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ABSTRACT

In our earlier work [1], we employed MVDR (minimum variance
distortionless response) based spectral estimation instead of modified-
linear prediction method [2] in pitch modification. Here, we use the
Bauer method of MVDR spectral factorization, leading to a causal
inverse filter rather than a noncausal filter setup with MVDR spec-
tral estimation [1]. Further, this is employed to obtain source (or
residual) signal from pitch synchronous speech frames. The residual
signal is resampled using DCT/IDCT depending on the target pitch
scale factor. Finally, forward filters realized from the above factor-
ization are used to get pitch modified speech. The modified speech
is evaluated subjectively by 10 listeners and mean opinion scores
(MOS) are tabulated. Further, modified bark spectral distortion mea-
sure is also computed for objective evaluation of performance. We
find that the proposed algorithm performs better compared to time
domain pitch synchronous overlap [3] and modified-LP method [2].
A good MOS score is achieved with the proposed algorithm com-
pared to [1] with a causal inverse and forward filter setup.

1. INTRODUCTION

Pitch modification is the process of changing the pitch of a given
speech signal without effecting its time scale, time-varying spec-
tral envelope and speaker information. Many techniques exist in the
literature that accomplish this in the time or frequency domain or
both, of which Time domain pitch synchronous overlap adding (TD-
PSOLA, [3, 4]) is the simplest. It requires a knowledge about the
pitch pulses and an exact pitch synchronicity between pitch marks.
Frequency domain overlap adding (FD-PSOLA, [5]) was the first
technique proposed to achieve time and pitch scale modification.
Here, each short-time analysis signal is modified by employing fre-
quency domain resampling on the short-time Fourier transform sig-
nal. Further, techniques like residual PSOLA (LP-PSOLA, [4])
split speech signal into an excitation component E(z) and vocal
tract component A(z). Pitch modification is then carried out on
the source signal also known as residual signal. The output is ob-

tained by combining modified source, Ê(z) and A(z) using linear
prediction (LP) [6]. In [7], the pitch is modified by interpolating
the residual signal, realized through either upsampling or downsam-
pling to obtain new residual length corresponding to the given pitch
modification factor. The spectral envelope responsible for the for-
mant structure will be superimposed by LP forward filtering of the
modified residual.

In [2], LP and modified-LP spectral estimation approach were
employed in DCT based pitch modification. The required pitch scal-
ing was achieved by a transform domain resampling of the resid-
ual using DCT/IDCT. Recently, Minimum variance distortionless
response (MVDR,[8]) model has been employed in pitch modifica-

tion [1] as against the LP and modified-LP. Further, we have realized
inverse and forward filters using MVDR spectral factorization and
we report the performance of [1] to be better than [2]. In this pa-
per, we use the Bauer method of MVDR spectral factorization to
extract inverse filter [9] instead of the one employed in our earlier
pitch modification scheme [1]. Pitch synchronous speech frames are
inverse filtered to obtain residual signals. We follow similar proce-
dure of residual resampling proposed in [2] to achieve the required
pitch scaling of a given speech signal. Section 2 introduces MVDR
spectral modeling and its computation using LP coefficients.

2. SPECTRAL MODELING USING MVDR
Despite the popularity of LP as a method of spectral modelling, it
has its own drawbacks. LP model is more suited for low pitch speech
and its performance increases with the decrease in pitch frequency.
It does not model well the spectral envelope for medium and high
pitch voiced speech [8]. Further, if the model order of the LP filter is
increased, then the corresponding envelope overestimates the origi-
nal voiced speech power spectrum, resolving the harmonics and not
the spectral envelope. However, the MVDR provides a smooth spec-
tral envelope even when the model order is increased. Furthermore,
the MVDR spectrum is capable of modeling unvoiced speech, and
mixed speech spectra [8].

As in LP modeling of speech, MVDR spectrum for all frequen-
cies can be conveniently represented in a parametric form. The
MVDR spectrum can be simply computed as

PMV (ω) =
1

vH(ω)R−1
M+1v(ω)

, (1)

where RM+1 is the (M + 1) × (M + 1) Toeplitz autocorrelation
matrix of the data and v(ω) = [1, ejω, ej2ω, ..., ejMω]T . The above
equation represents the power obtained by averaging several sam-
ples at the output of the optimum constrained filter. This averaging
results in reduced variance [10]. The M th order MVDR spectrum
can be computed by the following fast algorithm proposed by Mu-
sicus [11].

PMV (ω) =
1�M

k=−M μ(k)e−jωk
=

1

|B(ejω)|2 (2)

where the MVDR coefficients, μ(k), are given by the non-iterative
computation, using the LP coefficients ak and the prediction error
Pe.

μ(k) =

��
�

1
Pe

�M−k
i=0 Laia

∗
i+k, k = 0, ..., M

μ∗(−k), k = −M, ...,−1

(3)

where L = (M + 1 − k − 2i). For real input signal {μ(k)} is
real and even (and so is 1

|B(ejω)|2 ). From (2), one can view MVDR

power spectrum as an all-pole power spectrum. We use spectral fac-
torization [12] to obtain a minimum phase stable filter 1

B(z)
, whose
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Figure 1: Spectral match between MVDR Bauer and an utterance
/A/ spoken by a volunteer (a) male and (b) female subject.

power spectrum equals the one computed in (2). This can be written
as

C(z) =

M�
k=−M

μ(k)z−k. (4)

A unique canonical factorization [12] of the form

C(z) = D(z)rD∗(1/z∗) (5)

is possible with D(z) being a minimum-phase M th-order polyno-
mial. Now, the inverse filter is then

B(z) =
√

rD(z) (6)

whose coefficients b(n) are guaranteed to be real because μ(k) are
also real. We can factorize C(z) directly for small model orders
[9] by extracting the polynome roots that lie inside the unit circle.
For higher orders, it was suggested in [9] to use iterative method to
approximate exact coefficients μ(k)’s. One can see that the former
approach has been considered in [1].

2.1. Extraction of Inverse Filter B(z) using Bauer Method
This technique [12] is based on the Cholesky decomposition of Toepl-
itz matrices, whose first column consists of the MVDR coefficients
(μ(k)’s, k positive). Let PN be the (N + 1) × (N + 1) Toeplitz
matrix; the sequence starts with

P0 =
�
μ(0)

�
, P1 =

�
μ(0) μ(1)
μ(1) μ(0)

�
... (7)

Given a PN matrix, we use Cholesky decomposition to get a (N +
1) × (N + 1) lower triangular matrix DN with a unit diagonal and
a (N + 1) × (N + 1)diagonal matrix rN , that satisfy the equation

PN = DNrNDT
N (8)

It has been shown by Bauer that, as k → ∞, the DNj elements on
the last line of DN in reversed order tend to the coefficients of the
D(z) polynome in (5). Further, rN , the (N + 1)th element of rN

tends to r. Further, it can be written as

B(z) � √
rN

M�
k=0

DN(N−k)z
−k

(9)

Figure 1 shows a spectral match between forward filter 1
B(z)

and

the fast Fourier transform spectrum for an vowel /A/ spoken by (a)
male and (b) female volunteers.

Figure 2: Block diagram of pitch modification using DCT/IDCT via
MVDR spectral modelling.

3. PITCH MODIFICATION METHOD
Our pitch modification algorithm uses DCT/IDCT based residual
resampling proposed in [2]. Further, we use Bauer MVDR spec-
tral factorization model in place of MVDR [1], LP and modified-
LP [2]. We note that the choice of MVDR model [8] in [1] has
been driven by its interesting spectral estimation properties, namely
minimum variance, low distortion and a better spectral match across
wide range of pitch values. In our algorithm, we utilize these proper-
ties to capture vocal tract responses using Bauer method and present
here through a block diagram representation, shown in Fig. 2.

The residual resampling procedure employed in [2] is repeated
here for the clarity of presentation. Input speech is pitch-marked
in voiced regions according to their pitch values and in unvoiced
regions pitch-marks are uniformly placed. LP coefficients are ex-
tracted from each input pitch synchronous (PS) speech frame. MVDR
coefficients are then computed from the LP coefficients using (3).
Subsequently, we use (9) to get B(z) from MVDR coefficients [9].
Further, the residual signal is extracted by passing PS speech frames
through the filter B(z). Here, pitch is modified in the residual do-
main using DCT. N1 point DCT of each frame of the excitation
signal is obtained, where N1 corresponds to the actual number of
samples in each extracted frame. An N2 point IDCT is then ob-
tained, where N2 corresponds to N1 divided by the pitch modifica-
tion factor. In the DCT domain, for pitch increase, N1 −N2 trailing
DCT coefficients are removed; whereas, for decreasing the pitch,
N2 − N1 zeros are added to the DCT coefficients. Before taking
IDCT, amplitude normalization must be carried out to compensate
for the effect of change in length of the residual signal. The modified
residue is used to re-synthesize the pitch modified speech using the
forward filter, 1

B(z)
. The durational effects due to our pitch mod-

ification setup on the modified speech are compensated by an ap-
propriate time-scaling factor using the well known algorithms like
TD-PSOLA [3] and WSOLA [13].

4. RESULTS AND DISCUSSION
To demonstrate the effectiveness of this technique, individual phone-
mes, words and sentences spoken by both male and female volun-
teers were extracted from the Tamil speech database with an average
SNR of about 40 dB with a sampling frequency of 16 kHz. These
utterances were analyzed and re-synthesized for different pitch fac-
tors. Figure 3(a) shows a speech segment /A/. Fig. 3(b) gives the
corresponding residual signal extracted by inverse filtering the above
signal using B(z) coefficients (LP model order 16). Fig. 3(d) shows
the length-modified residual signal obtained through DCT/IDCT,
the factor of increase in pitch being 1.3. Fig. 3(c) shows the corre-
sponding synthesized speech signal after forward filtering by 1/B(z)
coefficients. Fig. 3(f) shows the length-modified residual signal for
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Figure 3: (a) Few frames of the original signal /A/. (b) Few frames
of the original excitation.(c) Few frames of the signal reconstructed
by forward filtering the signal in (d) using 1/B(z) coefficients.(d)
Few frames of the modified excitation for a pitch increase factor of
1.3.(e) Few frames of the signal reconstructed by forward filtering
the signal in (f) using 1/B(z) coefficients. (f) Few frames of the
modified excitation for a pitch decrease factor of 0.7.

a pitch modification factor of 0.7. Fig. 3(e) shows the corresponding
synthesized speech signal after forward filtering.

The MVDR Bauer spectra of phoneme /A/ and pitch modified
signals are shown in Fig. 4 for pitch modification factors of 0.6,0.8,1.2
and 1.4 respectively. Phoneme /A/ is extracted from the original and
pitch modified sentence (/nAyanaklAran mella nAyanatlae udaTlil
waetlu pI pI enRu satlam pArtlAn/). The figures illustrate the fact
that noticeable deviations in the formant positions can be observed
for the factors outside 0.8 and 1.3. It is known that the speaker iden-
tity is not disturbed if the variation in the formant values is within
±15% [14] of the original values. To verify this, we evaluated the re-
sultant speech for speaker identity as reflected by the (mean opinion
score) MOS, in addition to other attributes. The MOS of the modi-
fied signals is found to be better than the TD-PSOLA [3], modified-
LP method [2] and MVDR [1]. Figure.5 shows the speech signal for
a whole sentence /nAyanaklAran mella nAyanatlae udaTlil waetlu pI
pI enRu satlam pArtlAn/, its original pitch contour and the contours
after pitch change using the technique involving MVDR coefficients
for two factors 1.3 and 0.7.

To evaluate the performance of the proposed technique, we con-
ducted subjective and objective tests. We employed an objective
measure, Modified bark spectral distortion (MBSD, [15]) that is
closely related to subjective performance. This estimates speech
distortion in the loudness domain, taking into the account the noise
masking threshold in order to include only audible distortions in
the calculation of the distortion measure. This new addition of the
noise masking threshold replaces the empirically derived distortion
threshold-value used in the conventional bark spectral distortion [15].
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Figure 4: MVDR Bauer spectra of the original signal overlapped
with the MVDR Bauer spectra of the modified signals. (a) Pitch
modification factor = 0.6. (b) Pitch modification factor = 0.8. (c)
Pitch modification factor = 1.2. (d) Pitch modification factor = 1.4.

Since MBSD compares the distorted speech to the original speech,
its performance would be sensitive to the temporal misalignment
[15]. So a synchronization algorithm based on loudness domain is
applied prior to performing the MBSD. Higher distortion in modi-
fied speech results in MBSD score away from 0 and for lower, it is
close to 0.

Subjective and objective tests are conducted on 20 sentences
spoken by both male and female volunteers, each of which is having
a duration of about 1 min. We pitch modify these sentences us-
ing the proposed algorithm and compare with the TD-PSOLA [3],
modified-LP [2], and MVDR [1] methods, for a range of factors
from 0.5 to 1.5 with a step of 0.1, along with factors 1.8 and 2.0.
Ten people were asked to rate the pitch modified sentences in terms
of MOS by taking into account naturality, intelligibility and speaker
identity. A MOS of 5 indicates ’excellent’ and 1 indicates ’bad’ with
respect to naturality, intelligibility and speaker identity. The perfor-
mance comparison between our algorithm and the other methods
are presented in Table 1. From the table, we can see significant im-
provements in subjective and objective performances for our algo-
rithm over TD-PSOLA and modified-LP methods for pitch factors
between 0.8 to 1.3. Here, we know that the factors between 0.8 to
1.3 are useful in concatenative speech synthesis [2]. Better perfor-
mances of our algorithm can also be observed for factors outside 0.8
and 1.3. One can also see a meagre improvement in objective per-
formances and a good subjective MOS score over MVDR approach.
Here, we note that the MVDR Bauer has most of the spectral estima-
tion properties of MVDR [9]. Further, its causal structure minimizes
the number of filters required to achieve pitch modification.

It was noted in [9] that MVDR analysis could lead to better
results in fine discrimination of vocal tract transfer function and ex-
citation source. Hence, we believe that the improved performance
of our algorithm is attributed to good envelope match with low vari-
ance and minimal distortion of Bauer MVDR spectral factorization.
Further, we use the Cholesky decomposition of MVDR coefficient
to obtain B(z) [9] where MVDR coefficients are obtained using (3)
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Figure 5: Pitch contours of original utterance and after pitch modifi-
cation. (a) Waveform of the original utterance /nAyanaklAran mella
nAyanatlae udaTlil waetlu pI pI enRu satlam pArtlAn/. (b) Compar-
ison of pitch contours (factors 0.7 and 1.3).

with the LP model order equal to 16. Finally, problems regarding
bandwidth loss due to pitch lowering using residual resampling can
be compensated by having a high bandwidth original speech [2].

5. CONCLUSION
MVDR Bauer based spectral estimation is employed in our pitch
modification algorithm. Residual signal is obtained by inverse fil-
tering the pitch synchronous speech frames with MVDR Bauer co-
efficients. Pitch modification is achieved in the source domain using
DCT/IDCT based resampling [2]. Forward filtering is carried out
to obtain pitch modified speech. We have shown that the resulting
pitch modified speech has minimal deviations in formant positions
for factors from 0.8 to 1.3. We observe that the present algorithm
outperforms TD-PSOLA and modified-LP method in both objective
and subjective analysis and significant differences in performance
can be seen for the factors between 0.8 and 1.3. Moreover, we
can see a minor improvement in objective performance over MVDR
approach [1]. Considerable improvement in subjective scores over
MVDR can be observed for most of the factors. Further, introduc-
ing psychoacoustic scale in our algorithm would enhance the overall
pitch modification performance. Currently, we are working in this
direction.

6. REFERENCES

[1] R. Muralishankar, M. Ravi Shanker, and A. G. Ramakrish-
nan, “MVDR spectral estimation for DCT based pitch mod-
ification,” accepted, 3rd Language & Technology Conference,
October 5-7, 2007.

[2] R. Muralishankar, A. G. Ramakrishnan, and P. Prathibha,
“Modification of pitch using DCT in the source domain,”
Speech Communication, vol. 42, pp. 143–154, 2004.

[3] S. Roucos and A. Wilgus, “High quality time-scale modifica-
tion of speech,” Proc. ICASSP, pp. 493–496, 1985.

Table 1: Comparison of subjective and objective measures for dif-
ferent pitch modification schemes.

Pitch

Scale

Factor

TD-PSOLA Modified-LP MVDR MVDR-Bauer

MOS

Score

MBSD

Score

MOS

Score

MBSD

Score

MOS

Score

MBSD

Score

MOS

Score

MBSD

Score

0.5 1.1 4.99 1.6 2.55 1.7 2.41 2.2 2.32

0.6 1.7 4.28 1.8 2.03 2.5 1.92 2.8 1.68

0.7 2.1 3.33 2.3 1.67 3.0 1.43 3.3 1.36

0.8 3.1 2.11 3.3 1.21 3.6 0.96 3.9 0.78

0.9 3.3 0.94 3.7 0.67 4.2 0.33 4.3 0.31

1.1 3.5 4.71 3.8 1.42 4.2 0.41 4.3 0.32

1.2 3.1 4.95 3.4 2.18 3.8 0.52 4.1 0.39

1.3 3.0 5.07 3.1 2.24 3.5 0.81 3.9 0.67

1.4 2.6 5.11 3.0 2.61 3.2 1.3 3.6 1.06

1.5 2.3 5.24 2.5 2.83 3.1 1.82 3.5 1.52

1.8 2.0 5.48 2.1 3.21 2.7 2.26 3.4 2.01

2 1.9 5.56 1.8 4.17 2.2 2.63 3.3 2.41

[4] E. Moulines and F. Charpentier, “Pitch-synchronous waveform
processing techniques for text-to-speech synthesis using di-
phones,” Speech Communication, vol. 9, no. 5, pp. 453–467,
1990.

[5] F. Charpentier and M. Stella, “Diphone synthesis using an
overlap-add technique for speech waveforms concatenation,”
Proc ICASSP, pp. 2015–2018, 1986.

[6] W. B. Kleijn and K. L. Paliwal, Speech Coding and Synthesis.
Elsevier B.V, New York, 1995.

[7] F. M. Gimenez de los Galanes, M. Savoji, and J. M. Pardo,
“Speech synthesis system based on a variable decimation in-
terpolation factor,” Proc. ICASSP, pp. 636–639, 1995.

[8] M. N. Murthi and B. D. Rao, “All-pole modelling of speech
based on the minimum variance distortionless response spec-
trum,” IEEE Trans. Speech and Audio Pro., vol. 8, no. 3, pp.
221–239, 2000.

[9] A. Santarelli, M. Omologo, and L. Armani, “Separation of ex-
citation source and vocal tract transfer function via an MVDR
analysis of speech,” Proc. IEEE workshop on ASPAA, pp. 115–
118, Oct. 2003.

[10] P. Stoica and R. Moses, Spectral Analysis. Englewood Cliffs,
NJ: Prentice-Hall, 1997.

[11] B. R. Musicus, “Fast MLM power spectrum estimation from
uniformly spaced correlations,” Proc. IEEE Trans. Acou.
Speech Sig. Pro., no. 4, pp. 1333–1335, Oct. 1985.

[12] A. H. Sayed and T. Kailath, “A survey of spectral factorization
methods,” Numerical linear algebra with applications, vol. 08,
pp. 467–496, 2001.

[13] W. Verhelst and M. Roelands, “An overlap-add technique
based on waveform similarity (WSOLA) for high-quality
time-scale modification of speech,” Proc.ICASSP, pp. 554–
557, 1993.

[14] M. Abe, “Speaking styles: Statistical analysis and synthe-
sis by a text-to-speech system,” Progress in Speech Synthe-
sis,Springer, New York, 1996.

[15] W. Yang, M. Benbouchta, and R. Yantorno, “Performance of
a modified bark spectral distortion measure as an objective
speech quality measure,” Proc. ICASSP, pp. 541–544, 1998.


