Combining Source and System Information for Limited Data Speaker
Verification

Rohan Kumar Das Abhiram B, S R M Prasanna A G Ramakrishnan

'Department of Electronics and Electrical Engineering ,
Indian Institute of Technology Guwahati, Guwahati-781088ia
2Department of Electrical Engineering ,
Indian Institute of Science Bangalore, Bangalore-5600idia

rohankd@itg.ernet.in,

Abstract

Speaker verification using limited data is always a chakeng
for practical implementation as an application. An analysi
speaker verification studies for an i-vector based methawyus
Mel-Frequency Cepstral Coefficient (MFCC) feature showas th
the performance drops drastically as the duration of testida
reduced. This decrease in performance is due to insufficient
phonetic coverage when we capture only the vocal tractfeatu
However the same can be improved if some source characteris-
tics are taken into consideration. This paper attempts podxe

the speaker verification performance using source chaigcte
tics. A recently proposed characterization of the voicera®u
signal called the discrete cosine transform of the integrén-

ear prediction residual (DCTILPR) has been found to be disefu
as a speaker-specific feature. Speaker verification is peeit
over short test utterances in the NIST 2003 database usthg bo
the DCTILPR and MFCC features, and their score-level combi-
nation is found to give a significant performance improveimen
over the system using only the MFCC features.

Index Terms: speaker verification, short utterances, source fea-
tures, DCTILPR, MFCC

1. Introduction

Research on speaker verification (SV) has expanded signifi-
cantly over the years since its inception. However, while it
comes to deployment as an application, the amount of speech
data plays a significant role. Existing SV systems requiréa m
imum amount of speech data so that sufficient phonetic conten
is covered for robust modeling. In some applications, we may
not get this required amount of data, leading to poor system
performance.

The i-vector [1] system has demonstrated the state-of-the-
art approach for NIST speaker recognition evaluation (SRE)
Its compact representation, computational efficiency aagy e
channel/session compensation makes it a benchmark fomthe S
task. The significant improvement in performance, achieved
through the i-vector based system over other conventiodal S
systems [1] shows the potential for using it for SV undertedi
data conditions. In [2], an analysis of i-vector based S\fesys
for short utterances is shown for different durations oiinties
well as test segments. From a practical system point of view,
we consider sufficient training data and limited test datadco
tions. The analysis given in [2] for very less amount of tegtd
(<10 s) shows that the performance drops significantly even
though sufficient speech data is used during training. Taigk
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of downfall in performance for limited test data motivatesta
consider a speaker-specific feature which captures th&kepea
information with limited data. The literature shows thapugh

the voice source features are not as discriminative as el

(or system) features, the fusion of the two can improve the ac
curacy [3,4]. Also, studies of [5, 6] suggests that the anhotin
train/test data for the voice source features can be lespaau

to the amount of amount of data required in case vocal traet fe
tures.This is due to the fact that the voice source featuwremd
depend much on phonetic content, where as the the robustness
of vocal tract feature depends on the amount of phonetic con-
tent that it captures for a particular utterance. This shthes
significance of using voice source features for limited d&ita
along with the conventional vocal tract features.

This paper concentrates on considering a source feature
along with a vocal tract feature for improving the SV system
performance for limited data test conditions. The studi€g’]
have shown that the source feature discrete cosine tramsfor
of the integrated linear prediction residual (DCTILPR)taps
relevant speaker information and gives significant perforoe
in the case of speaker identification over standard NISTsaata
When it comes to limited data SV, using this source feature ca
certainly help to improve the system performance as it doés n
require sufficient phonetic coverage for robust modelingiciv
motivated us to consider the same. The performance ewatuati
is reported over NIST 2003 SRE database [8] for the state-of-
the-art i-vector based SV system. Linear discriminant\sisil
(LDA) and within class covariance normalization (WCCN) [1]
are applied as channel/session compensation techniques. T
parallel systems are developed using both DCTILPR and Mel-
Frequency Cepstral Coefficient (MFCC) features for theestat
i-vector based SV system. The SV system using only the MFCC
features is considered as the baseline. The fusion of theeabo
mentioned features is done at the score level, and it is found
to give a significant improvement over the baseline restuits o
tained for short utterance cases.

The rest of the paper is organized as follows. Section 2
describes the development of the i-vector based SV followed
by channel/session compensation techniques for robuakspe
modeling in case of sufficient data conditions. Section 3 pro
vides the details of recently proposed DCTILPR feature used
for SV and its significance for short utterances. In sectipn 4
the SV experiments performed using MFCC and DCTILPR fea-
tures and the combination of the two at the score level fortsho
utterances are explained and their results are reportedllyi
a brief conclusion is presented in section 5.



Total variability (T) matrix

}

Training

LDA WCCN
Matrix  Matrix

v

Data
Sufficient

Statistics
Computation

|-vector
Extraction

—>|

VAD

—> Cosine Decision by

Thresholding

Channel

Compensation
(LDA + WCCN)

Accept/
Reject

Kernel —

Scoring

Cepstral mean
and variance
normalization

Test Data [—]

— Training data stream

— Test data stream

Figure 1: Block diagram of the i-vector based text-indegenidaseline SV system

2. Development of i-vector based baseline
SV system: sufficient data conditions

The i-vector based speaker modeling has evolved from joint
factor analysis(JFA) [9] which showed significant improwerh
over the traditional SV techniques. In contrast to JFA,dtee
based speaker modeling [1] considers both speaker and ses-
sion space into a common space called total variability espac
which covers all the variabilities. In this kind of modelirthe
Gaussian mixture model (GMM) mean supervectors [10] for a
particular utterance are projected onto a low dimensiopates
called the total variability space, which gives a robust pant
representation. These low dimensional vectors are calkexti

tity vectors or i-vectors. The matrix used for this transfar

tion, which accounts for the dominant speaker as well as ses-
sion/channel variabilities, is termed as Total variapifitatrix
(T-matrix).

The i-vector based SV system as described in [1] is de-
veloped using the NIST SRE 2003 database. The NIST 2003
dataset contains data of 356 speakers (144 males and 212 fe-
males) for training their speaker models and 2559 test-utter
ances for evaluating the performance of the SV system. Fig-
ure 1 shows the block diagram representation for the i-vecto
based text-independent baseline SV system. Both the tsain a
well as test utterances undergo similar processing in tinid k
of system building. Preprocessing of the speech signalsrie d
considering them as blocks of 20 ms with a shift of 10 ms. En-
ergy based voice-activity detection (VAD) is performed tioe
speech utterances and the speech frames having energgrgreat
than 0.07 times the average energy of the utterance ardezblec
as frames of interest. 13 dimensional MFCC features inolydi
their first and second order derivatives are extracted foh ea
of the frames, thus making up a 39 dimensional feature vec-
tor. The extracted features are then normalized to fit zetranme
unit variance, i.e., cepstral mean subtraction (CMS) and va
ance normalization are performed for further processing.

For the purpose of building the universal background model
(UBM) [10] and the T-matrix, Switchboard Corpus Il cellular
data of 1872 utterances is used as development data. The de-
velopment data undergoes the same kind of preprocessing as
mentioned in the case of train/test data. A gender-indegg@nd
UBM of 1024 mixtures is trained using a subset of the devel-
opment data of approximately 10 hours with equal amount of
male and female speech. The entire development data is used

to train a T-matrix of 400 columns which captures all the vari
ability present in the speech data. Since the low dimenkiona
vector representation is derived from the T-matrix, thedter
based speaker modeling has both the speaker and channel in-
formation, and it requires some channel/session comgensat
methods for modeling only the speaker information for rébus
SV. For this purpose, 150 dimensional LDA and full dimen-
sional WCCN are applied by learning the respective matrices
using the development data.

The zeroth and the first order statistics (GMM mean super-
vectors) are computed from the train and test feature v&ctor
which are then used along with the T-matrix to estimate the i-
vectors as mentioned in [1]. LDA and WCCN are then applied
on the i-vectors for channel/session compensation. Fyjrzik
sine kernel scoring is done between the channel compensated
train and test i-vectors to get the similarity scores. Table
shows the i-vector baseline system performance underisuific
data conditions. We can observe that the system performance
improves significantly after the channel/session comp@arsa
is done using LDA and WCCN.

Table 1: Performance of the baseline i-vector system on the
NIST SRE 2003 dataset for sufficient data conditions

Without Compensation
EER(%) DCF
474 0.0858

With Compensation
EER(%) DCF
24 0.0474

3. Source features: DCTILPR

The voice source-based feature we extract from the spegeh si
nal is called the DCTILPR. The integrated linear prediction
residual (ILPR) [11] is used as a voice source estimate,tand i
pitch synchronous discrete cosine transform (DCT) coeffitsi

are taken as the feature vector. The DCTILPR has been shown
to perform on par with existing voice source-based speaker-
specific features in a speaker identification task [7]. Here,

use the DCTILPR features in a SV task on the NIST SRE 2003
database.

Figure 2 [7] shows the block diagram to extract the DC-
TILPR. The energy-based VAD described in section 2 is agplie
on the speech signal to get the frames with significant vaiee a
tivity. On these frames, an epoch extraction algorithm [i$1]
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Figure 2: Block diagram of the method to extract DCTILPR

applied, and using these epochs, a voiced/unvoiced (V/éV) d
cision based on maximum normalized cross-correlation is ap
plied as in [12]. Only the voiced regions are retained fotifer

Table 3: Results of i-vector system for different duration test
segments on the NIST 2003 dataset using DCTILPR features

processing, and the ILPR is extracted on the voiced regisns a
in [11]. Using the epochs in the voiced regions as glottal clo
sure instants (GCIs) and considering the interval between t

successive GCls as a pitch period, pitch synchronous DCT-II
is obtained to get the DCTILPR. As shown in [7], the first 24
DCT coefficients capture the speaker information contained
the voice source, and are taken as the feature vector.

It has also been shown in [7] that the DCTILPR cap-

Test System Performance
Utterance | Without Compensation | With Compensation
Duration | EER(%) DCF EER(%) DCF
10s 24.93 0.45 13.91 0.25
5s 27.59 0.52 18.65 0.35
3s 31.84 0.58 22.13 0.41
2s 34.73 0.65 27.78 0.52

tures speaker-specific information which is not capturethiy
MFCCs. Thus, we combine the classifiers trained using the
MFCCs and the DCTILPR as follows:

@)

where Sgctiipr aNd Sy, ree represent the scores obtained
using DCTILPR and MFCC features respectively, with the i-
vector based SV systemu is a scalar between 0 and 1, the
optimal value of which is chosen for fusion of the two scores t
give Scombi-

Scombi - anctilpr + (1 - a)SmeC

4. Experimental results and analysis

The significant performance of the i-vector based system for
the sufficient data conditions as discussed in section 2-moti
vates us to use this system for the case of short utterances to
The test segments for NIST 2003 SRE range between 15-45
s of duration. The i-vector based system is then evaluated by
varying the duration of test data from 2 s to 10 s to analyze
the performance in the case of short test utterances for MFCC
features. From Table 2, we can see that, as the duration of the
test utterance is decreased, the SV performance degratéfs si
icantly. Also, we can see that the results improve signifigan
after channel/session compensation is done for shortnites.

Table 2: Results of i-vector system for different duration test
segments on NIST 2003 dataset using MFCC features

Test System Performance

Utterance | Without Compensation | With Compensation

Duration | EER(%) DCF EER(%) DCF
Full 4.74 0.0858 2.4 0.0474
20s 551 0.1021 3.38 0.0606
15s 6.41 0.1188 4.33 0.0813
10s 8.85 0.1620 5.8 0.1090
5s 13.91 0.2631 10.52 0.1977
3s 19.82 0.3662 16.94 0.3100
2s 25.38 0.4784 22.31 0.4128

An i-vector based SV system is developed using DCTILPR
features in the same way as described in section 2. As we are
concentrating on SV for short utterances, we evaluate the pe
formance of this system only for cases of 10 s or less. The
results obtained for short utterances using DCTILPR festur
are shown in Table 3. Itis clearly visible from Table 3 tha th
system using only DCTILPR features performs poorly in com-
parison to the system using MFCC features as shown in Table 2.
This has been shown to be mainly due to the ILPR having more
handset variability than the MFCCs [7].

The fusion of the MFCC and DCTILPR features are done
at the score level using Equation 1 for the optimal valuexof
in the range 0 to 1. The Table 4 shows the performance of the
system for the combination of the stated source and system fe
tures for short utterances. It can be inferred from Tablea4 th
the performance improves significantly over that of the base
line for short utterances after fusion of the DCTILPR due to
the additional speaker information present in it, which @ n
captured by the vocal tract featurasep: varies between 0.15
and 0.4 for different cases, which shows that the DCTILPR fea
tures must be given a weightage in that range for optimal per-
formance. We can observe that the improvement in EER over
the baseline is more and more pronounced as the duration of
the test data decreases (5.81%-5.33%= 0.48% in the 10 s case
to 22.31%-17.71%= 4.6% in the 2 s case, with compensation).
Also, aope increases as the duration of the test data decreases
(0.15 in the 10 s case to 0.4 in the 2 s case, with compensa-
tion). Thus, the importance of the source feature increases
the test data duration decreases. As ILPR has handsetiliriab
issues, the performance improvement is more significaet aft
the channel/session compensation. Figure 3 shows the-evolu
tion of equal error rate (EER) vs alplag(for the 2 s case with
channel/session compensation by applying LDA and WCCN.
We can see that, if an optimal weightage of 0.4 is given to the
DCTILPR features, they improve the EER by 4.6%. Thus, com-
bining information from a source feature improves the syste
performance in case of limited data SV.



Table 4:Performance comparison of i-vector system for short tegihsmts on NIST 2003 dataset for the baseline system vs.gaopo

system of fusing both DCTILPR and MFCC features

Test Performance- Baseline System Performance- Proposed System
Utterance | Without Compensation | With Compensation Without Compensation With Compensation
Duration EER(%) DCF EER(%) DCF oopt | EER(%) DCF aopt | EER(%) DCF
10s 8.85 0.1620 5.81 0.1090 | 0.25 7.90 0.1491| 0.15 5.33 0.0971
5s 13.91 0.2631 10.52 0.1977 0.3 12.20 0.2290( 0.3 8.45 0.1567
3s 19.82 0.3662 16.94 0.3100 0.3 16.98 0.3213| 04 12.46 0.2325
2s 25.38 0.4784 22.31 0.4128 0.3 23.08 0.4313| 04 17.71 0.3351
. EER vs. alpha [2] A.Kanagasundaram, R. Vogt, D. Dean, S. Sridharan, anhii4.
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of 4.6% ata=0.4 (x.p: = 0.4) can be observed for the case tion,” IEEE Signal Processing LetterSubmitted on 18 February,
of 2 s test data, indicating that the DCTILPR features previd 2014.
speaker information not captured by the MFCCs and improve  [8] “The NIST Year 2003 Speaker Recognition Evaluation Plan”,
performance in short test utterance cases NIST, Feb 2003

[9] P.Kenny, G. Boulianne, P. Ouellet, and P. Dumoucheliritiac-
tor analysis verses eigenchannels in speaker verifidtti&tE
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Limited data SVis achgllenge to the speech commumty forim- [10] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speakeriv
plementation of a practical system. The paper presentsghe s fication using adapted Gaussian mixture moddigital Signal
nificance of source information in SV system for short test ut Processingvol. 10, no. 1-3, pp. 19-41, 2000.
terances. The initial studies for the baseline system usog| [11] A. P. Prathosh, T. V. Ananthapadmanabha, and A. G. Ramak
tract features for short test utterances shown in the papien; ishnan, “Epoch extraction based on integrated linear ptiedi
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level. The significant improvement in performance is duédnéo t Language Processingol. 21, issue 12, pp. 2471 - 2480, 2013.
different/additional speaker information present in toerse [12] T.V. Ananthapadmanabha, A. P. Prathosh, and A. G. Rastak

feature. The importance of the source feature becomes more
significant as the duration of the test data is reduced. An ab-
solute improvement of 4.6% EER is reported for test data of 2

sonds after channel/session compensation.
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