TIME-SCALING OF SPEECH AND MUSIC USING INDEPENDENT SUBSPACE ANALYSIS
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ABSTRACT

We propose a new technique for modifying the time-scale of speech
and music using Independent Subspace Analysis (ISA). To carry
out ISA, the single channel mixture signal is converted to a time-
frequency representation such as spectrogram. The spectrogram is
generated by taking Hartley or Wavelet transform on overlapped
frames of speech or music. We do dimensionality reduction of the
autocorrelated original spectrogram using singular value decompo-
sition. Then, we use Independent component analysis to get un-
mixing matrix using JadelCA algorithm [1]. It is then assumed that
the overall spectrogram results from the superposition of a num-
ber of unknown statistically independent spectrograms. By using
unmixing matrix, independent sources such as temporal amplitude
envelopes and frequency weights can be extracted from the spectro-
gram. Time-scaling of speech and music is carried out by resam-
pling the independent temporal amplitude envelopes. We then mul-
tiply the independent frequency weights with time-scaled temporal
amplitude envelopes. We Sum these independent spectrograms and
take inverse Hartely or wavelet transform of the sum spectrogram.
The reconstructed time-domain signal is overlap-added to get the
time-scaled signal. The quality of the time-scaled speech and music
has been analyzed using Modified Bark Spectral Distortion(MBSD)
[2]. From the MBSD score, one can infer that the time-scaled signal
is less distorted.

1. INTRODUCTION

Time-scale modification of speech or music refers to processing
performed on signals that changes the perceived rate of articula-
tion without affecting the pitch or intelligibility of the signals. Such
modification can be categorized into two classes: time-scale com-
pression (or speed-up) that increases the rate of articulation; and
time-scale expansion (or slow-down) that decreases the rate of ar-
ticulation. Time and frequency are important cues for the auditory
system. For example, they relate to the loudness and intensity of a
signal. Psychoacoustics also relies on time and frequency informa-
tion. For instance, increasing the time base of consonants during
speech increases intelligibility and comprehension. Additionally,
the temporal structure of speech itself is largely determined by the
periodic clousure of the glottis [3]. The relation between conso-
nant time base and comprehension leads to a variety of applications
for time-scaling. Time-scale compression is used in faster listening
of messages recorded on answering machines, voice mail systems,
and other information services. On the otherhand, the goal of slow-
down (time-scale expansion) is to aid in comprehension or dicta-
tion of rapidly spoken speech segments with important information,
such as an address or phone number. In the cellular phone industry,
prolonging relevant segments of speech in real-time might lead to

clearer conversations. In the case of music, time-scaling is also used
as a tool for composing music.

Several algorithms have been developed to achieve time-scale
modification based on the inherent structure of the audio signal.
Time-domain techniques rely on the periodic nature of speech, while
analysis/synthesis techniques exploit redundancies in the signal to
reduce the speech waveform to a limited set of time varying pa-
rameters. Time-domain techniques operate by inserting or deleting
segments of audio signal, which can result in discontinuities in the
transition between inserted or deleted segments. The Time-domain
harmonic scaling (TDHS) algorithm [4] determines the local pitch
by employing multiple correlations of signal segments. A triangu-
lar windowing function is aligned with the pitch periods and the
resulting segments are added such that pitch periods are inserted or
deleted to create a time-scale modified signal. The algorithm re-
quires exact pitch determination to operate successfully. It provides
good quality in the class of low complexity time-domain algorithms.
There are a few alternatives to this method, such as Synchronized
Overlap-Add (SOLA), which was originally proposed by Roucos
and Wilgus [5], and Waveform Similarity Overlap-Add (WSOLA),
proposed by Verhelst and Roelands [6]. These techniques have low
complexity and operate in the time-domain, but do not rely on pitch
tracking. As these methods use fixed window lengths and fixed
windowing intervals, they have advantages for real-time implemen-
tation and are being used in both speech and music time-scaling.

In the fequency-domain techinques, Phase vocoder (voice coder)
[7] is the most popular method for time and frequency scaling. This
is mainly because of its efficient implementation using FFT [8]. It
separates a signal into its instantaneous phase and amplitude com-
ponents, which could then be used to modify time-scale or pitch-
scale of a signal. Portnoff [9] proposed a vocoder based time-scale
modification scheme using short-time Fourier transform. Present
day time-scaling techniques use wavelets instead of constant band-
width spectral analysis of FFT, to best match the non-uniform char-
acteristics of human auditory systems.

Our method uses fixed frame length to generate spectrograms
of speech and music signals. Similarly, frame lengths were also
chosen for music signals. However, from our observation, for get-
ting a good time-scaled speech, one needs to choose frame length
depending on approximate pitch period of the signal under consid-
eration. Real transform has been used to generate the spectrogram
to avoid handling of phase at the reconstruction stage. We reduce
the dimension of the spectrogram followed by Independent compo-
nent analysis (ICA). To achieve the required time-scaling, we re-
sample the independent temporal envelopes. Finally, we add all the
time-scaled independent spectrograms and resynthesise to get the
time-scaled signal.



2. INDEPENDENT SUBSPACE ANALYSIS(ISA)

Casey’s innovation in ISA [10] was to take a mono signal (that
cannot ordinarily be unmixed directly using ICA) and perform a
change of basis operation before employing canonical ICA tech-
niques. Based on redundancy reduction techniques, it represents
sound sources as low dimensional independent subspaces in the
time-frequency plane. ISA makes a number of assumptions about
the nature of the signal and the sound sources present in the signal.
The single channel speech mixture is assumed to be a sum of ’p’
unknown independent sources,

P
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Taking Hartley transform of the signal and using the ’k’ coefficients
for *m’ frames yields a spectrogram of the signal, S of dimension
k x m, where k is the number of frequency channels, and m is the
number of time slices. From this, it can be seen that each column of
S contains a vector which represents the frequency spectrum at time
1, with 1 <1 < m. Similarly each row can be seen as the evolution
of frequency channel over time, with 1 < ¢ < k. It is assumed
that the overall spectrogram S results from the superposition of I’
unknown independent spectrograms S;. As the superposition of
spectrograms is a linear operation in the time-frequency plane this
yields:
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It is then assumed that each of the S; can be uniquely repre-
sented by the outer product of an invariant frequency basis func-
tion f;, and a corresponding invariant amplitude envelope or weight
function *¢;” which describes the variations in amplitude of the fre-
quency basis function over time. This yields

S; = fitj ©)
Summing S; yields
l
S=> fit @)
j=1

In practice, the assumption that the frequency basis functions are
stationary means that no change in pitch can occur within the spec-
trogram. Casey and Westner [10] overcame this assumption by
breaking the signal into smaller blocks within which the pitch can
be considered stationary.

The independent basis functions correspond to features of the
independent sources, and each source is composed of a number of
these independent basis functions. The basis functions that compose
a sound source form a low-dimensional subspace that represents the
source. The basis functions are selected based upon capturing max-
imum variance present in the spectrogram (optimal information for
source separation). Once the low-dimensional subspaces have been
identified, the independent sources can be resynthesized. In our
approach, we do resampling of the amplitude envelope or weigh-
ing function ¢; before resynthesizing to achieve the required time-
scaling.
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Fig. 1. Block diagram of Time-scaling using ISA.

3. TIME-SCALING USING ISA

Figure 1 shows the block diagram of time-scale modification using
ISA. A description of the preprocessing and the calculation of in-
dependent frequency basis function and amplitude envelope is pre-
sented in detail in the following subsections.

3.1. Preprocessing

The speech data is divided into a number of frames with an over-
lap equal to half the frame length. Here, the frame-length has been
chosen based on twice the average pitch period of the speech sig-
nal. It is windowed using a hamming window and mapped to the
spectral domain using real transforms such as Discrete cosine trans-
form (DCT), Discrete sine transform (DST) or Hartley transform.
We have also used sub-band based approach to map the speech data
into the spectral domain. We get the spectrogram after the mapping,
where it has ‘&’ frequency bins and “m’ frames (time slices).

3.2. Singular value decomposition

Consider a transposed spectrogram as the matrix S7. Its singular
value decomposition (SVD) is given by

sT=upv” (5)

The application of SVD is equivalent to the eigenvalue decomposi-
tion of the covariance matrix S7. Standard SVD algorithms return
a diagonal matrix D of singular values in decreasing order and two
orthogonal matrices U& V. Matrix U = (t1, ...t ), also re-
ferred to as the row basis, holds the left singular vectors, which is
equal to the eigenvectors of SST. Matrix V' = (w1, .....v,,) also re-
ferred to as the column basis, holds the right singular vectors equal
to the eigenvectors of S”S. The singular vectors are linearly inde-
pendent and therefore provide the orthonormal basis for a rational
transform in the directions of the principal components.

3.3. Reduction of dimensionality

The SVD orders the basis vectors according to the size of their sin-
gular values. The singular values represent the standard deviations
of the principal components of S. These standard deviations are
proportional to the amount of information contained in the corre-
sponding principal components. A maximally informative subspace
of the input data S is obtained by applying the following procedure.



__Alinear transformation G is calculated as given below, where
D is a submatrix consisting of the upper ’d’ rows of D.

G=DvV" (6)

The transformation matrix G is multiplied with the spectrogram S,
yielding a representation S of reduced rank and maximally infor-
mative orientation:

S=GS U]

The number ’d’ of retained dimensions is a meaningful parameter of
the spectrogram. However, from our observations, a limited number
(30 to 70) of dimensions is sufficient for getting good resynthesized
speech. Dimensions fewer than this lead to an incomplete decom-
position and hence poor resynthesized speech, while more dimen-
sions give no reasonable improvement in the perceived resynthe-
sized speech. Higher dimensions also increase the computational
load.

3.4. Independent component analysis (ICA)

Source separation model is a transformation, where the observa-
tions x are obtained by a multiplication of the source signals s by
an unknown mixing matrix A. The reduced rank spectrum S can
be interpreted as an observation matrix, where each column is re-
garded as realizations of a single observation. In this work, the Jade-
ICA algorithm [1] is applied for the estimation of A. It minimizes
higher order correlations by joint approximate diagonalization of
eigen matrices of cross cumulant tensors. The estimated matrix A
is used to calculate the independent components. Its pseudo-inverse
A~ represents the unmixing matrix, using which the independent
sources can be extracted. The reduced rank spectrogram S is mod-
ified to obtain the independent temporal amplitude envelopes T'.

T=A"'S (8)

The independent frequency weights F' are estimated by the folow-
ing expression and a subsequent pseudo-inversion.

F'=47'q@ 9)

The independent spectrograms are computed by multiplying one
column of F' with the corresponding row of T,

Sc = Fu,cTc,v (10)

whereuw=1,.....,k,v=1,...,mandc=1,.....,d.

3.5. Time-scaling

We now resample T depending on the time-scale factor, i.e., for
factors > 1, we time-stretch the input signal and for factors < 1,
we time-compress it. We denote the resampled temporal amplitude
envelopes as T*. Finally, independent spectrograms are computed
(after resampling) by multiplying one column of F' with the corre-
sponding row of T, as shown below.

S: = Fu,cchv* (ll)
where u = 1,...,k, v* = 1,....,m*and c = 1, ...,d. For m* >

m, reconstructed speech is expanded in time and for m* < m,
reconstructed speech is compressed.
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Fig. 2. Time-scaling using ISA. (a) Few frames of the original sig-
nal. (b) Few frames of the signal time-scaled by a factor of 1.5. (c)
Few frames of the signal time-scaled by a factor of 0.7.

3.5.1. Sub-band ISA based Time-scaling

Sub-band based approach removes the restriction of fixed resolu-
tion and introduces multi-resolution in mapping from time-domain
to time-frequency domain. We call this as sub-band spectrogram.
To generate sub-band spectrogram, we use Biorthogonal wavelet,
because it exhibits the property of linear phase, which is needed for
signal and image reconstruction. Once we get the sub-band spec-
trogram, we follow the same steps as explained in previous subsec-
tions, to achieve time-scaling.

3.6. Reconstruction

After resampling of independent temporal amplitude envelopes, we
sum all the independent spectrograms and then inverse transform
the sum-spectrogram, to get time-domain signal, which is the resul-
tant of overlapped and time-scaled version of the input signal. The
time-domain signal is overlapped and added with the same frame-
length and shift. This removes the windowing effect in the time-
scaled signal.

4. RESULTSAND DISCUSSION

To evaluate the abilities of the present approach, we tested on spo-
ken sentences from different speakers. These sentences were recor-
ded using SM-58 microphone under less noisy conditions. As dis-
cussed previously, we chose the frame-length approximately equal
to twice the average pitch period of the signal under consideration.
Figure 2 shows few frames of time-expanded and compressed sig-
nals along with few frames of the original signal (Fig. 2(a)). In Fig.
2(b) and 2(c), we have shown few frames of ISA based time-scaled
signals for the factors 1.5 and 0.7, respectively. We can see small
temporal deviation of the time-scaled speech compared to original
speech and with the pitch being intact, as shown in Fig. 2. Figure
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Fig. 3. Time-scaled speech signals (left panel) and corresponding spectrograms (right panel). (a) original speech signal /kaveriya ugamas-
thana kodagu/. (b) Time-scaled speech signal (scaling factor = 1.5). (c) Time-scaled speech signal (scaling factor = 0.7)

3 shows the time-scaled speech signals and corresponding spectro-
grams, respectively. One can see the close matching of the spectro-
gram between original and time-scaled speech signals. We tested
our approach to time-scale music signals too. Music signal sam-
ples were taken from the recorded Carnatic classical music per-
formances from different artists. Figure 4 shows the time-scaled
music signals and corresponding spectrograms, respectively. We
can notice the close matching of the spectrograms of original and
time-scaled music signals.

To measure the quality of time-scaled speech, we used an ob-
jective measure that correlates well with the subjective quality mea-
sure. Among various objective measures, we use Modified Bark
Spectral Distortion (MBSD) [2]. This estimates speech distortion
in the loudness domain, taking into the account the noise mask-
ing threshold in order to include only audible distortions in the
calculation of the distortion measure. Its performance improve-
ment over Bark Spectral Distortion (BSD) has been presented in
[2]. BSD measure is the average squared Euclidean distance of es-
timated loudness of the original and the coded utterances. Even
though the conventional BSD measure showed a relatively high cor-
relation with mean opinion score (MOS), there are areas of possible
improvement. Motivated by the transform coding of audio signals,
which uses the noise masking threshold, the MBSD measure has
incorporated this concept of noise masking threshold into the con-
ventional BSD measure, where any distortion below the threshold
is not included for the calculation of distortion. This new addition
of the noise masking threshold replaces the empirically derived dis-
tortion threshold value used in the conventional BSD [2]. Since
MBSD compares the distorted speech to the original speech, its

performance would be sensitive to the temporal misalignment. So
a synchronization algorithm based on loudness domain is applied
prior to performing the MBSD [11]. Upon applying MBSD on our
time-scaled speech and music, the results were encouraging. The
distortion values are close to zero, indicating good quality and less
distortion in the time-scaled signals. Tables 1 and 2 show the MBSD
scores for speech and music, respectively. We can see little increase
in the distortion when we use fixed transform (Hartley) to generate
spectrogram compared to sub-band approach using wavelets. Little
increase in the distortion for the time-scaled speech and music can
be seen, as the factors move away from 1 in both directions.

5. CONCLUSION

We presented a new method for time-scale modification using ISA.
In this method, independent temporal amplitude envelopes have
been resampled to achieve the required time-scaling. The advan-
tage in our approach lies in the fact that we need to get independent
temporal amplitude envelopes and frequency weights only once for
a given speech or music signal. The MBSD measure indicates neg-
ligible distortion in the speech and music signals, time-scaled using
our method.
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