
Festival Based Maiden TTS System for Tamil Language

Sreekanth Majji†, Ramakrishnan A. G.∗

Electrical Engineering Department
Indian Institute of Science, Bangalore, India

∗ramkiag@ee.iisc.ernet.in
†m.sree4u@gmail.com

Abstract
In this paper we describe the first Text To Speech (TTS) system for the Tamil language based on Festival architecture. We discuss
practical implementation details and we have created and made use of an unit selection database using a phonetically rich Tamil speech
corpus with 1027 sentences. The paper gives comprehensive details about the various modules in the TTS developed using Festival. In
other words, we deal with how to add a new language to the existing set of languages in Festival, keeping the mathematical detail at
minimum. The prosody models supplied by Festival have been incorporated into TTS. An optimal coupling technique for joining the
units has been used for concatenation and waveform generation.

1. Introduction
Voice User Interfaces for IT applications and services

have become more and more prevalent for languages like
English, and are valued for ease of access, especially in
telephony-based applications. In a country like India,
where there is a rich multitude of languages and relatively
lower literacy rates, local language speech interfaces can
provide access to IT applications and services, through in-
ternet and/or telephone, to the masses. Given the increased
availability of digital content in local languages, there is a
real demand for speech synthesis systems for Indian lan-
guages.

Many commercial and laboratory TTS systems ex-
ist today, producing speech of varying quality. Festival
speech synthesis (FSS) system is one such system, devel-
oped at University of Edinburgh by Alan W Black et al.
Festival provides an environment for both speech synthe-
sis research and development. Festival can also be used as
a fully usable TTS system. The existing FSS system has
inbuilt American-English dialect, British-English dialect
and Spanish dialect language models. In the process of
building a Tamil TTS, we also build a language model for
Tamil and integrate it with Festival for its portable use.

2. Goal of the paper
The primary motivation of this work is to make a tech-

nological contribution that will form part of facilitating
blind people to read printed material in their own mother
tongue (to begin with, Tamil) from a book.

The fact that no good, high-quality TTS systems ex-
ist for any Indian language, is also a motivating factor for
our endeavor. Recently, HP Labs India has developed a
high quality TTS system for Hindi. We plan to build a
high quality TTS system in a south Indian language for our
laboratory research. We have created a phonetically rich
Tamil speech corpus by selecting 1027 sentences from a
huge Tamil text corpus, and developed a Tamil TTS sys-
tem. In this project, we also aim to understand the pro-
cesses involved in the development of TTS for any Indian
language. This will aid us in the future development of

TTS in other Indian languages.
Though work has been reported on text-to-speech

synthesis in Indian languages, they mostly use di-
phone/polyphone databases. Unit selection databases con-
tain multiple instances of different units, and hence cater
for the variability of speech in different contexts. So, unit
selection synthesizers have a better quality speech output
as compared to diphone or other concatenative type syn-
thesizers. Since Festival has a ready to use unit selection
module, we build a Tamil voice from a large speech cor-
pus, and proceed with the waveform synthesis by concate-
nation.

3. Building a Tamil Voice in Festival
This section describes the training stage, where we use

a labelled database to make a system capable of producing
a speech output. Training results in arrangement of the
units extracted from the database in a format from which
the units can be selected meaningfully and with ease. As
soon as the database is recorded and properly segmented
and labelled, training is carried out once for all. In Festival
this process is termed as building a voice.

For building a voice model, we use a single speaker
data corpus of 1027 sentences. A native Tamil speaker’s
voice was recorded in noise free conditions and sampled at
16 kHz. The corpus was manually segmented and labelled
using Praat software tool. We create a phoneset for Tamil
language which is required by the different sub-systems of
Festival

3.1. Text Analysis
The text sentences are written in Tamil using a soft-

ware tool iLEAP. iLEAP exports the Tamil text into
the standard ISCII format. We have developed a G2P
(grapheme to phoneme converter) tool for phonetically
transcripting the ISCII text. The G2P tool uses some syn-
tax and letter to sound (LTS) rules for converting the ISCII
format into Tamil phonetic format. There is no text nor-
malization done by G2P and text normalization has to be
done separately. In our work, we use normalized text for
training and testing purposes.

3.2. Utterance Structure
The utterance structure lies at the heart of Festival.

Festival’s basic object for synthesis is utterance, which
represents some chunk of text that is to be rendered as
speech. In general, the process of text to speech is to take
an utterance which contains a simple string of characters
and convert it step by step, filling out the utterance struc-
ture with more information until a waveform is built that
says what the text contains (Black, 2002).

The following information is essential for creating an
utterance structure

Segment Information For our Tamil TTS, we have cre-
ated a manually segmented and labelled speech corpus.
Segmental boundary is obtained directly from this infor-
mation.

Syllable Information We syllabify the segmented la-
bels into VC, CV, CVC, CCVC, CVCC combinations us-
ing a scheme script. At every instance of pause (#) char-
acter, we begin or break the text into a new syllable. We
actually require a linguistic syllabification module.

Word Information The database used has word bound-
aries marked with the word limiters (#) in the text sen-
tences. By this, the words in each of the sentences, along
with their timings, have been extracted.

Intonation Events Intonation events describe the fun-
damental frequency (F0) contour in a speech waveform.
We quantize the intonation in terms of peak F0, positive
tilt (slope towards the peak), and negative tilt (slope from
the peak) features.

Target-F0 Target-F0 describes the F0 values for a seg-
ment (phoneme). We calculate F0 values at the start, mid
and end point of the phoneme unit. The pitch is detected
using the builtin function (pda) in EST library. We use the
maximum peak F0 value as the Target-F0 feature. Other
alternative is to take average F0 value as the value of
Target-F0.

3.3. Clustering the Units
Festival uses cluster based unit selection, which re-

quires that we cluster the units in the database. The basic
approach (Alan W Black, 1997) is to cluster units within a
unit type (i.e. a particular phone) based on questions con-
cerning prosodic and phonetic context. Specifically, these
questions relate to information that can be produced by
the linguistic component, e.g. is the unit phrase-final, or
is the unit in a stressed syllable. Thus for each phone in
the database, a decision tree is constructed, whose leaves
are a list of database units that are best identified by the
questions which lead to that leaf.

To cluster the units in the database, we first define an
acoustic measure to quantify the distance between two
units of the same phone type. We use an acoustic vec-
tor which comprises Mel frequency cepstrum coefficients,
F0, power, and delta cepstrum. The acoustic distance be-
tween two units is simply the average distance for the vec-
tors of all the frames in the units plus x% of the frames
in the previous units, which helps ensure that close units
will have similar preceding contexts. More formally, we

use a weighted Mahalanobis distance metric to define the
acoustic distance Adist(U, V) between two units U and V
of the same phoneme class as:

if |V | > |U |

Adist(U, V) =
Wd ∗ |U |

|V |
∗

|U|∑
i=1

n∑
j=1

Wj(abs(Fij(U) − F(i∗|V |/|U|)j(V)))

SDj ∗ n ∗ |U |

(1)

where,
|V | = No. of frames in V
|U | = No. of frames in U
Fij(U) = Parameter j of frame i for unit U
Wj = Weight factor for parameter j
SDj = Standard deviation for parameter j
n = No. of parameters
This measure gives the mean weighted distance be-

tween units, with the shorter unit linearly interpolated to
the longer unit. Wd is the duration penalty weighing the
difference between the lengths of the two units. This
acoustic measure is used to define the impurity of a cluster
of units as the mean acoustic distance between all mem-
bers. The objective is to split clusters based on questions
to produce a better classification of the units.

Although the available questions are the same for each
phone type, the tree building algorithm will select only the
questions that are significant in partitioning that particu-
lar type. The features used for CART questions include
only those features that are available for target phones
during synthesis. In our experiments, these were: previ-
ous and following phonetic context (both phonetic identity
and phonetic features), prosodic context (pitch and dura-
tion including that of previous and next units), position
in syllable, and position in phrase. Different features are
significant for different phones by their very nature, for
example, a feature representing pitch is only rarely used
in unvoiced consonants.

3.4. Computing the Cepstrum Parameters
In order to cluster similar units in a database, we

build an acoustic representation of them. This is also
still a research issue but in the current work, we used
Mel cepstrum. Interestingly we do not generate these at
fixed intervals, but at pitch marks. Thus we have a para-
metric spectral representation of each pitch period. We
have found this a better method, though it does require
that pitchmarks are reasonably identified. The script file
make mcep takes wave files as input and gives the MFC
Coefficients of the signal. It assumes that the pitchmarks
(obtained using make pm wave) are already obtained for
that corresponding waveform for which MFCC’s are being
calculated.

3.5. Building the Clusters
The function build clunits is used for building

the unit clusters, and the function runs through the follow-
ing stages:

• The first stage is to load all the utterances in the
database, sort them into segment type and name them
with individual names.

• The next stage is to load the acoustic parameters and
build the distance tables. The acoustic distance be-
tween each segment of the same type is calculated
and saved in the distance table. Precalculating this
saves a lot of time as clustering will require this value
many times.

• The next stage is to feed the features that are used to
index the clusters. The function dump features
does this job. It calculates the feature values for
each unit in the database. The clusters are defined
with respect to the acoustic distance between each
unit in the cluster, but they are indexed by these fea-
tures. These features then become available at syn-
thesis time when no acoustic information is available.
Thus they include features like phonetic and prosodic
context rather than spectral information.

• Now that we have the acoustic distances and the fea-
ture descriptions of each unit, the next stage is to find
a relationship between the features and the acoustic
distances. This we accomplish using the CART tree
builder wagon (Black, 1996). It finds out questions
about which features best minimize the acoustic dis-
tance between the units in that class.

During tree building, wagon uses two important pa-
rameters. The first one is prune reduce. This gives
the number of elements in each cluster to be removed
in pruning. This removes the units in the cluster that
are furthest from the center. This helps in pruning
the tree without sacrificing the performance of clus-
tering, and at the same time saves time. The next pa-
rameter is cluster prune limit, which defines
the maximum number of units present in a cluster at
a tree leaf. This parameter is actually used in post
wagon build operation on the generated trees. This
is useful when there are large numbers of a particular
unit type which cannot be differentiated.

• The final stage in building a cluster model is to collect
the generated trees into a single file and loading the
unit catalogue, i.e. the list of unit names and their
files and position in them.

3.6. Summary of the Training Steps
The basic processes involved in building a waveform

synthesizer for the clustering algorithm are as follows.

• Collecting the database of general speech.

• Building utterance structures for the database

• Building coefficients for acoustic distances, typically,
some form of cepstrum plus F0.

• Building distances tables, precalculating the acoustic
distance between each unit of the same phone type.

• Providing each unit type with the selection features
(phone context, prosodic, positional).

• Building cluster trees with the features and acoustic
distances dumped by the previous two stages

• Building the voice description itself

4. Synthesizing an Utterance - Testing
In testing phase, the system is given a text input, and a

waveform is synthesized using the voice already built dur-
ing training. This section explains the processes involved
in the implementation of the waveform synthesizer.

4.1. Grapheme-to-Phoneme Conversion
The input to the Tamil TTS is Tamil sentence in ISCII

format. The phonemic transcription of the sentence is
found out using a program called G2P. This module de-
veloped by us uses a set of Letter-to-Sound rules, and a
mapping table to get the final output as a sequence of
phonemes in ASCII format. These phones are the ones
which are defined in the Tamil phoneset . The G2P in-
serts # symbols between words which can be later used to
delineate the words in the input sentence.

4.2. Intonation Model
We follow the tree intonation method, which is a so-

phisticated and correct approach to intonation modeling.
In this model, we assign F0 values for each segment of
the input text according to a tree-intonation model. We
treat syllables as the units of tree-intonation model.

A CART tree is built for the parameters F0 peak, pos-
tilt and negtilt for all the syllables in the training corpus.
The CART tree contains decision weights for the posi-
tive (postilt) and negative slope values (negtilt). We build
three linear regression models (LR) to compute F0 values
for start, mid-point and end-point targets of each segment
(phoneme) within a syllable. The F0 values are computed
by considering the contributions of the postilt, negtilt and
peak F0 values of the parent syllable. We assume the fol-
lowing;

• Start F0 : influenced by Peak F0 and positive slope
(postilt) of syllable unit

• Mid F0 : influenced by positive (postilt) and negative
slopes (negtilt) of syllable unit

• End F0 : influenced by Peak F0 and negative slope
(negtilt) of syllable unit

The three target F0 values of each segment within a sylla-
ble are computed using the LR formula

P = P0 + wi ? Fi + ...
P → Target Pitch value
Fi → postilt, negtilt and peak F0 weights (computed

from CART tree)
P0 → Default P if Fi = 0
wi →Weighing coefficients computed using least

squares technique (best fit for the observed data by mini-
mizing the sum of squares of the vertical deviations from
each data point in the line).

The whole idea is to find the appropriate F0 tar-
get value for each syllable based on available features
(postilt and negtilt), by training from data. A set
of features are collected for each syllable and a linear re-
gression model is used to model three points on each syl-
lable - start, mid, and end (Alan W Black, 2003). The pre-
dicted F0 values can be used to compute the target costs
used in the unit selection module.

4.3. Duration Model
Given a reasonable sized database we can measure

durations and features for each segment in the database.
Then we can train a model using those measurements. The
advantage is that we can include the contextual informa-
tion in predicting the duration. The features used for build-
ing the duration tree reflect the phonetic context. Once we
have the features and their descriptions, we use the pro-
gram wagon to build the tree, which is later used for pre-
dicting the duration. The CART tree implicitly contains
the context information, because of the way the splitting
occurs.

It has been found that a better representation for dura-
tion modeling is zscores, i.e. number of standard devia-
tions from the mean. In order to train a zscore model we
need to convert the absolute segment durations. To do that
we need the means and standard deviations for each unit
type in the phoneset.

For each phoneme in the input text, the features are
extracted, and the phoneme traverses through the tree de-
pending on the questions (about the features) at the nodes.
When it reaches a leaf node, the zscore values of the units
at the node are taken, their average is found out, and is
taken as the zscore of the phoneme under consideration.
To get the absolute value of duration from zscore, the fol-
lowing relation is used:

dur = zscore ∗ stddev + mean

where, mean and stddev correspond to the phoneme class
to which the current phoneme belongs.

The phonetic relations (segment, syllable, word) are
directly obtained from the input text that is converted as
a sequence of phonemes. Once all the relations (phonetic
and prosodic) required to create an utterance structure are
obtained, we build the utterance structure for the input sen-
tence.

4.4. Units in Festival
Though Festival has a unit selection synthesizer, the

scope of it is limited. This is because the size of units
is uniform - it is a phone. Hence the performance of
this system would be less as compared to the one using
non-uniform units. Even though there are multiple oc-
currences of the phonemes in different contexts through-
out the database, ultimately we will be concatenating
phonemes. Choosing phonemes as the units has the obvi-
ous disadvantage that the number of concatenation points
would be equal to the number of phonemes in the sen-
tence. The other drawback is that the number of candidate
units satisfying a given criterion would be very large. So
it affects the time consumed in finding the best sequence
of units using Viterbi search. Even it increases the time
to build the cluster selection trees, because the number of
distance calculations is expensively high.

One more serious problem is that the co-articulation
will not be effectively captured when phonemes are
joined. However, this has been partially overcome in Fes-
tival by cleverly choosing the unit. Though the basic unit
is phoneme, it is not always from the start of the phoneme

to the end of the phoneme. In fact, it is from the mid of
the previous phoneme to the end of the current phoneme.
The unit so selected is similar to a diphone, except that
it is not from middle of one phoneme to middle of the
next phoneme. Also, the number of occurrences is large
as compared to the single occurrence of a diphone in a
database.

4.5. Unit Selection
At synthesis time, we have a stream of target segments

that we wish to synthesize. For each target, we use the
CART for that unit type, and ask the questions to find the
appropriate cluster which provides a set of candidate units.
The function Tdist(U) is defined as the distance of a unit
U to its cluster center, and the function Jdist(Ui, Ui−1)
as the join cost of the optimal coupling point between a
candidate unit Ui and the previous candidate unit Ui−1

it is to be joined to. The actual measure of join cost is
a frame based Euclidean distance. The frame informa-
tion includes F0, Mel frequency cepstrum coefficients, and
power. Although this uses the same parameters as used in
the acoustic measure used in clustering, now it is neces-
sary to weight the F0 parameter to deter discontinuity of
local F0, which can be particularly distracting in synthe-
sized examples.

We use a Viterbi search to find the optimal path
through the candidate units that minimizes the following
expression:

N∑
i=1

Tdist(Ui) + W ∗ Jdist(Ui, Ui−1) (2)

W allows a weight to be set optimizing join cost over tar-
get cost. Given that clusters typically contain units that
are very close, the join cost is usually the more important
measure and hence is weighted accordingly.

4.6. Joining the Units
To join consecutive candidate units from clusters se-

lected by the decision trees, we use an optimal coupling
technique (Van Santen, 1997) to measure the concatena-
tion costs between two units. We take the last three frames
of the previous unit and the first three frames of the cur-
rent unit, and then find the acoustic distance between these
frames taken two at a time. This gives a total of 9 distances
for a pair of adjacent units. The pair of frames (called join
frames) which give the minimum distance are taken and
they are overlap added to concatenate. The frames in the
first unit to the right of the join frame are removed before
concatenation. Similarly, the frames in the second unit to
the left of the join frame are removed.

This technique offers two results: the cost of a join and
a position for the join. Allowing the join point to move
is particularly important when our units are phones: ini-
tial unit boundaries are on phone-phone boundaries which
probably are the least stable parts of the signal. Opti-
mal coupling allows us to select more stable positions to-
wards the center of the phone. If the previous phone in
the database is of the same type as the selected phone,
we use a search region that extends 50% into the previous

phone; otherwise the search region is defined to be within
the phone boundaries of the current phone.

Intelligibility Naturalness
subject-1 3.7 3.2
subject-2 3.2 3.5
subject-3 2.7 2.65
subject-4 3.5 3.33
subject-5 2.8 2.67
subject-6 3.0 2.8
avg. scores 3.2 3.0

Table 1: Average MOS scores given by subjects for 6 dif-
ferent synthesized Tamil sentences

5. Results and Conclusion
To evaluate the overall performance, perceptive eval-

uation was carried out. Six native Tamil speakers were
asked to rate the synthesized speech in terms of intelli-
gibility and naturalness on six different sentences. The
result of this evaluation (listed in Table 1) showed good
intelligibility and average naturalness.

Though the values of intelligibility and naturalness
seem to be encouraging, they are still low. This can be
attributed to the fact the output quality gets hampered by
restrictions posed by Festival to use phones as units. Such
type of units severely affect the coarticulation and the dis-
continuities at the joins, as explained in section 4.4.

The pitch contour of the synthesized speech showed
sudden jumps at joining points. Post processing tech-
niques are a definite alternative to smooth out such pitch
discontinuities. This would help improve the intelligibility
of the speech further.

Energy normalization of the output waveform can be
done to reduce large variations in the loudness levels of the
words across the sentence. The prosody models available
with Festival may not suit the Tamil language. Research
is yet to be done on the prosody models for Indian lan-
guages. When these things are taken care, there would be
an improvement in the naturalness of the synthetic speech.

6. References
Alan W Black, Kevin Lanzo, 2003. Building Synthetic

Voices. Carnegie Mellon University.
Alan W Black, Paul Taylor, 1997. Automatically cluster-

ing similar units for unit selection in speech synthesis.
Proceedings of Eurospeech 97, 2:601–604.

Black, Alan W, 1996. Edinburgh Speech Tools Documen-
tation. University of Edinburgh.

Black, Alan W, 2002. The Festival Speech Synthesis Sys-
tem. Carnegie Mellon University.

Van Santen, Richard Sproat, 1997. Progress in Speech
synthesis. Springer.

