0.3 8.45 0.1567
3 s 19.82 0.3662 16.94 0.3100 0.3 16.98 0.3213 0.4 12.46 0.2325
2 s 25.38 0.4784 22.31 0.4128 0.3 23.08 0.4313 0.4 17.71 0.3351
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Figure 3: EER vs. alpha (α). An EER absolute improvement
of 4.6% atα=0.4 (αopt = 0.4) can be observed for the case
of 2 s test data, indicating that the DCTILPR features provide
speaker information not captured by the MFCCs and improve
performance in short test utterance cases

5. Conclusions
Limited data SV is a challenge to the speech community for im-
plementation of a practical system. The paper presents the sig-
nificance of source information in SV system for short test ut-
terances. The initial studies for the baseline system usingvocal
tract features for short test utterances shown in the paper,is im-
proved on addition of the source feature DCTILPR at the score
level. The significant improvement in performance is due to the
different/additional speaker information present in the source
feature. The importance of the source feature becomes more
significant as the duration of the test data is reduced. An ab-
solute improvement of 4.6% EER is reported for test data of 2
sonds after channel/session compensation.
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