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Abstract

The aim of this thesis is to define a perceptual scale for the ‘Time-Frequency’ analysis of

music signals. The equal tempered ‘Bach’ scale is a suitable scale, since it covers most of

the genres of music and the error is equally distributed for each semi-tone. However, it

may be necessary to allow a tolerance of around 50 cents or half the interval of the Bach

scale, so that the interval can accommodate other common intonation schemes. The thesis

covers the formulation of the Bach scale filter-bank as a time-varying model. It makes a

comparative study with other commonly used perceptual scales. Two applications for the

Bach scale filter-bank are also proposed, namely automated segmentation of speech signals

and transcription of singing voice for query-by-humming applications.

Even though this filter-bank is suggested with a motivation from music, it could also be

applied to speech. A method for automatically segmenting continuous speech into phonetic

units is proposed. The results, obtained from the proposed method, show around 82% ac-

curacy for the English and 85% accuracy for the Hindi databases. This is an improvement

of around 2 - 3% when the performance is compared with other popular methods in the

literature. Interestingly, the Bach scale filters perform better than the filters designed for

other common perceptual scales, such as Mel and Bark scales.

‘Musical transcription’ refers to the process of converting a musical rendering or perfor-

mance into a set of symbols or notations. A query in a ‘query-by-humming system’ can be

made in several ways, some of which are singing with words, or with arbitrary syllables, or

whistling. Two algorithms are suggested to annotate a query. The algorithms are designed to

be fairly robust for these various forms of queries. The first algorithm is a frequency selection

based method. It works on the basis of selecting the most likely frequency components at
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any given time instant. The second algorithm works on the basis of finding time-connected

contours of high energy in the ‘Time-Frequency’ plane of the input signal. The time domain

algorithm works better in terms of instantaneous pitch estimates. It results in an error of

around 10 - 15%, while the frequency domain method results in an error of around 12 - 20%.

A song rendered by two different people will have quite a few different properties. Their

absolute pitches, rates of rendering, timbres based on voice quality and inaccuracies, may

be different. The thesis discusses a method to quantify the distance between two different

renderings of musical pieces. The distance function has been evaluated by attempting a

search for a particular song from a database of a size of 315, made up of songs sung by both

male and female singers and whistled queries. Around 90 % of the time, the correct song is

found among the top five best choices picked.

Thus, the Bach scale has been proposed as a suitable scale for representing the perception

of music. It has been explored in two applications, namely automated segmentation of

speech and transcription of singing voices. Using the transcription obtained, a measure of

the distance between renderings of musical pieces has also been suggested.
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TX : Number of samples in rendering X̂EX(k) : Energy contour of rendering X∀k ∈ [1, TX ]

D(i, j) : Distance between phrases or renderings i and j

Fft : High resolution Fourier transform of the signal

ω : Angular frequency

[RLbase(n), RHbase(n)] : The range of the nth filter in angular frequency

Sft(base) : The sum contribution of magnitude of the Fourier transform

of the signal towards the filter-bank designed for base frequency

tr : Time resolution in seconds



Chapter 1

Introduction

1.0.1 History of TF Representations

Speech and audio signals have engaged the interest of man since time immemorial. The

Indian grammarians, as early as the 7th century CE had tried to categorize and study

speech signals. Later, Sir Isaac Newton recognized the relation between vowel qualities and

resonances. Kratzenstein in 1779 and von Kempelen in 1791 [1], were among the first to

devise mechanical resonators, which made successful imitations of the various phones used

in speech. Later, Bell [2] formalized the study of speech in the form of the universal phonetic

language. The Bell research labs contributed to the field of electronic speech synthesis in

a big way. The first most significant contribution was the ‘VODER’ [3] of Homer Dudley

in 1939, which was later modified and suitably enhanced using complete band-compression

systems, based on the principles of speech analysis and synthesis. The most notable of these

was the ‘Vocoder’ [1], which spawned a subfield of communication engineering.

Practically every aspect of speech communication has been greatly benefitted from the

widespread application of short-time analysis methods. Systems for speech recognition, syn-

thesis and coding, segment the speech into short intervals, analyzing each segment of speech

under the implicit assumption that the signal is stationary over the interval [4]. The work

horse of most linguistic experts and speech and audio engineers has been the spectrogram

(illustrated in figure 1.1) ever since its invention by Bell laboratories in 1942. It is true

that the audio signal spectrogram contains a great deal of detailed information about speech

waves. Its real value, however, lies in the organization of that information into a ‘picture’.

The ‘Pattern Playback’ [5], developed by Frank Cooper in 1950, worked like the inverse

1
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Figure 1.1: Spectrogram of the Hindi sentence ‘/bha:lu: bana: du:t
¯
/’

of a sound spectrograph, i.e. it had a mechanism to convert a spectrograph into a corre-

sponding speech like sound signal. Instead of real spectrograms, it was also possible to use

fake spectrograms painted by hand. By means of perception experiments performed with

signals produced in this way, it was possible to obtain a series of new cognitions about the

perceptual role of various details in the spectra of speech signals.

However, the Time-Frequency (TF) trade-off of the spectrogram is a well-known draw-

back of short-time analysis. Using a short window for good time resolution reduces the

frequency resolution, and vice-versa. Another interesting drawback is that the frequency

response of the vocal tract is very different when the glottis is open than from the response

when it is closed. There is a large variation in the short-time energy of the speech waveform

within a single pitch period during the closure. Thus, frequency analysis using a window

duration in the order of a single pitch period will produce significantly different results de-

pending on the location within that duration. Using a window that encompasses several

pitch periods will effectively smooth out these variations, but will also blur transient events,

such as plosives.

Besides the trade-off in resolution, there is an underlying inaccuracy of short-time analy-

sis methods for non-stationary signals. While the spectrogram gives an accurate estimate of

the instantaneous frequency of a pure tone, it has been shown by Smits [6] that amplitude

modulation causes a bias in the peak of the spectrogram away from the true instantaneous

frequency. Using the peak of a spectrogram to measure the instantaneous frequency or



Chapter 1. Introduction 3

equivalently the sweep rate of a formant transition will result in a biased estimate, underes-

timating the sweep rate. [7]

In order to overcome these shortcomings in analyzing non-stationary signals, several TF

approaches have been suggested. Broadly, they are categorized into three, namely TF distri-

butions, statistical or parametric and perceptual models. Wigner distribution, Choi-Williams

distribution, CK distribution, and Cohen-Posch distribution are some of the commonly used

TF distributions for analyzing audio and speech signals [7]. Among statistical/parametric

methods, HMM based methods [8], time-varying AR [9], ARMA models [10], modeling the

non-stationarity using Kalman filter representation [11], and AM-FM decomposition [12] are

the common approaches.

A great deal of TF research has been motivated by human signal interpretation. Since the

task at hand is audio and speech analysis, human hearing may provide insight into defining

a potentially useful speech representation. The first of the perceptual scales, namely, the

‘Mel’ scale [13] was proposed by Stevens in 1936. It is a subjective scale for the measurement

of pitch constructed from determinations of the half-value of pitches at various frequencies.

The corresponding filter-bank is roughly described as linear at low frequencies, with fixed

bandwidth, and logarithmic at higher frequencies, with constant-Q bandwidth. Mel spec-

trograms and Mel cepstral co-efficients [14] have been used widely.

Another perceptual scale, the Bark scale [15], is based on the critical bandwidth of mask-

ing. It has been reasoned that the progressive reduction in bandwidth of a masking noise

will reduce the threshold of a pure tone located at the center of the band only when the

noise components actually effective in masking the tone begin to be eliminated. The break

should occur at the critical bandwidth. Reducing the bandwidth to less than critical should

lower the masked threshold by an amount equal in decibels to the reduction in total power;

increasing bandwidth beyond critical width should leave the threshold unchanged. Filter-

banks constructed with critical bandwidths have also been popular.

Perceptual properties have also been incorporated into short-time parametric speech pro-

cessing techniques. One such approach is perceptual linear predictive (PLP) analysis [16].

In PLP, the speech spectrum is first pre-emphasized and transformed to a critical band
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spectrum and compressed using a cube-root operation to approximate the intensity-loudness

relationship [17]. The resulting perceptual spectrum is then inverse-transformed to the auto-

correlation domain, and then the Yule-Walker equations are solved for the all-pole model

of the perceptual spectrum. One potential advantage of PLP is that fewer parameters are

needed to model the speech spectrum due to the data reduction inherent in the perceptual

representation. An approach to the robustness in a noisy environment, inspired by certain

perceptual phenomena, is known as relative spectra (RASTA) [18]. In this technique, speech

parameters are band-pass filtered in time. RASTA provides reduced sensitivity to additive

noise and channel effects.

1.0.2 Theory of Music Semi-tones

In case of music signals, the most apparent pitch based perceptual property is the division

of an octave into 12 semi-tones. This is valid for almost all genres of music. (There are

genres which use 19, 22 or 31 semi-tones per octave). The oldest tuning intonation, namely

the Pythagorean intonation, used the system of pure fifths. This tuning was used in the

medieval era. It had several short-comings, namely the ‘dissonant third’ and ‘wolf fifth’ [19].

The ‘Just ’ or the ‘Helmholtz’ tuning for the chromatic scale [20], developed in the Renais-

sance, was based on consonance of the notes. This tuning used the fact that if the interval

between two notes is a ratio of small integers (such as 2/1, 3/2, or 4/3), they sound good

together - they are consonant rather than dissonant. The ‘Just ’ intonation used these ratios.

But, though some intervals of notes sound perfectly consonant, some other intervals were

quite dissonant. Besides, musicians could not play a particular song at any key they wished

to.

The great 17th century musician J. S. Bach implemented the ‘equal tempered scale’ [21],

which allowed musicians greater flexibility. It is a compromise tuning scheme. The equal

tempered system uses a constant frequency multiple of 2(1/12) or 1.059 between two consec-

utive notes of the chromatic scale. This ratio is equal to 100 cents in the perceptual scale.

Hence, in spite of playing a musical piece in any key of choice, the dissonance is kept below

1% as shown in table 1.1 [21]. The ‘Bach’ scale or the ‘Equal tempered intonation’ is the

most common scale in all modern Western and Indian music. The modern music pieces
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played with any other intonation method would sound rather dissonant, but medieval music

pieces played with a ‘Bach’ intonation sound passably consonant

Table 1.1: Comparison between just intonation and equal tempered intonation

Name Ratio in 12 Equal Just Intonation Percentage

Tempered Intonation Ratio Difference

Unison 1.0 1/1 0.00%

Minor Second 1.059 16/15 -0.68%

Minor third 1.189207 6/5 -0.91%

Major third 1.259921 5/4 +0.79%

Perfect fourth 1.334840 4/3 +0.11%

Diminished fifth 1.414214 7/5 +1.02%

Perfect fifth 1.498307 3/2 -0.11%

Minor sixth 1.587401 8/5 -0.79%

Major sixth 1.681793 5/3 +0.90%

Minor seventh 1.781797 16/9 +0.23%

Major seventh 1.887749 15/8 +0.68%

Octave 2.000000 2/1 0.00%

In the context of Indian Classical Music, the interval between two chromatic notes is

divided into 1, 2 or 3 ‘shruthis’ giving a total of 22 ‘shruthis’. Each shruthi corresponds to

approximately 50 cents in the perceptual scale. It must be noted that the octave is divided

into 22 ‘shruthis’ only for tuning purposes. For a given ‘raaga’ only 12 specifically tuned

notes are available per octave. Table 1.2 shows the intonation scheme for the 22 ‘shruthis’

of Indian classical music [22].

We can observe from table 1.2 that they are not evenly spaced. The difference between

each of the 22 ‘Shruthis ’ and the closest equal tempered scale is always less than equal to

20 cents.
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Table 1.2: 22 ‘shruthis’ of Indian classical music
Name of ‘shruthi ’ Frequency Frequency Closest Frequency in

ratio (cents) Equal tempered scale (cents)

‘Shadja’ 1/1 0 0

‘Ekashruthi Rishabha’ 256/243 90 100

‘Dvishruthi Rishabha’ 16/15 112 100

‘Trishruthi Rishabha’ 10/9 182 200

‘Chatusshruthi Rishabha’ 9/8 204 200

‘Shuddha Gandhara’ 32/27 294 300

‘Sadharana Gandhara’ 6/5 316 300

‘Antara Gandhara’ 5/4 386 400

‘Chyutha Madhyama Gandhgara’ 81/64 408 400

‘Suddha Madhyama’ 4/3 498 500

‘Tivra Suddha Madhyama’ 27/20 520 500

‘Prati Madhyama’ 45/32 590 600

‘Chyuta Panchama Madhyama’ 729/517 610 600

or 64/45

‘Panchama’ 3/2 702 700

‘Ekashruthi Daivatha’ 128/81 792 800

‘Dvishruthi Daivatha’ 8/5 814 800

‘Trishruthi Daivatha’ 5/3 884 900

‘Chatusshruthi Daivatha’ 27/16 906 900

‘Shuddha Nishada’ 16/9 996 1000

‘Kaisiki Nishada’ 9/5 1018 1000

‘Kakali Nishada’ 15/8 1088 1100

‘Chyuta Shadja Nishada’ 243/128 1110 1100

‘Tara Shadja’ 2/2 1200 1200

1.0.3 Motivation for ‘Bach’ Scale Representation and Applications

of the Representation

The aim of this thesis is to define a perceptual scale for ’Time-Frequency’ analysis of music

signals. The equal tempered ‘Bach’ scale seems the most suitable scale, since it covers most
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of the genres of music and the error is equally distributed for each semi-tone. However, it

may be necessary to allow a tolerance of around 50 cents or half the interval of the ‘Bach’

scale, so that the interval can accommodate the other common intonation schemes. The

thesis covers the formulation of the ‘Bach’ scale filter-bank and discusses two applications

of the filter-bank; one in Automated Segmentation of Speech Signals and the other in Tran-

scription of Singing Voices. Further, the thesis discusses a method to quantify the distance

between two different renderings of a musical piece.

Chapter 2 develops the formulation of the time-frequency representation obtained from

the ‘Bach’ scale filter-bank along with its properties. It must be noted that the represen-

tation is a shift from the usual short-time stationary model of speech and audio signals.

The chapter also shows a comparative study between the proposed ‘Bach’ scale and other

perceptual based scales.

Even though this filter-bank is built with a motivation which lies in music, it could also be

applied in speech applications. Chapter 3 shows an application of the ‘Bach’ filters in auto-

mated speech segmentation. It suggests a method for automatically segmenting continuous

speech into phonetic units. The method which employs a time-varying model to represent

speech, shows slightly better performance as compared to previously suggested methods. It

is also shown in Chapter 3 that the ‘Bach’ scale performs comparably, if not better than

other perceptual scales defined in the context of speech signals.

Chapter 4 deals with the automated transcription of singing voices. Two algorithms are

suggested and both show encouraging results. The transcription is compared against man-

ually transcribed data. The algorithms are designed so that the transcription is reasonably

robust for the possible ways a query can be made by a user, for example, humming, singing

with words and whistling. Another important feature of the algorithm is that only relative

pitch is obtained as compared to an absolute pitch. In the context of a Query by Humming

system, this is acceptable, since queries will have a pitch which is different from the original

rendition of the musical piece.

The same song rendered by two different people will have quite different properties. They

may have a different absolute pitch, different rates of rendering, different timbres based on
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voice quality and different inaccuracies. So, in order to find distances between two different

renderings, the two renderings need to be normalized based on the absolute values of pitch

and rate of rendering. By pitch extraction, the variation in timbre and inaccuracies in pitch

are taken care of. However, the varying rates are not compensated for. In order to address

this, a dynamic distance measure needs to be calculated. Chapter 5 defines a distance func-

tion to find the distance between any two renderings of musical pieces.



Chapter 2

Formulation of the Filter-bank

This chapter deals with formulation of a generalized TF representation considering a time-

varying model of the speech signal. The formulation has been adapted for the ‘Mel ’, ‘Bark

and ‘Equivalent Rectangular Bandwidth’ perceptual frequency scales. The ‘Bach’ scale for-

mulation has also been proposed and a comparative analysis has been made with the above

scales.

2.1 Time-Frequency Representation

The formulation of the TF representation is similar to the Filter-Bank Summation (FBS)

method [23]. The speech signal is filtered by a bank of ‘M ’ band-pass filters, each shifted

in frequency by a fixed factor. So we have ‘M ’ filtered versions of the same speech signal.

Consider the‘nth’ such version of the signal. The energy around the ‘nth’ frequency compo-

nent of the signal around a time instant ‘k’ will be equal to the ‘kth’ output energy of the

‘nth’ filter-bank.

Fk(n) = Fn(k) = abs(hn(k)
⊗

s(k)) (2.1)

where s(k) is the input speech signal. hn(k) is the band-pass filter designed around centre

frequency ‘n’. The symbol
⊗

represents linear filtering. The feature vectors, Fk(n)∀k 1 ≤
k ≤ T and Fn(k)∀n 1 ≤ n ≤ M , are the two 2-D representations of the signal s(k). The

two representations will be used interchangeably henceforth. It must be noted here that this

representation of a time-series (signal s(k)) is a time-varying representation as against a short

time representation, since every single time sample has a unique frequency representation.

The first filter is centered around a ‘base’ frequency, which is an arbitrary starting frequency.

9
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Usually, it is in the range of 20 to 80 Hz, since the spectral information of speech and audio

signals starts in that region. The filter-bank is only an analysis filter-bank and not a perfect

reconstruction one. So, the strict condition of perfect reconstruction, the ‘FBS’ constraint

[23], is not applicable.

Assuming ‘m’ filters per octave, we can calculate ‘M ’, the maximum number of filters,

starting at the ‘base’ frequency and with a sampling frequency of ‘Fs’ Hz

M = m ∗ log2

(
Fs

2 ∗ base
)

(2.2)

Since we are looking at a musical perceptual scale, namely the 12 semi-tonal equal tempered

Bach scale, we take m = 12. In order to make a just comparison with the other perceptual

scales, we assume the same parameters of m and base for all scales, e.g. for m = 12, Fs=

11000 Hz and base = 55 Hz, we obtain M = 79.

The centre frequencies (fc(n)∀n 1 ≤ n ≤ M) of the filters of an arbitrary scale are

obtained by uniformly dividing the respective frequency scales by M .

Sscale(n) = scale(fc(n)) − scale(fc(n− 1)) (2.3)

where ‘Sscale(n)’ is the shift in the frequency for every next filter and the function scale

converts the frequency in Hz to the particular scale.

2.2 Comparison of Scales

Filter-banks have been designed for four auditory scales namely the ‘Mel ’ or the Radio scale,

the ‘Critical Band Rate’ scale (CRB) or ‘Bark ’ scale, ‘Equivalent Rectangular Band ’ (ERB)

rate scale and the ‘Bach’ scale. The first filter for all the banks is shifted by ‘base’ frequency

and number of filters per octave is m.

2.2.1 Mel Scale

The approximation of the experimental data for Mel scale is given by Beranek [24],

mel(f) = 1127 ∗ ln
(

1 +
f

700

)
(2.4)
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where f is the frequency in Hz. The relation between Mel scale and the frequency in Hz is

shown in figure 2.1. The inverse relation is given by

f(mel) = 700 ∗
(
e
mel
1127 − 1

)
(2.5)

The shift for every next filter is given by

Smel =
mel(Fs/2) −mel(base)

M
(2.6)

To calculate the actual centre frequencies of the filters,

fc(1) = mel(base)

fc(2) = f(mel(fc(1)) + Smel)
...

fc(n) = f(mel(fc(n− 1)) + Smel)

(2.7)

The bandwidth formulation is given by

Bmel(f) =

700 ∗
⎛⎝emel(f) + Smel

1127 − e
mel(f) − Smel

1127

⎞⎠
2

(2.8)

Figure 2.2 shows the bandwidth plot for the Mel scale.
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Figure 2.1: The Mel scale as (a) linear and (b) semilog plots
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Figure 2.2: The bandwidth of Mel scale as (a) linear and (b) semilog plots

2.2.2 Bark Scale

The approximation of the experimental data for Bark scale is given by Beranek [24],

z(f) =
26.81

1 + 1960
f

− 0.33 (2.9)

where f is the frequency in Hz. The relation between the Bark scale and the frequency in

Hz is shown in figure 2.3. The inverse relation is given by

f(z) =
1960

26.81
(z + 0.33)

− 1
(2.10)

The shift for every next filter is given by

Sz =
z(Fs/2) − z(base)

M
(2.11)

To calculate the centre frequencies of the filters,

fc(1) = z(base)

fc(2) = f(z(fc(1)) + Sz)
...

fc(n) = f(z(fc(n− 1)) + Sz)

(2.12)

The bandwidth formulation is given by

BBark(f) =
52548

z(f)2 − 52.56 ∗ z(f) + 690.39
(2.13)
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Figure 2.4 shows the bandwidth plot for the Bark scale.
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Figure 2.3: The Bark scale as (a) linear and (b) semilog plots
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Figure 2.4: The bandwidth of Bark scale as (a) linear and (b) semilog plots

2.2.3 Equivalent Rectangular Bandwidth (ERB) Scale

The approximation of the experimental data for ERB scale is given by Moore [25],

e(f) = 11.17 ∗ ln
(
f + 312

f + 14675

)
+ 43.0 (2.14)
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where f is the frequency in Hz. The relation between ERB scale and the frequency in Hz

is shown in figure 2.5. The shift for every next filter and the centre frequencies of the filters

are calculated as in the previous cases.

The bandwidth formulation is given by

Be(f) = 6.23 ∗ 10−6 ∗ f 2 + 9.393 ∗ 10−2 ∗ f + 28.52 (2.15)

Figure 2.6 shows the bandwidth plot for the ERB scale.
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Figure 2.5: The ERB scale as (a) linear and (b) semilog plots

2.2.4 Bach Scale

The formulation of the relative Bach scale which is a constant Q scale (Q = 17) [26] is as

follows

Bach(f) = 12 ∗ log2

(
f

base

)
(2.16)

where f is the frequency in Hz. The relation between the relative Bach scale and the

frequency in Hz is shown in figure 2.7. The inverse relation is given by

f(Bach) = base ∗ 2
Bach

12 (2.17)
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Figure 2.6: The bandwidth of ERB scale as (a) linear and (b) semilog plots

The centre frequency of the nth filter can directly be calculated by,

fc(n) = base ∗ 2
n
12 (2.18)

There are two possible bandwidth formulations

1. Linear with respect to the centre frequency : In this formulation, the bandwidth

of the nth filter is given by

BbachL(n) =
base ∗

(
2
n+1

2 − 2
n−1

2

)
2

(2.19)

Figure 2.9 shows the bandwidth plot for the Bach scale in the linear formulation. This

formulation is the most suitable for music signals because the bandwidth is equal to

50 cents in perceptual frequency or half the interval between semi-tones.

2. Non-linear with respect to the centre frequency : The formulation gives an

exponential relation between the bandwidth and the centre frequency. In this formu-

lation, the bandwidth of the nth filter is given by

BbachN(n) = base ∗
⎛⎜⎝2(2

(n−1)∗log2(
M−12

12 )
M − 1)

⎞⎟⎠ (2.20)

Figure 2.9 shows the bandwidth plot for the Bach scale in the non-linear formulation.
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Figure 2.7: The Bach scale in (a) linear and (b) semilog plots
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Figure 2.8: The bandwidth of Bach scale in the linear formulation as (a) linear and (b)

semilog plots

Figure 2.10 compares the values of centre frequencies in Hz with respect to the Bach

scale, while figure 2.11 compares the bandwidths in each scale.

2.3 Construction of Filters

The filters designed are lag-windows obtained by the standard Blackman-Tukey spectral

estimation method [27]. The design objective is to reduce the leakage incurred by the

window hn(k) as much as possible given the bandwidth fb(n). fb(n) is the bandwidth of the
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Figure 2.9: The bandwidth of Bach scale in the non-linear formulation as (a) linear and (b)

semilog plots
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Figure 2.10: The comparison of the centre frequencies of different scales

nth filter of an arbitrary scale. hn(k) is considered a sequence whose DTFT Hn(ω) is the

squared magnitude of another sequence vn(k) so that the solution of the constructed window

is positive semi-definite.

hn(k) =
N(n)−1∑
j=0

vn(j)v∗n(j − k) (2.21)

where N(n) is the number of coefficients allowed for the nth filter. The objective can be

reformulated to that of minimizing the relative energy in the side-lobes or maximizing the



Chapter 2. Formulation of the Filter-bank 18

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Frequency (Hz) −−−>

B
an

dw
id

th
 (

H
z)

 −
−

−
>

Mel scale bandwidth
Critical Bandwidth
Equivalent rectangular Bandwidth
Bach non−linear bandwidth formulation
Bach linear bandwidth formulation

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Frequency (Hz) −−−>

B
an

dw
id

th
 (

H
z)

 −
−

−
>

Mel scale bandwidth
Critical Bandwidth
Equivalent rectangular Bandwidth
Bach non−linear bandwidth formulation
Bach linear bandwidth formulation

Figure 2.11: The comparison of the bandwidths of different scales as (a) linear and (b)

semilog plots

relative energy in the main lobe. Let us assume the parameter β, such that,

β =
fb(n)

2
(2.22)

Thus, we have to find

max
ω

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ βπ

−βπ
Hn(ω)dω∫ π

−π
Hn(ω)dω

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.23)

The solution boils down to finding the eigen-vector associated with the maximum eigen

value of the matrix with elements

γm,n = β ∗ sinc[(m− n) ∗ β ∗ π] (2.24)

where

sinc(x) =

⎧⎨⎩ = 0 if x = 1

= sin x
x otherwise

(2.25)

The number of filter coefficients, N(n), used to generate the nth filter is determined by

N(n) = 2 ∗ round
(

1

fb(n)

)
(2.26)

From figures 2.12 and 2.11, we can see that the time resolution is poor for lower frequen-

cies but better for higher frequencies. So we get the paradoxical ability to get better time
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Figure 2.12: The comparison of the no. of coefficients of filters for different scales as (a) as

a function of relative Bach value and (b) as a function of frequency in Hz

resolution for higher frequencies and better frequency resolution for lower frequencies. From

equation 2.26, we also infer that the filter coefficients are real, symmetric and finite, so the

phase responses are linear.

The final set of filters hn(k) are obtained by modulating the low-pass filters hn(k) with

the corresponding centre frequency value fc(n)

h̃n(k) = hn(k) ∗ e
−2πj ∗ k ∗ fc(n)

Fs (2.27)

where j is the square root of -1.

The magnitude responses of the set of filters constructed by the Bach linear and non-

linear scales are shown in figures 2.13 and 2.14 respectively. We can observe that the filters

in the linear formulation are narrow band as compared to the ones in the non-linear formu-

lation. There is a considerable overlap of the filter pass-band frequencies in the non-linear

formulation. The filters are almost triangular with minimal overlap in the linear formula-

tion. Thus, the linear formulation is more suitable for music signals. However, because of

the better time resolution of the filters in the non-linear formulation, they may be useful for

speech signals.
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Figure 2.13: The magnitude responses of the filters of the Bach scale (a) linear formulation

(b) non-linear formulation with base = 55Hz and Fs = 11000 Hz

Figure 2.14: The log magnitude responses of the filters of the Bach scale (a) linear formula-

tion (b) non-linear formulation with base = 55Hz and Fs = 11000 Hz

2.3.1 Equal Loudness Pre-emphasis

The function E(f), is an approximation of the non-equal sensitivity of the human ear given

by [16]. It simulates the sensitivity of hearing at approximately the 40db level.

E(f) =
((2π ∗ f/Fs)2 + 56.8 ∗ 106) ∗ (2π ∗ f/Fs)4

((2π ∗ f/Fs)2 + 6.3 ∗ 106)2 ∗ ((2π ∗ f/Fs)2 + 0.38 ∗ 109) ∗ ((2π ∗ f/Fs)6 + 9.58 ∗ 1026)
(2.28)

Each of the windows is pre-emphasized by the equation 2.28

ĥn(k) = h̃n(k) ∗ E(fc(n)) (2.29)



Chapter 2. Formulation of the Filter-bank 21

Finally, the last operation is the cubic-root amplitude compression

hn(k) = (ĥn(k))0.33 (2.30)

This operation is an approximation to the power law of hearing [13] and simulates the nonlin-

ear relation between the intensity of sound and its perceived loudness. Figures 2.15 and 2.16

shows the pre-emphasized windows. Though the emphasis seems heavily biased towards the

higher frequencies from the magnitude response in Figure 2.15, the log magnitude responses

in Figure 2.16, show the real picture, because it imitates the response of the human ear more

closely. So we can see that only a slight bias is given to the higher frequencies. Now the

filter-bank hn(k)∀n 1 ≤ n ≤ M is ready to be used in various applications such as speech

and music signal processing.

Figure 2.15: Pre-emphasized magnitude responses of the filters of the Bach scale (a) linear

formulation (b) non-linear formulation with base = 55Hz and Fs = 11000 Hz

2.4 Bach-o-gram

The feature space, Fn(k)∀n 1 ≤ n ≤ M , obtained from equation 2.1 can be plotted as

the TF representation of the signal s(k). Similar to the spectrogram, a Bach-o-gram can be

plotted as shown in figure 2.17. We can see the significant formants of the signal are spread

over the wider area of the spectrum, rather than concentrated in the lower areas as in a

spectrogram. The formants are related to each other logarithmically.
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Figure 2.16: Pre-emphasized log magnitude responses of the filters of the Bach scale (a)

linear formulation (b) non-linear formulation

Figure 2.17: The Bach-o-gram of a sample hindi sentence ‘/bha:lu: bana: du:t
¯
/’



Chapter 3

Language Independent Automated

Speech Segmentation

3.1 Introduction and Motivation

Current speech technology development strongly relies on corpus-based methodologies and

therefore on the availability of good speech corpora. For a corpus to be really useful for

the development of speech recognizers or speech synthesizers, apart from the speech itself,

it should contain information about its contents (labeling) and about the time alignment

between the labels and speech (segmentation).

Phones are usually considered the smallest units of speech, by the concatenation of which

any other speech unit (syllable, word, phrase, etc.) can be built. Not surprisingly, phonetic

segmentation and labeling are very desirable and useful in a speech corpus. The most precise

way to obtain this information is manually. However, manual phonetic labeling and (partic-

ularly) segmentation are very costly and require much time and effort.

In speech recognition systems, post processing based on language models, tends to smooth

errors caused by improper segmentation. However, this liberty cannot be taken for concate-

native synthesis based Text-to-Speech (TTS) systems. In the development of both concate-

native acoustic unit inventories, and prosodic models, it is usual to select single examples

instead of relying on an average language model. Thus, a segmentation error will produce an

audible error in the synthetic voice [28]. This need for extremely precise segmentation has

led speech synthesis to rely on manual segmentation for years. During the last few years,

however, the need to develop new voices and languages quickly and with high quality (which

23
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frequently implies large inventories) has evoked the interest in automatic segmentation tech-

niques, which do not require large amounts of training data.

Finally, it is worth mentioning that some researchers believe that speech recognition can

benefit from more precise segmentation in training or decoding [29].

The earliest attempts at automated segmentation were using the spectrogram of the sig-

nal and counting the number of zero-crossings in a region of speech [30],[31]. Van Hemert

used the intra frame correlation measure [32] between spectral features to obtain the seg-

ments. Statistical modelling (AR, ARMA) [33] has also been used. HMM based automated

phonetic segmentation [34] requires a great amount of training, but provides excellent re-

sults. The most popularly used feature vector based methods are the Spectral Transition

Measure (STM) and the Maximum Likelihood (ML) segmentation methods [35]. Another

method called A-LCR, which uses average level-crossings has been suggested by Sarkar [36].

Natarajan and Murthy [37] have used group delay functions to segment speech into sylla-

ble like units. All the cited methods do not need training except the HMM based algorithms.

Segmentation methods can be divided into two main categories, namely implicit seg-

mentation and explicit segmentation [32]. Implicit segmentation splits up the utterance into

phonetic segments without explicit information such as the phonetic transcription. It uses an

implicit definition for a segment, like spectral stability or number of zero-crossings. Explicit

segmentation methods split up the utterance into segments that are explicitly defined by

phonetic transcription. Explicit methods are not language independent, since the phoneme

inventory and phonetic reference patterns are required. In general, the start-up time for a

new TTS system can be minimized by initially using an implicit method of segmentation

and then going onto an explicit method, with manual intervention.

The motivation to develop a language independent, automated, implicit segmentation

technique is to minimize the time required in porting a TTS system available in a particular

language to another language. This is a necessity in an environment like in India, where

multiple languages are in vogue, while standard data is unavailable for most of the languages.

Chapter 2 developed a time-varying TF representation of a signal s(k). Several filter-
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banks were discussed, based on various perceptual scales. This chapter endevours to come

up with scheme to perform segmentation of the speech signal using the proposed TF repre-

sentations, and to make a comparative performance analysis of the various perceptual scales.

3.2 Two Class Problem

Speech is considered as a sequence of quasi-stationary units : phones. Segmentation should

ideally segregate the signal into such quasi-stationary units. However, due to co-articulation

effects, the boundaries are not clearly defined.

Consider the kth speech sample from s(k). The feature vectors obtained from equation

2.1 are Fn(k). The filter-bank could be based on any of the scales that are discussed in

Chapter 2. Consider a length of ‘W ’ seconds, which is equal to w number of samples. Where

w =
W

Fs
(3.1)

The samples from [s(k−w) to s(k)] can be considered one class with corresponding feature

vectors Fn(k−w) to Fn(k). Say these belong to class ‘X’. The samples s(k) to s(k+w) with

feature vectors Fn(k) to Fn(k+w) belong to class ‘Y ’. The choice of ‘W ’ is made empirically

as demonstrated in Figure 3.2

Several distance functions (DF ) can be defined which denote the dissimilarity between

the two classes. For every sample k ∈ [1, T ] of s(k), a corresponding DF (k) can be found

using the distance measures described in section 3.3, where T is the total length of the signal

s(k).

By the definition of a phone, the dissimilarity or distance between the classes X and Y

on either side of the kth sample, should be maximum when k is on a phone boundary. The

segment boundary is attributed to the point of maximum difference between the two regions

of a sample of speech, which corresponds to a peak in the distance function, as shown in

Figure 3.1. The intensity of the peak is not relevant for segmentation; the mere presence

denotes a phone boundary. The peak detection, is not merely a local maxima detection

problem. This is because of the presence of noise in the DF (k), leading to several false
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positives. So it may be necessary to determine the maximum value in a region R, rather

than just the local maxima. It is achieved by the following method

If DF (k) = max
i = k − r : k + r

(DF (i))

then Peak(k) = 1

else

Peak(k) = 0

end if

(3.2)

where R is chosen empirically as demonstrated in Figure 3.3 and

r =
R

Fs
(3.3)

3.3 Distance Functions

Let us consider a two class problem where ’X’ and ’Y’,

X = {x1, x2, x3, . . . , xw}
Y = {y1, y2, y3, . . . , yw}

(3.4)

are the two classes with means μX and μY .

xi and yi are M dimensional vectors, samples of class X and Y , respectively.

μX =

w∑
i=1

xi

w μY =

w∑
i=1

yi

w

(3.5)

The following distance measures can be formulated :-

1. Euclidean Distance of Mean Features (EDM) :

EDM(X, Y ) = ‖μX − μY ‖ (3.6)

2. Euclidean Distance of Mean Log Features (EDML) :

μX =

w∑
i=1

log10 xi

w μY =

w∑
i=1

log10 yi

w

(3.7)

EDML(X, Y ) = ‖μX − μY ‖ (3.8)
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Figure 3.1: (a) A sample speech waveform (b) A Distance function (EDM ) plotted over

k ∈ [1, T ]. The vertical lines correspond to the manual segments.

3. Normalized Euclidean Distance of Mean Log Features (NEDML) :

υX = ‖μX‖ υY = ‖μY ‖ (3.9)

NEDML(X, Y ) =
(μX − μY )T (μX − μY )

υXυY
(3.10)

4. Kullback-Leibler Distance (KLD) [38] : It is an asymmetric distance function. In

case of discrete random variables, pX and pY are the ’probability mass functions’ of

classes X and Y , respectively.

KLD(X, Y ) =

∥∥∥∥∥∥
+∞∑
j=−∞

(
pX(j) ∗ loge

(
pX(j)

pY (j)

))∥∥∥∥∥∥ (3.11)
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5. Itakura-Saito Distance (ISD) [4] : It is a symmetric distance function defined for

discrete random variables, where pX and pY are the ’probability mass functions’ of

classes X and Y , respectively.

ISD(X, Y ) =

∥∥∥∥∥∥
+∞∑
j=−∞

(
pX(j)

pY (j)
− loge

(
pX(j)

pY (j)

)
− 1

)∥∥∥∥∥∥ (3.12)

6. Mahalanobis Distance (MD) [39] : The MD between μX and μY is defined for

covariance matrix CXY , assuming that X and Y have the same distribution.

MD(X, Y ) =
√

(μX − μY )TC−1
XY (μX − μY ) (3.13)

3.4 Comparative Analysis

3.4.1 Definition of Accuracy

The quality of automated segmentation is evaluated by comparing the output with manually

segmented databases. If an automated segment boundary falls within ±20 ms of a manually

segmented boundary, then it is considered to be a ‘Matched Phoneme Boundary’ (MPB). If

more than one automated segment boundary falls within ±20 ms of a manual boundary or no

manual boundary is found within ±40 ms of an automated boundary, then such boundaries

are considered to be ‘Insertions’ (Ins). On the other hand, if no unique automated boundary

is found within ±40 ms of a manual boundary, then it is considered a ‘Deletion’ (Del).

3.4.2 Description of Data

The results are obtained for 100 sentences of English data from the (Fs = 16000 Hz) TIMIT

database for both male and female speakers. The data has a Signal to Noise Ratio (SNR)

of 36 dB. 100 sentences of Hindi and Tamil data have also been segmented. The Hindi and

Tamil data have a sampling frequency (Fs) of 44.1 KHz and an SNR of 30 dB. The data

available for Hindi and Tamil are only that of a male voice.

3.4.3 Comparison with Other Methods

The following methods have been used as a comparative basis to study the proposed method.
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1. ML Segmentation [35] using MFCC with a symmetric lifter (1 + A ∗ sin(1/2(n/L)),

where (A = 4, L is the MFCC dimension = 16).

2. Spectral Transition measure (STM) [35] using feature vector and lifter combination.

3. Average level crossing rate method (A-LCR), as described in [36], using non-uniform

level allocation.

Table 3.1 compares the performances of the proposed method and the other standard

methods. The proposed method does marginally better in terms of ‘MPB’ percentage. How-

ever, the standard methods use information such as the number of phonemes and location

of silences as information in order to obtain the correct phoneme boundaries. The proposed

method using EDML and a Bach Linear scale filter-bank gets comparatively better results

without using such information.

Table 3.1: Comparison between various segmentation methods on the TIMIT database

Segmentation Method Used %MPB %Del %Ins

ML [35] 80.8 19.2 18.8

STM [35] 70.1 29.9 25.2

A-LCR [36] 79.8 20.2 24.2

EDML with Bach(Lin) scale 82.5 22.3 18.9

3.4.4 Comparison between Various Audio Scales Using the EDML

Distance Measure

The results presented in Table 3.2 are for filter-banks with 79 filters and the base frequency

is taken to be 55 Hz. The filters are designed for Fs = 11 KHz. The speech samples are

re-sampled to 11 KHz before applying the algorithm. The value of ’W’ and ’R’ are taken as

40 ms and 15 ms, respectively, as seen in Figures 3.2 and 3.3.

From Table 3.2, we can see that the Bach linear and the Bach non-linear scales perform

comparably, if not marginally better than the Mel or Bark scales. We can, however, see

a significant difference in the number of false inserted phone boundaries between the Mel

and Bark scales as against the Bach scales. However, it can be noted that the number of

deletions of the boundaries are higher in case of the Bach linear case.
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Figure 3.2: The analysis of the effect of ‘W ’ on the %Deletions, %Insertions and accuracy

of the segmentation algorithm for 20 Hindi sentences.

Table 3.2: Comparison of segmentation performances of the various filter-bank scales for

TIMIT database
Audio frequency scale %MPB %Del %Ins

Mel (Eqn. 2.7 and 2.8) 78.1 16.5 68 .1

Bark (Eqn. 2.12 and 2.13) 78.1 17.9 50.1

ERB (Eqn. 2.14 and 2.15) 76.3 18.9 52.4

Bach (Lin) (Eqn. 2.18 and 2.19) 82.5 22.3 18.9

Bach (Non-Lin) (Eqn. 2.18 and 2.20) 79.3 17.4 20.4

3.4.5 Comparison of Performances of Different Distance Functions

The results presented in Table 3.3 compare the performances of the various distance measures

described in section 3.3 for the Hindi database. They are all calculated using the Bach linear

scale filter-bank formulation. It can be observed that EDML and NEDML perform better

than the other distance functions both in terms of accuracy as well as % Deletions and
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Figure 3.3: The analysis of the effect of ‘R’ on the %Deletions, %Insertions and accuracy of

the segmentation algorithm for 20 Hindi sentences.

Insertions. Figure 3.4 shows a comparison between the segment boundaries detected by the

EDML, EDM and the NEDML functions.

3.4.6 Comparison for Different Languages

Table 3.4 compares the segmentation performance of the proposed method using the Bach

Linear scale formulation on different languages using the EDML distance function. It can

be seen that the performance for the three languages namely English, Hindi and Tamil are

comparable.

3.5 Comparative Studies for Phoneme Classes

Phonemes from most Indian languages can be divided into 10 classes namely ‘vowels’ (VV),

‘nasalized vowels’ (NV), ‘diphthongs’ (DD), ‘stop consonants’ (SC), ‘aspirated stop conso-

nants’ (AS), ‘fricatives’ (FF), ‘nasals’ (NN), ‘glides’ (GG), ‘/r/ and /R/’ phonemes (RR)
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Table 3.3: Comparison of performances between the various distance functions on the ‘Hindi’

database
Distance function %MPB %Del %Ins

EDML 86.6 3.2 21.4

EDM 80.6 4.5 25.6

NEDML 84.7 2.5 39.8

KLD 41.6 21.4 46.3

ISD 69.9 15.5 34.0

MD 35.2 35.2 37.3

Figure 3.4: The plots of EDML, EDM and NEDML against time. The vertical lines indicate

the actual phone boundaries

and silence (SS). A study has been made to compare the performance of each of the distance

functions mentioned in section 3.3 for individual phoneme classes.

Table 3.5 shows the comparative %Insertions for individual phoneme classes by the var-
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Table 3.4: Comparison of the performance of EDML using Bach Linear filter-bank for various

languages

Language %MPB %Del %Ins

English (TIMIT) 82.5 22.3 18.9

Hindi 86.6 3.2 21.4

Tamil 81.9 15.3 23.7

ious distance functions. The distance function with the best performance for each phoneme

class is highlighted. This study is done using the Bach Linear filter-bank for 100 Hindi

sentences. Similarly, Table 3.6 shows the comparative %Deletions for individual phoneme

classes by the various distance functions.

Table 3.5: Comparison of %Insertions for various distance functions grouped by phoneme

class
Phoneme Class EDML EDM NEDML KLD ISD MD

VV 16.9 29.7 30.3 54.6 41.8 57.6

NV 54.5 54.4 50 54.5 63.6 54.5

DD 52.3 133.3 100 64.5 80.6 92.5

SC 17.4 12.7 44.7 45.3 36.0 23.8

AS 42.1 36.8 55.2 57.8 28.9 34.2

FF 22.8 41.4 38.5 82.8 52.8 55.7

NN 11.3 6.3 12.6 35.4 22.7 11.3

GG 5.7 13.0 15.9 15.9 11.5 21.7

RR 5.0 7.5 11.3 7.5 3.7 5.6

SS 3.8 0 21.1 34.6 19.2 17.3

As can be seen from Tables 3.5 and 3.6, various distance functions perform to a varying

degree of accuracy for different phoneme classes.
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Table 3.6: Comparison of %Deletions for various distance functions grouped by phoneme

class
Phoneme Class EDML EDM NEDML KLD ISD MD

VV 7.65 5.4 9.0 12.5 13.1 30.8

NV 27.2 9.1 18.1 18.1 22.7 18.1

DD 0 4.7 0 5.1 7.7 6.1

SC 9.3 16.8 8.1 23.8 11.0 46.5

AS 18.4 15.7 5.2 28.9 7.9 44.7

FF 10.0 10.0 10.0 10.0 17.1 41.4

NN 3.8 10.1 2.5 27.8 17.7 21.5

GG 10.1 13.0 10.1 26.0 31.8 31.8

RR 7.5 3.7 5.0 40.5 21.5 41.7

SS 14.2 47.6 14.2 14.2 11.9 33.3

3.6 Comparative Studies for Filters from Individual

Octaves

It is also interesting to study the effect of finding the EDML function only for filters from

single octaves. It is obvious that when considering some octaves, the performance would be

better than for other octaves.

In fact, it can be observed from Table 3.7, that when considering the fourth octave

alone, the %MPB is better than when considering all the octaves together. However, the

%Insertions is higher than, when we combine all the octaves. Thus, combining all the octaves

gives the best compromise over accuracy and insertions. However, study of how different

octaves perform for different phoneme classes is also interesting. Tables 3.8 and 3.9 show

the comparative %Inserions and %Deletions, respectively, for individual phoneme classes by

the various octaves.

We can see that the mid and lower octaves perform the best for vowels, stop consonants

and nasals, while the higher mid and higher octaves perform better for fricatives, glides and

silence regions. Thus it may be possible to exploit this information, when the phonemic
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Table 3.7: Comparison of performances between filters for individual octaves on the ‘Hindi’

database using EDML distance measure

Octave %MPB %Del %Ins

Octave 1 (50 - 100 Hz) 72.7 4.6 54.7

Octave 2 (100 - 200 Hz) 71.3 4.4 37.1

Octave 3 (200 - 400 Hz) 81.3 3.0 29.9

Octave 4 (400 - 800 Hz) 86.8 2.9 29.3

Octave 5 (800 - 1600 Hz) 84.8 2.7 35.3

Octave 6 (1600 - 3200 Hz) 85.4 2.3 39.0

Octave 7 (3200 - 6400 Hz) 85.6 1.8 50.1

All (50 - 6400 Hz) 86.6 3.2 21.4

Table 3.8: Comparison of %Insertions for filters for individual octaves grouped by phoneme

class
Phoneme Oct 1 Oct 2 Oct 3 Oct 4 Oct 5 Oct 6 Oct 7 All

Class

VV 62.6 43.7 34.9 26.5 32.3 41.9 65.4 19.9

NV 108.0 79.2 59.1 49.4 52.5 71.7 100.0 43.9

DD 138.0 109.5 85.7 66.6 95.2 90.4 123.8 52.3

SC 53.9 29.3 21.7 33.5 39.9 37.3 39.4 30.2

AS 84.7 71.0 68.1 76.7 77.1 79.0 76.0 57.4

FF 75.4 51.3 44.4 52.3 70.3 71.2 69.0 24.7

NN 37.6 34.7 23.1 21.4 26.3 26.2 28.1 11.3

GG 28.3 21.2 17.2 16.0 20.4 21.0 30.4 11.2

RR 12.3 9.9 12.0 8.9 8.4 9.4 13.4 5.5

SS 20.1 3.1 2.9 2.7 4.8 4.4 2.9 2.1

sequence is available. In order to improve the accuracy it may be possible to give variable

weights to the octaves, based on the phonemic group that the phoneme to be segmented falls

under.
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Table 3.9: Comparison of %Deletions for filters for individual octaves grouped by phoneme

class
Phoneme Oct 1 Oct 2 Oct 3 Oct 4 Oct 5 Oct 6 Oct 7 All

Class

VV 2.2 2.2 2.4 2.8 2.2 1.8 0.8 3.3

NV 5.5 4.5 4.0 6.5 3.0 2.0 1.0 6.0

DD 4.7 4.7 0 0 0 0 0 0

SC 6.4 3.9 2.5 2.2 2.6 2.7 2.1 2.3

AS 5.9 6.6 3.6 3.7 2.3 2.6 3.0 4.3

FF 6.1 5.0 2.3 2.9 2.1 1.2 1.6 3.8

NN 6.3 7.8 3.0 1.9 2.0 1.9 2.7 1.3

GG 7.2 9.5 5.5 4.7 5.7 4.9 3.6 5.9

RR 4.6 6.5 5.3 1.5 2.2 1.2 1.3 1.7

SS 4.8 3.7 3.5 5.3 7.8 5.1 5.1 5.3

3.7 Conclusions and Future Work

As we can see from Table 3.1, the proposed method using a time varying model with a Bach

linear filter-bank formulation, performs relatively better than the other methods suggested

for language independent automated segmentation. This result is surprising, especially since

many a research has shown that the perception of intonation in speech signals is closer to

the ERB scale [40], than the logarithmic ‘Bach’ scale, as in the case of music signals. The

EDML function performs the best among the suggested distance functions. The proposed

method requires minimum training and is language independent.

However, in order to be able to use it for segmentation of the database of a new lan-

guage, the method is not accurate enough. To improve the accuracy of the segmentation, it

is necessary to use explicit information such as the phonetic transcription, if available. In the

context of TTS systems, the phonetic transcription is available. Training can be conducted

on the basis of the knowledge of the spectral and temporal structure of individual phones, or

phoneme classes. Tables 3.5 and 3.6 show that it is possible to exploit the various distance

functions for different phoneme classes and Tables 3.8 and 3.9 show the same for different

octaves.
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Future work may also include comparative study of Bach scale with respect to other

scales in various other applications of speech processing such as, recognition and coding. It

may be useful to derive Bach cepstral coefficients and Bach linear predictive coefficients, in

order to have a fair comparison between Bach scale and other perceptual scales.



Chapter 4

Singing Voice Transcription

4.1 Introduction and Motivation

‘Musical transcription’ refers to the process of converting a musical rendering or perfor-

mance into a set of symbols or notations. The notations may contain information about the

pitch, duration, stress and timbre of the musical rendering. But in the context of query-

by-humming systems, only pitch and timing information are important, since the quality of

rendering should not be taken into account.

Several approaches to pitch tracking are reviewed in [41], [42] and [43]. However, for

singing voices, a reliable conversion of pitch estimates to a symbolic notation has proven

to be a challenging problem [44]. This is because a typical vocal rendition contains both

inaccuracies in pitch and timing. We perceive the pitch of a song as discrete values corre-

sponding to the musical semi-tones. But the pitch estimates of the existing pitch tracking

algorithms are usually continuous functions of frequency. Assigning them semi-tonal values,

as perceived by human beings, has proven to be non-trivial.

It is possible to convert pitch estimates of only the voiced regions to a symbolic nota-

tion. But, for a good quality transcription, it also becomes necessary to assign suitable pitch

values to the unvoiced regions, though the pitch for unvoiced regions is usually undefined.

Thus, we require a pitch tracking algorithm, which returns discrete frequency values, and is

defined for all time instants.

Pitch extraction from singing voice has traditionally been viewed from the perspective of

38
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absolute pitch of the voice. However, for the query- by-humming applications, the absolute

pitch is not of as much importance as that of relative pitch, since the queries may not have

the same absolute pitch as the original rendering of the song. There are other issues related

to hummed queries too. The query may or may not contain words, or perhaps could be

a whistle. Often, the change in pitch is not always associated with a new note. This is

because of the presence of ‘pitch-bends’ or ‘glides’ in singing voice and whistling. Clarisse

et al. [45] have proposed a method which first determines note segments from a humming

input and then assigns a note value for each segmented note region. Viitaniemi et al. [46]

have introduced a musical-key estimation model and used a probabilistic model to infer note

values from raw pitch estimates. However, both these systems fail to consider the dynamic

nature of singing voices and don’t make allowances for glides or pitch-bends. They also lack

robustness for various forms of queries.

This chapter tries to provide two pitch tracking algorithms, which are reasonably robust

for the possible ways a query can be made by a user. The algorithms obtain a relative

pitch contour as against an absolute pitch contour. It must be noted that the output of the

automated transcription is compared with manually transcribed Music Instrument Digital

Interface (MIDI) format files, i.e. manual transcription of the actual sample of singing voice

(or whistle). So the manually transcribed MIDI files contain many notations of glides or

pitch-bends where the pitch changes from one semi-tone to the other, without it being re-

ferred to as a new note. This is an approach, different from the usual trend of comparing

the automated transcription result with the MIDI file of the original sound track.

Brown [26] suggested a fundamental frequency detection algorithm based on a constant Q-

transform. The algorithms discussed are special case of the above method (Q = 17), treating

the signal as a time varying signal as against short time stationary. The two algorithms

are: the frequency selection based algorithm described in section 4.2 and the time domain

selection based algorithm described in Section 4.3.

4.2 Frequency Selection Based Algorithm

The Bach linear scale filter-bank, designed in Chapter 2, has a higher frequency resolution

for lower frequencies and higher time resolution for higher frequencies. The fundamental
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frequency for human voices is usually in the range of 50 to 500 Hz. A band-pass filter designed

to track the fundamental frequency needs a high number of filter coefficients and is sluggish

in nature (poor time resolution). A filter designed in the range of the 3rd harmonic usually

has the optimum compromise between time and frequency resolution. Besides, for complex

tones with fundamental frequency in the range 100 to 400 Hz, the dominant region lies

around the third, fourth, and fifth harmonics [47]. The 3rd harmonic is usually (though not

always) one of the significant harmonic peaks, which makes it another good reason to track

the same. The input to the algorithm is the 2-D vector Fk(n)∀n 1 ≤ n ≤M, ∀k 1 ≤ k ≤ T ,

obtained from equation 2.1 using the Bach linear formulation. We propose that the Bach

linear scale filter-bank models the human perception of music. The block-diagram of the

algorithm is shown in Figure 4.1. The descriptions of the individual blocks are presented in

the following sub-sections.

Figure 4.1: Block diagram of the frequency selection based algorithm

4.2.1 Silence Removal

It is assumed that the background noise is non-sinusoidal in nature, which implies that the

power spectrum will not be spiky and will have a low instantaneous spectral variance. This

aspect is used to roughly determine the difference between silence and non-silence regions.

So, if the instantaneous spectral variance, (σ2(k)), is below a certain threshold, then it is

considered as silence. This threshold is related to the Signal to Noise Ratio (SNR) of the
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signal. The instantaneous spectral variance is calculated as

σ2(k) =
1

M − 1

M∑
n=1

(Fn(k) − F̆ (k))2 (4.1)

where

F̆ (k) =
M∑
n=1

Fn
M

(4.2)

The algorithm for detecting silence is as follows.

Algorithm 4.1. : Silence removal

σ2
max = 20 ∗ log10

(
max

k=1 to T
σ2(k)

)
for k = 1 to T

if σ2
max − 20 ∗ log10(σ

2(k)) > SNR

s(k) is a region of silence

else

s(k) is a non-silence region

end if

end for

The voiced region of the signal may be interspersed with several unvoiced regions, be-

longing to stop consonants and fricatives. But, due to the sluggish nature of the lower

frequency filters, the instantaneous spectral variance does not drop below the threshold. So

this method is fairly successful as demonstrated in Tables 4.2, 4.3 and 4.4.

4.2.2 Estimation of Significant Sinusoidal Components (Tones)

The frequency energy vector, Fk(n), for every time instant k contains the relative frequency

energies around the particular time instant. However, in the presence of a dominant fre-

quency, the other frequencies at that time instant are masked. This masking is associated

with critical band-width. So, the Bach frequencies, ‘fBach’, need to be converted to the

equivalent critical band-width frequencies ‘fz’ (Bark scale).

z(fBach) =
26.81

1 + 1960

base ∗ 2
fBach

12

− 0.33 (4.3)
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The above equation is obtained by combining equations 2.9 and 2.17. The relative Bach

frequency ‘n’ is a sinusoid or tone if,

Fk(n) = max
i=n−K to n+K

Fk(i) and

Fk(n) ≥ 7db+ min
i=n−K to n+K

Fk(i)
(4.4)

where

K =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2, for 1 ≤ n ≤ log2

5.5∗103

base

3, for log2
5.5∗103

base
≤ n ≤ log2

11∗103

base

6, for log2
11∗103

base
≤ n ≤ M

(4.5)

M is the total number of filters as defined in Equation 2.2. The Spreading Function (SF )

[48] is defined as

SF (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

17 ∗ dz − 0.4 ∗ Fk(j) + 11 for −3 ≤ dz < −1

(0.4 ∗ Fk(j) + 6) ∗ dz for − 1 ≤ dz < 0

−17 ∗ dz for 0 ≤ dz < 1

(0.15 ∗ Fk(j) − 17) ∗ dz − 0.15 ∗ Fk(j) for 1 ≤ dz ≤ 8

(4.6)

SF depends on the location of the masked frequency, ‘i’ (Bach), the masker location,

‘j’ (Bach), the power spectrum, ‘Fk(j)’, and the difference between ‘i’ and ‘j’ in Bark

(Equivalent Critical Bandwidth). The quantity ‘dz’ is defined as

dz = z(i) − z(j) (4.7)

where the function ‘z’ is defined in Equation 4.3. The threshold (TMN) [48] for tone masking

noise is

TMN(i, j) = Fk(j) − 0.175 ∗ z(j) + SF (i, j) − 2.025(dB SPL) (4.8)

and for tone masking tone, the threshold (TMT ) is as follows [48].

TMT (i, j) = Fk(j) − 0.275 ∗ z(j) + SF (i, j) − 6.025(dB SPL) (4.9)

Algorithm 4.2, given below, finds the indexes of the significant sinusoids (tones), Sk, and

their corresponding amplitudes, FSk, at time instant ‘k’ given the feature vector Fk(n)∀n 1 ≤
n ≤ M . The initial masker, ‘Ik’, is taken as the frequency with the highest amplitude, i.e.

Fk(Ik).
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Algorithm 4.2. : Significant sinusoid detection

Fk(Ik) = max
n=1 to M

(Fk(n))

Ik = arg max
n=1 to M

(Fk(n))

Initialize ind = 1 and j = Ik

for i = j − 1 to − 1 : 1 and j + 1 to M

TMN = Fk(j) − 0.175 ∗ z(j) + SF (i, j) − 2.025(dB SPL)

TMT = Fk(j) − 0.275 ∗ z(j) + SF (i, j) − 6.025(dB SPL)

if Fk(i) > TMN (i, j)

Sk(ind) = i and FSk(ind) = Fk(i)

ind++

if Fk(i) > TMN(i, j)

j = i

end if

end if

end for

4.2.3 3rd Harmonic Detection

The detected significant sinusoids have to be grouped according to their possible harmonics.

The method used is similar to the one used by Hermes [40]. We are taking into consideration

the first seven harmonics, which are usually the important ones in a human voice or whistle.

Due to the non-linear nature of the Bach frequency scale, the harmonic values are related

to the fundamental frequency, ‘f0’, as shown in Table 4.1. The array, ‘H ’, of harmonic

differences is defined as

H = {0, 12, 19, 24, 28, 31, 34} (4.10)

For a group of significant sinusoids, all potential harmonically related sub-groups are

identified. This procedure is illustrated with the following example.

Example 1: Consider a group of Sk = {7, 12, 19, 23, 26, 31, 35, 38, 42} with corresponding

FSk = {0.02, 0.03, 0.05, 0.02, 0.07, 0.06, 0.04, 0.02, 0.03}. The group is ordered to obtain the

ordering matrix, Gk, as shown below
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Table 4.1: The first seven harmonics and their corresponding Bach values

1st harmonic - f0

2nd harmonic 1st overtone f0 + 12

3rd harmonic 2nd overtone f0 + 19

4th harmonic 3rd overtone f0 + 24

5th harmonic 4th overtone f0 + 28

6th harmonic 5th overtone f0 + 31

7th harmonic 6th overtone f0 + 34

Gk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 19 26 31 35 38 0

12 0 31 0 0 0 0

19 31 38 0 0 0 0

23 0 42 0 0 0 0

0 0 0 38 42 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.11)

‘L’ is the total number of harmonically related sub-groups, which is 5 in the above ex-

ample. I(k) = 26 and FI(k) = 0.07.

There are two ways to find the most likely 3rd harmonic as demonstrated in Algorithms

4.3 and 4.4 below. Let λ̃auto(k) be the the pitch estimate for the ‘kth’ time sample. Usually,

the two estimates turn out to be the same. In case they are different, we consider the

estimate that falls within the same octave of the pitch estimate of the previous instant, i.e.

λ̃auto(k − 1).

Algorithm 4.3. : Detection of most significant peak

for p = 1 to L

for q = 1 to 7

if Gk(p, q) = I(k)

λ̃auto(k) = Gk(p, q) −H(q) + 19 · · · H is obtained from Equation 4.10

end if · · · 19 corresponds to the 3rd harmonic

end for in Bach scale

end for
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Using Algorithm 4.3, λ̃auto(k) = 26 for Example 1.

Algorithm 4.4. : Detection of harmonically richest set

HSk = arg max
p=1 to L

⎛⎝ 7∑
q=1

Fk(Gk(p, q))

⎞⎠ (4.12)

λ̃auto(k) = Gk(HSk, 3) (4.13)

where HSk is the harmonically richest set. In this case too, λ̃auto(k) = 26 for Example 1.

4.2.4 Median Filtering

The pitch estimate, λ̃auto(k), is then median filtered in order to avoid some spikes created

during the transitions of the pitch.

λauto(k), ∀k 1 ≤ k ≤ T , is the final pitch contour generated by the frequency selection

based algorithm. Figure 4.2 shows the pitch contour generated by the algorithm for a sample

rendering of a song. We can observe from the figure that the output of the algorithm contains

discrete values of frequencies (corresponding to the semitones) and is defined even for the

unvoiced parts of the rendering.

4.2.5 Note Onset Detection

Note onset detection is a non-trivial problem and is usually the source of most of the tran-

scription errors. There are three possible types of note onsets.

1. Note onset associated with a change in frequency

2. Note onset associated with a change in energy

3. Note onset associated with a change in syllable being pronounced

A change in pitch may not always be associated with a note onset, because of the presence

of glides or pitch-bends in the singing voice. Thus, a three pronged approach to estimating

the note onsets is suggested. It is elaborated in Algorithms 4.5, 4.6 and 4.7.
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Figure 4.2: A typical contour generated by the algorithms in Section 4.2

The parameter, ‘Ψ’, is the allowed tolerance for note onset timing. ‘ψ’ is the actual

number of samples obtained as shown below.

ψ =
Ψ

Fs
(4.14)

Algorithm 4.5. : Onset estimate based on change in pitch

flag = OFF

for k = 1 to T

if λ̃auto(k − ψ) to λ̃auto(k − 1) = λ̃auto(k) and flag = OFF

Cb = k

· · · time sample before change in pitch

end if

if λ̃auto(k − ψ) to λ̃auto(k − 1) 	= λ̃auto(k) or flag = ON

flag = ON

end if

ϑ(k) = 0

· · · variable to denote onset due to change in pitch
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if λ̃auto(k − ψ) to λ̃auto(k − 1) = λ̃auto(k) or flag = ON

Ca = k − ψ

· · · time sample after change in pitch

ϑ(Cb+Ca

2
) = 1

· · · Onset due to change in pitch at k = Cb+Ca

2

flag = OFF

end if

end for

ϑ(k) = 1 denotes the estimate for note onsets based on change in pitch.

Algorithm 4.6. : Onset estimate based on change in instantaneous spectral variance

for k = 1 to T

if σ2(k) = min
p=k−ψ to k+ψ

(σ2(p))

ξ(k) = 1

· · · Onset due to change in instantaneous spectral variance

else

ξ(k) = 0

end if

end for

ξ(k) = 1 denotes the estimate for note onsets based on variations in spectral energy.

Often, there may be a note onset even though the pitch does not change. There is just a

change in energy associated with the two consecutive notes with the same pitch. Change in

instantaneous spectral energy is a good measure to detect this.

Normalized Spectral Variance (NSV ) is defined as

NSV (k) =
1

M − 1

M∑
n=1

(
Fn(k) − F̆n(k)

F̆n(k)

)2

(4.15)

where F̆n(k) is obtained from Equation 4.2. NSV normalizes the instantaneous spectral

variance with respect to the variations in amplitude. So, the NSV is independent of the
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energy associated with the spectrum, and just depends on the change in spectral content.

The first derivative (or difference) is called the Difference Normalized Spectral Variance

(DNSV ).

DNSV (k) = NSV (k) −NSV (k − 1) (4.16)

Figure 4.3 shows

(a) the plot of NSV for an artificially generated signal containing two sinusoids with

different frequencies.

(b) the corresponding plot of DNSV .

(c) the spectrogram of the artificially generated signal.

Figure 4.3: The plot of (a) Normalized Spectral Variance (NSV ), (b) first difference of NSV

and (c) the spectrogram of a synthesized sample, having two sinusoids (Fs = 11000Hz)
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The note onset estimate, ζ(k), obtained based on the DNSV , is shown in Algorithm 4.7

given below.

Algorithm 4.7. : Onset detection based on change in DNSV

for k = 1 to T

if DNSV (k) = min
p=k−ψ to k+ψ

(DNSV (p))

if DNSV (k) < Θ

ζ(k) = 1

· · · Onset due to change in DNSV

else

ζ(k) = 0

end if

end for

ζ(k) = 1 denotes the estimate for note onsets based on DNSV . The threshold, ‘Θ’, is

calculated as

Θ =
min

k=1 to T
(DSNV (k))

10
−SNR

20

(4.17)

Often, the syllable pronounced while singing is only a vowel, i.e. a consonant does not

precede or follow the vowel. A note produced with such a syllable does not have a drop in the

instantaneous spectral variance, since the energy remains more or less constant. However,

this change is picked up by a minima in the DNSV .

Since there are various ways in which note onsets can occur, it is necessary to come up

with a strategy of detecting all these possible variations of note onset occurrences. Whether

a region, Ψ, around time sample k contains a note onset or not, is decided by the operator

Â, which maps the vector A, to a boolean value as shown below.

For vector A of length 1 ≤ i ≤ P

if
∑P
i=1A(i) > 1

Â = 1

else Â = 0

end if

(4.18)
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The final decision about whether a note onset has occurred or not is made by the Algo-

rithm 4.8. It employs the operator in Equation 4.18 on ϑ(p), ξ(p) and ζ(p), obtained from

Algorithms 4.5, 4.6 and 4.7, respectively.

Algorithm 4.8. : Final decision on note onset detection

for k = 1 to T

for vectors ζ(p), ξ(p), ϑ(p) where vector p = k − Ψ to k + Ψ

No(k) = (ϑ̂ ∧ ζ̂) ∨ (ξ̂ ∧ ζ̂)

· · · No(k) = 1 denotes note onset at k

end for

end for

Figure 4.4 shows an example of note onset detection.

4.3 Time Domain Selection Based Algorithm

The second algorithm works in the time domain. It works on the basis of finding connected

2-D contours of high energy in the ‘Time-Frequency’ space, Fn(k). Figure 4.5 shows the

basic blocks of the algorithm. The silence removal (Algorithm 4.1), note onset detection

(Sub-section 4.2.5) and median filtering (Sub-section 4.2.4) blocks are the same as in Section

4.2. The two blocks ‘detect connected 2-D energy-contours’ and ‘detect harmonic energy-

contours’ are explained in Sub-sections 4.3.1 and 4.3.2 respectively.

4.3.1 Detection of Connected 2-D Energy-Contours

The 2-D ‘TF’ space is spanned by Fn(k)∀n 1 ≤ n ≤ M, ∀k 1 ≤ k ≤ T . What this

algorithm does, is to estimate those high energy 2-D contours that are connected in k axis,

i.e. in time. The Algorithm 4.9 demonstrates how these contours are estimated. It is based

on finding the most significant peak, (x̂, ŷ), in the 2-D feature vector plane and tracing areas

that are linked to this peak. Then, this region is subtracted from the original feature vector

plane, Fk(n). This process is continued till there is no peak in the entire feature vector
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Figure 4.4: Example of note onset detection. The dashed lines indicate note onsets. The

vertical solid lines indicate note onsets estimated by each of Algorithms 4.5, 4.6 and 4.7,

respectively

plane. Each contour is represented by λ̂i(k)∀k 1 ≤ k ≤ T , and Nc is total number of

such energy-contours obtained. Figure 4.6 shows how energy-contours are extracted from a

sample rendering of a song for which Nc = 3.

Algorithm 4.9. : 2-D Connected Energy-contour detection

while ∀ k 1 ≤ k ≤ T, n 1 ≤ n ≤M there ∃Fk(n) > τ

· · · where τ is the threshold

i = 0

{x̂, ŷ} = arg max
k=1 to T

(
arg max

n=1 to M
Fk(n)

)
Fx̂(ŷ −K) to Fx̂(ŷ +K) = 0

· · · where K is obtained as in equation 4.5

for k = x̂ + 1 to T
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y = arg max
n=ŷ−1 to ŷ+1

(Fk(n))

λ̂i(x) = y · · · where λ̂i(k)∀k 1 ≤ k ≤ T

is the ith energy- contour

ŷ = y

Fk(ŷ −K) to Fk(ŷ +K) = 0

end for

for k = x̂− 1 to 1

y = arg max
n=ŷ−1 to ŷ+1

(Fk(n))

λ̂i(x) = y · · · where λ̂i(k)∀k 1 ≤ k ≤ T

is the ith energy- contour

ŷ = y

Fk(ŷ −K) to Fk(ŷ +K) = 0

end for

end while

Nc = i · · · where Nc is the total number of energy-contours

Figure 4.5: Block diagram of the time domain selection based algorithm
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4.3.2 Detection of Harmonically Related Energy-Contours

We have Nc number of energy-contours. They may or may not be harmonically related

to each other. This sub-section deals with trying to predict which of the contours are

harmonically related. In order to achieve this, relations of the harmonic components to the

fundamental are obtained, as shown in Table 4.1. The algorithm is as given below.

Algorithm 4.10. : Detecting harmonically related connected energy-contours

for i = 1 to Nc

λ̂sum(i) =
T∑
k=1

(
Fk(λ̂i(k))

)
for j = 1 to Nc

λ̂sum(j) =
T∑
k=1

(
Fk(λ̂j(k))

)
∀k 1 ≤ k ≤ T, λ̂diff (k) = λ̂i(k) − λ̂j(k)

̂λmean =
T∑
k=1

λ̂diff (k)

if ̂λmean ∈ H

· · · where H is obtained from equation 4.10

λ̂i(k) =

(
λ̂i(k) + λ̂j(k) + ̂λmean)

2

λ̂sum(i) =
λ̂sum(j) + λ̂sum(i)

2
end if

end for

end for

λauto(k) = ̂λimax(k) such that imax = arg max
i=1 to Nc

(λ̂sum(i))

The difference between two energy-contours is obtained as λ̂diff (k)∀k 1 ≤ k ≤ T . If its

mean, ̂λmean, belongs to one of the values indicated in the Table 4.1, then the two contours

are harmonically related. The two contours are averaged to obtain a new contour. The total

energy of the new contour, λ̂sum, is calculated. Finally, the contour with the highest λ̂sum, is

considered as the ‘Pitch Contour ’, i.e. λauto(k)∀k 1 ≤ k ≤ T . A typical contour, generated

by the Algorithms 4.9 and 4.10, is shown in Figure 4.7.
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Figure 4.6: An example showing how contours are extracted by Algorithm 4.9 for a sample

rendering of a song

4.4 Representation of the Transcription

The two methods of transcription to relative Bach scale, and the note onset detection algo-

rithms, complete the transcription requirements of a query made by a user to a query-by-

humming system. Typically, this transcription is compared to the transcription of existing

songs in the database and the closest matches are chosen to be displayed to the user. How-

ever, a direct comparison of the transcription of a rendering to that of another rendering will

result in quite a poor performance. The reason for that is the variations in duration, absolute

pitch and additional notes or deletion of notes in the rendering. In order to compensate for

this sort of variations in rendering, it is necessary to obtain a useful representation.

A suggested representation for an arbitrary rendering, ‘X’, is as follows. The pitch

contour is converted into a set of 3 variables:

ΓX(i) = {Υstart, λstart, λend} ∀i 1 ≤ i ≤ TN (4.19)

where Υstart, λstart and λend represent the note onset time (seconds), starting relative fre-
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Figure 4.7: A typical contour generated by the Algorithms 4.9 and 4.10

quency, and the ending relative frequency of the ith note, respectively. In the case of glides or

pitch bends, λstart and λend would be different, and in the case of regular notes, they would

be the same. TN is the total number of note onsets detected.

4.5 Evaluation and Results

The algorithm was tested for 110 renderings from 12 male and 10 female singers. The render-

ings included singing with words, humming with /m/ and /n/ (nasal) phones, and whistling.

The recording was done with a SNR of 25 dB and sampling rate (Fs) of 11 KHz. The tran-

scription for the above renderings was done by trained musicians.

Figure 4.8 shows

1. the instantaneous spectral variance of a singing voice signal

2. the corresponding DNSV and
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3. the pitch contour ( λman) of the signal obtained by converting manual transcription to

relative Bach frequencies.

Figure 4.9 shows

1. the pitch contour generated by the algorithm in Section 4.2 and

2. the pitch contour of the manually transcribed file converted into the relative Bach

frequencies.

Figure 4.8: The plot of (a) σ2, (b) DNSV and (c) manually annotated frequencies of the

singing voice sample. The vertical lines in the figures indicate the output of the segmentation

(note onsets) by Algorithms 4.6, 4.7 and 4.5, respectively. (Fs = 11000Hz)

There are two ways of analyzing the error of the algorithm. The first method does not

take into account the onset timings and finds the fidelity with which the pitch is tracked.

The percentage error (%E) (which is a slight modification of the evaluation method used by
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Figure 4.9: (a) The pitch contour generated by the algorithm in Section 4.2, (b) the pitch

contour obtained by converting manual transcription to relative Bach frequencies (Fs =

11000Hz)

[44]) is calculated as follows

%E =

T∑
k=1

‖ (λauto(k) − λman(k) − μauto + μman) ‖
T∑
k=1

‖ (λman(k) − μman) ‖
(4.20)

where λman(k), ∀k 1 ≤ k ≤ T , is the pitch contour obtained by converting the manually

transcribed data to relative Bach frequencies. μauto and μman are the means of the pitch

contours and are calculated for an arbitrary pitch representation ΓXas follows.

μX =
1

TN

TN∑
i=1

ΓX(i, 2) (4.21)

ΓX is obtained as explained in Equation 4.19.

The second method employs the use of the onset timings. The following measures can

be defined.
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Figure 4.10: (a) The pitch contour generated by the algorithm in Section 4.3, (b) the pitch

contour obtained by converting manual transcription to relative Bach frequencies (Fs =

220Hz)

• If a unique automated note onset is detected within 100ms (Ψ) of a manual note onset,

then it is considered as a correct detection of onset (%O).

• If there is no automated onset within 100ms of a manual note onset, then it is considered

as a deleted onset (%D).

• If there is no manual note onset within 100 ms of an automated note onset, then it is

considered as an inserted onset(%I).

• If the value of the automated relative Bach frequency for a correct onset is equal to

that of the manually transcribed one, then it is considered as correct transcription

(%T).

• If the silence regions are detected within 100 ms of an actual silence region, then it is

considered a correct detection of the silence region (%S). This quantity evaluates the
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efficacy of Algorithm 4.1

The results of the 110 test files are shown in Tables 4.2, 4.3 and 4.4. For the tested data,

the results are encouraging. Audio reconstruction of the transcribed data was played back

to the singers, who approved of the transcription quality. It could be said that the algorithm

is robust for query-by-humming applications since the error rate is more or less constant

for the different possible methods of queries. From Tables 4.2, 4.3 and 4.4, we can see

that the proposed algorithm is more consistent than the standard pitch tracking algorithm

(based on autocorrelation function of the time signal) used in a commercial software called

PRAAT [49]. The pitch values obtained from the PRAAT algorithm are rounded off to

the nearest Bach value and compared with manually annotated relative pitch values. The

optimal settings used in the PRAAT software were as follows.

• Pitch range (Hz) is 55 to 550 Hz

• Optimize for Intonation method

• Maximum number of pitch candidates are 15

• Silence Threshold is 0.03

• Voicing Threshold is 0.45

• Octave cost is 0.01

• Octave jump cost is 0.35

• Voiced-unvoiced cost is 0.14

We can see that the percentage error increases drastically for whistling. The robustness

can be attributed to the use of the Bach filters, and the algorithm which estimates the rel-

ative frequency as opposed to the absolute fundamental frequency.

The note onset detection leads to more errors in transcription than the pitch tracking.

Insertion or deletion of note onsets cause the highest loss in the quality of transcription. The

number of inserted note onsets is high for singing with words, while the number of deleted

note onsets is high for whistling. The time-contour based algorithm performs marginally

better than the frequency selection based algorithm.



Chapter 4. Singing Voice Transcription 60

%E - Error rate for pitch tracking

%O - Correct detection of onset

%D - Deleted onset

%I - Inserted onset

%T - Correct transcription

%S - Correct detection of silence

Table 4.2: Performance evaluation of the algorithm for singing with syllables or words for

both male and female voices (60 files)

%E for pitch %E for %E for time

detection freq. selection -contour

using based method based method %O %D %I %T %S

PRAAT in Section 4.2 in Section 4.3

23.3 % 12.2 % 8.2 % 83.4 % 13.4% 31.2% 79.9% 83.1 %

Table 4.3: Performance evaluation of the algorithm for singing with nasals /m/ and /n/ for

both male and female voices (25 files)

%E for pitch %E for %E for time

detection freq. selection -contour

using based method based method %O %D %I %T %S

PRAAT in Section 4.2 in Section 4.3

15.8 % 14.3 % 9.2 % 84.1% 18.8% 21.3% 79.1% 81.2%

4.6 Conclusion and Future Work

Thus, an algorithm for transcribing human singing voice into relative pitch contours has been

suggested. It is shown to be robust for most forms of human queries. The pitch tracking

shows sufficiently low error rates. Although the fundamental frequency detection algorithm

in PRAAT is extremely accurate, transcription to musical semitones is rather poor. Earlier
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Table 4.4: Performance evaluation of the algorithm for whistling (25 files)

%E for pitch %E for %E for time

detection freq. selection -contour

using based method based method %O %D %I %T %S

PRAAT in Section 4.2 in Section 4.3

66.4 % 18.2 % 10.4 % 83.3% 17.2% 8.5% 76.3% 72.3%

efforts at transcribing voices show, that one needs a higher level of learning based on musico-

logical knowledge [44], to improve the transcription accuracy. We can see that even though

the algorithms presented are not as accurate as the pitch detecting algorithm in PRAAT,

they do a better job at transcription to musical semitone notes, without any musicological

learning. However, the note detection needs improvement in order to have a really robust

system in place. A representation scheme suitable for query-by-humming systems has also

been suggested in this chapter.

The validity of the suggested algorithm remains to be tested on a larger database. It may

be worthwhile to extend these algorithms to include polyphonic music pieces, predominantly

containing human singing voices. A robust note onset detection algorithm is required to

make the quality of transcription even better.



Chapter 5

A Strategy to Find Distances between

Two Musical Renderings

5.1 Introduction and Motivation

Most of the problems associated with query-by-humming systems are not to do with a poor

quality of transcription, but more to do with a poor representation of the transcription.

The features suggested by Shakra [50] include interval sequence, melodic contour and note

duration sequence. However, as noted by Sorsa [51], the errors included in the search-keys

generated by the users are the main cause of failures of such query-by-humming systems.

The techniques described in [52], [53] and [54] treat the query and tune as sequences

of pitch-duration tuples, and use dynamic programming to match a query to a tune. That

is, the match is described as the minimum number of deletions, insertions or replacements

of notes required to transform the query into the tune excerpt. This is commonly called

‘Dynamic Time Warping’ (DTW). This is analogous to matching notes in a musical score.

The disadvantage of this scheme is that it fails to take into account the time-based nature

of music. Francu [55] suggested a metric to quantify distance between renderings, but he

assumes that the two renderings are at around the same pace or tempo.

However, the following problems are common in queries. They need to be addressed in

detail.

1. Query may be at a different pace or tempo as compared to that of the rendering of the

same song in the database.

62
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2. Query is usually at a different absolute pitch as compared to that of the rendering in

the database.

3. Deletions and insertions of notes are extremely common occurrences in queries.

4. The query may consist of phrases which are not in the same chronology (or sequence)

as that in the rendering available in the database.

5. The tempo may not remain constant over a query.

6. The absolute pitch may not remain constant over a query.

5.2 Features Required for Obtaining Distance

5.2.1 Phrase

Songs, especially those rendered vocally, are made of phrases. There is usually a silence or

a pause between two phrases, which is utilized for catching one’s breath. We can define a

‘phrase’ as a contiguous unit of a song between two pauses. As noted in [51], longer search

keys usually perform worse than shorter search keys, because the tempo and the pitch tend

to change over a long query, even for trained singers. Another reason for the failure is a

difference in the sequence of the phrases.

In order to overcome these problems, it is suggested that phrases may be used as the

unit for finding the distance between two renderings. Usually, phrases are not long enough

to bring about a noticeable variation in tempo or pitch. An algorithm is presented below,

which can detect the start and end of a phrase in a rendering, X(k)∀k 1 ≤ k ≤ TX . TX is

the length of rendering X.

Algorithm 5.1. : Phrase detection

Pflag = OFF · · · Pflag identifies phrase or silence region

i = 0

for k = 1 to TX

if Pflag = OFF
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if 20 ∗ log10

(
max

k=1 to TX

σ2(k)
)
− 20 ∗ log10(σ

2(k)) > SNR

and σ2(k + ψ) > 2 ∗ σ2(k)

Pflag = ON

SPX(i) = k · · · SPX(i) indicates the start of ith phrase

end

else

if 20 ∗ log10

(
max

k=1 to TX

σ2(k)
)
− 20 ∗ log10(σ

2(k)) > SNR

and σ2(k + ψ) < 0.5 ∗ σ2(k)

Pflag = OFF

EPX(i) = k · · · EPX(i) indicates the end of ith phrase

i = i+ 1

end

end if

end for

�LX = i · · · �LX is the total number of phrases for the rendering X

Here, ψ is defined as in Equation 4.14.

5.2.2 Energy Profile

The energy profile, ÊX(k), is defined for a pitch contour, λX(k)∀k 1 ≤ k ≤ TX , of a

rendering X.

∀k 1 ≤ k ≤ TX ÊX(k) = Fk(λX(k)) (5.1)

λX(k) is obtained from either Algorithm 4.2 or 4.3. Fk(n), ∀k 1 ≤ k ≤ TX ∀n 1 ≤ n ≤
M , is the feature vector obtained as in Equation 2.1. The motivation for using this feature

is giving greater importance to those regions in the pitch contour that are more reliable in

their transcription.

Thus, the phrase information SPX(i) and EPX(i) ∀i 1 ≤ i ≤ �LX , the energy profile

Ê(k) ∀k 1 ≤ k ≤ TX and the pitch contour λX(k) ∀k 1 ≤ k ≤ TX are needed to frame the

distance function.
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5.3 Finding the Distance between Two Renderings

The strategy for a query-by-humming should be formulated in such a way that even if a few

extra matches come up, the correct matches should not be lost. So, the proposed distance

function finds the minimum possible distance between two renderings, rather than the aver-

age distance.

The distance function, defined for pitch contour vectors λX , λY and Energy profile vectors

ÊX , ÊY , respectively, is as follows.

D(X, Y ) = (λX − λY )T ∗ ÊX ∗ ÊY T ∗ (λX − λY ) (5.2)

Thus, it finds the Euclidian distance between the pitch contours weighting it against the

energy profiles. More importance is given to the areas of the pitch contour with higher en-

ergy values. In order to implement this distance function for actual renderings, the following

algorithm has to be implemented.

We define a function, resample(A, fac), which re-samples vector A by a factor ‘fac’.

The distance is found between renderings X, ∀k 1 ≤ k ≤ TX , and Y, ∀k 1 ≤ k ≤ TY , as

follows

Algorithm 5.2. : Algorithm to implement the distance function for two renderings

for i = 1 to �LX

for j = 1 to �LY

fac =
EPY (j) − SPY (j)

EPX(i) − SPX(i)

λX = λX (∀k ∈ [SPX(i), EPX(i)])−μX
· · · μX is obtained from equation 4.21

in the interval [SPX(i), EPX(i)]

λX = resample(λX , fac)

λY = λY (∀k ∈ [SPY (j), EPY (j)])−μY
· · · μY is obtained from equation 4.21

in the interval [SPY (j), EPY (j)]

ÊX = ÊX(∀k ∈ [SPX(i), EPX(i)])
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ÊX = resample(ÊX , fac)

ÊY = ÊY (∀k ∈ [SPY (i), EPY (i)])

D(i, j) = (λX − λY )T ∗ ÊX ∗ ÊY
T ∗ (λX − λY )

end for

end for

Dist(X, Y ) =
1

�LX

�LX∑
i=1

(
min

j=1 to �LY

(D(i, j))

)

Dist(Y,X) =
1

�LY

�LY∑
j=1

(
min

i=1 to �LX

(D(i, j))

)

Thus, the distance function, Dist(X, Y ), is normalized against number of phrases.

5.4 Results and Discussion

In order to evaluate the results, 9 singers (5 female and 4 male) were asked to sing the

same set of 35 Hindi and English songs. Thus, for each song, 9 renderings or versions are

available. Each rendering has a different pace (tempo) and different absolute pitch. Some

of the renderings are sung with words or syllables like /la/, /ta/ or /da/, while other are

hummed with nasals like /m/ and /n/, while some of them are whistled. The sequence of

phrases too is altered in some renderings.

A comparison is made between the proposed method and a standard method using Dy-

namic Time Warping (DTW) of the sequence of notes (ΓX(i)∀i 1 ≤ i ≤ TN), obtained from

Equation 4.19. The DTW is performed on the series of λstartμX , where μX is obtained from

Equation 4.21. Equal penalty is given for insertion, deletion and substitution of notes.

Every song in this database of 315 songs was compared to the remaining songs in the

database, and their distance measures found by the proposed method and the DTW based

method. Obviously, the pair with the minimum distance is the best match. If the nearest

match for a particular rendering is a different rendering (or version) of the same song, then

it is considered a correct match. Table 5.1 shows what percentage of correct matches are

obtained among the first 10 nearest neighbours and Table 5.2 shows the same results among
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the 5 nearest neighbours. As we can see, the proposed method performs better than the

standard DTW algorithm, and gives over 95 percent accuracy for at least one in the best 10

matches. It shows that the proposed method is robust for the various forms of queries and

also for rendering of altered phrases.

Table 5.1: Percentage of songs having ‘N’ number of correct matches among the first 10

neighbours

N %Songs with ‘N’ correct %Songs with ‘N’ correct

matches by proposed method matches by DTW

1 96.4 % 77.7 %

2 73.6 % 63.4 %

3 44.7 % 45.9 %

4 30.2 % 34.3 %

5 15.7 % 24.3 %

Table 5.2: Percentage of songs having ‘N’ number of correct matches among the first 5

neighbours

N %Songs with ‘N’ correct %Songs with ‘N’ correct

matches by proposed method matches by DTW

1 89.3 % 61.4 %

2 44.6 % 31.4 %

3 20.3 % 14.2 %

5.5 Conclusions

A strategy for measuring distance between two renderings is proposed along with a distance

measure. It has been evaluated on a database of 315 songs of both male and female voices

and whistle queries. The results shown are encouraging. The correct song is picked up

among the top 5 best choices around 90% of the time. The database consists of queries with

varying absolute pitch, tempo (pace) and also varying sequence of phrases. Further testing

needs to be done on a larger database.



Chapter 6

Concluding Remarks

A Time-Frequency representation of an audio signal using the Bach scale filter-bank has

been proposed. The Bach scale tries to model the human perception of music. The TF

representation is a time-varying representation, since every time instant is represented by a

unique set of frequency features.

When applied in automated speech segmentation, the TF representation using Bach fil-

ters performs better than existing methods. This is rather surprising, because the Bach

scale does not emulate the performance of the human ear in any way. But, the Bach scale

probably gives us an idea about how humans interpret frequencies. Two frequencies, that

fall within the scope of a semitone, may not be distinguished, even though the difference

may be perceived. This opens up a wide scope of research, which deals with discerning

between the ability to perceive and choosing to perceive. However, adequate studies have

to be performed in other applications, like speech recognition, unit selection for TTS and

speech coding, before coming to any conclusion about the effectiveness of the Bach scale in

speech.

The two pitch tracking algorithms proposed in this thesis are robust for most types of

queries made to a query-by-humming system. Though the pitch tracking algorithms have

sufficiently low error rates, the problem of good transcription lies in the detection of note

onsets. The problem is a complex one, because there are different ways in which a note onset

can occur. The three step approach proposed in this thesis alleviates the problem to some

extent. So, it is possible to handle most of the ways in which a note onset can occur.
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In most pitch tracking algorithms, it is necessary to specify a range of frequencies where

the fundamental frequency should lie. The range is usually different for male and female

voices and whistling. The proposed algorithms do not need the range of frequencies as a

parameter, because they try to track only the relative pitch. In fact, we don’t need the

absolute pitch of the rendering in query-by-humming applications, since it is unlikely that

the singer will render the song in the same absolute pitch of the original sound track, in any

case. This property has been exploited by the proposed algorithms to achieve robustness.

So, even though the actual pitch may be different, the pitch estimates in relation with the

other pitch values in the contour are consistent. The better performance of the proposed

algorithms when compared to similar pitch tracking methods may be attributed to the use

of Bach scale filter-banks.

A representation of the transcription, suited for query-by-humming applications, has been

suggested. This representation, though useful, is not efficient for matching renderings of a

song. This is because of a high number of deletions and insertions of note onsets by the

music transcription process. So, a new distance measure based on the energy profiles of the

renderings has been suggested. It has also been demonstrated to have a better performance,

than the method using DTW on the note onsets.

The transcription of a query is just one aspect of the problem in query-by-humming sys-

tems. The second part is the more difficult one, which involves transcription of polyphonic

music. Only when we have a robust system that can transcribe the lead track of a polyphonic

music, can we build a successful query-by-humming system. This is an extremely difficult

problem because of the wide variety of music present. Machine learning algorithms, which

can predict the likely pitch contours, would fail to be general and robust for different types of

music. So, it is necessary to first develop a non data-driven system which is fairly consistent

over a large class of songs. It is possible to adapt the proposed algorithms to track pitch in

polyphonic music. Future work should be directed towards this objective.



Appendix A

Selection of the ‘base’ Frequency

According to the formulation of the ‘Bach’ filter-bank in Sub-section 2.2.4, the ‘base’ fre-

quency can be arbitrarily chosen to be between 50 and 80 Hz. The remaining filters are

designed accordingly. However, selection of the base frequency depends on the signal itself

and is crucial in the pitch tracking algorithms. This is because, the singer may sing at an

arbitrary absolute pitch. In order to solve the problem, five filter-banks with different base

frequencies are designed. Table A.1 shows the range of frequencies each filter in the filter-

bank covers, for each of the following five base frequencies, namely 53, 54, 55, 56 and 57 Hz.

It shows the ranges of only the first 10 filters of the filter-bank. Actually M such ranges are

obtained, where M is obtained from Equation 2.2.

We can see that the ranges covered are very similar for the set of filters with base = 53

and base = 56, and similarly for base = 54 and base = 57. The second filter with base =

53 Hz, has the same range as the first filter with base = 56 and so on. Thus, it is sufficient

to have to select from the three base frequencies, namely 54, 55 and 56 Hz. The range for

filter-banks with other base frequencies will be covered by one of these three set of filter-

banks. Selection among these three base frequencies is another problem altogether. Several

methods could be suggested. One among them is stated as below.

Algorithm A.1. : Selection of ‘base’ frequency

1. Select a non-silent region of the signal.

2. Find a high resolution Fourier Transform of the signal, i.e. Fft(ω), where ω ∈ [0, π]
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Table A.1: Five base frequencies, and the corresponding ranges covered by the first ten filters

Filter Range for Range for Range for Range for Range for

Number base=53 Hz base=54 Hz base=55 Hz base=56 Hz base=57 Hz

1 51.5 - 54.5 52.4 - 55.6 53.4 - 56.6 54.4 - 57.6 55.4 - 58.6

2 54.5 - 57.8 55.6 - 58.9 56.6 - 60.0 57.6 - 61.0 58.6 - 62.1

3 57.8 - 61.2 58.9 - 62.4 60.0 - 63.5 61.0 - 64.7 62.1 - 65.8

4 61.2 - 64.9 62.4 - 66.1 63.5 - 67.3 64.7 - 68.5 65.8 - 69.8

5 64.9 - 68.7 66.1 - 70.0 67.3 - 71.3 68.5 - 72.6 69.8 - 73.9

6 68.7 - 72.8 70.0 - 74.2 71.3 - 75.5 72.6 - 76.9 73.9 - 78.3

7 72.8 - 77.1 74.2 - 78.6 75.5 - 80.0 76.9 - 81.5 78.3 - 83.0

8 77.1 - 81.7 78.6 - 83.3 80.0 - 84.8 81.5 - 86.3 83.0 - 87.9

9 81.7 - 86.6 83.3 - 88.2 84.8 - 89.9 86.3 - 91.5 87.9 - 93.1

10 86.6 - 91.7 88.2 - 93.5 89.9 - 95.2 91.5 - 96.9 93.1 - 98.7

3. For base = 54, 55 and 56 Hz, find

Sft(base) =
M∑
n=1

1

RHbase(n) −RLbase(n)

∫ RHbase(n)

RLbase(n)
Fft(ω) dω (A.1)

where

RLbase(n) = 2 ∗ π ∗ base ∗ 2
n
12 − base ∗ 2

n
12 − base ∗ 2

n−1
12

2 ∗ Fs (A.2)

and

RHbase(n) = 2 ∗ π ∗ base ∗ 2
n
12 +

base ∗ 2
n+1
12 − base ∗ 2

n
12

2 ∗ Fs (A.3)

4. Select the base frequency corresponding to the largest Sft(base).

5. Use the filter-bank designed with the best base frequency.

Figure A.1 shows a typical high resolution fourier transform of a song rendering.

The effectiveness of the algorithm for five different song renderings is demonstrated in

Table A.2. The error rate is calculated for the time-contour based method (Section 4.3).

%E, as defined in Sub-section 4.5, is usually the lowest for the highest Sft(base). However,

it can also be seen that the error for filter-banks with different base frequencies does not

vary by more than 1 to 2 %. So, the variation in the base frequency may not cause too much

of a difference to the pitch tracking algorithm.
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Table A.2: Sft(base) for various base frequencies and corresponding %E (defined in Sub-

section 4.5)

Parameters Song 1 Song 2 Song 3 Song 4 Song 5

Sft(54) 2712 1160 2561 1403 315.9

Sft(55) 2717 1159 2542 1400 316.2

Sft(56) 2715 1158 2562 1404 316.3

% Errors

%E for base = 54 8.3 9.2 10.2 7.3 8.1

%E for base = 55 5.3 9.4 10.3 7.5 7.3

%E for base = 56 6.5 9.5 10.1 7.1 7.3
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Figure A.1: High resolution Fourier transform of a sample rendering of a song



Appendix B

Determination of Time Resolution of

the Human Ear at Various

Frequencies

The number of coefficients for a filter in a filter-bank is determined from Equation 2.26, for

the formulation given in Chapter 2. However, there is a perceptual way of determining the

number of coefficients required for a particular filter. This depends on the time resolution

available to the human ear at a particular frequency. An experiment was set up in order to

determine this time resolution at various frequencies.

B.0.1 Motivation

The design of the experimental setup to determine the time resolution of the human ear,

is based on the unique ability of the human ear to perceive ‘beats’, when two sounds with

very close frequencies occur together. Beats are nothing but a result of the fluctuations in

amplitude, as shown in Figure B.1. When two frequencies f1 and f2 are heard together,

then the effect is the same as amplitude modulation with a carrier frequency fc = f1 + f2−f1
2

(assume f1 < f2), modulated by a frequency of fm = f2−f1
2

, with a modulation index of ∞.

When f2 − f1 is very small, the ear cannot perceive a difference in the frequency if the

two occur one after the other. However, if heard together, beats are perceived. We know

that the perceived time period of these beats is 1
f2 − f1

. As the difference between f1 and f2

keeps increasing, the rate at which the beats are heard, keeps increasing. We start hearing

a sound with some roughness. However, below a particular time period, we stop hearing
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Figure B.1: The effect of hearing two frequencies, f1 = 100 Hz and f2 = 110 Hz, together

beats or roughness, and we can hear two separate smooth frequencies. In terms of amplitude

modulation, we can say that there is a limit to the perception of the modulation frequency.

What is interesting is, that the limit to the perception of the modulation frequency

depends on the carrier frequency itself. In other words, the minimum time period of beats

that can be heard depends on the frequencies themselves. This limit is taken as the threshold

for time resolution of the human ear. In order to do a systematic study on this perceptual

phenomenon, an experiment was conducted.

B.0.2 Experimental Setup

Five users were provided with hi-fi headphones having a flat frequency response. Two random

frequencies with a small difference were selected to be played together. These frequencies

were normalized to equal loudness at 40 db [16]. The user was told to respond with ‘1’ if

he/she heard beats or roughness and with ‘0’ if he/she heard a smooth sound, with two

separate frequencies. If the user responded with ‘1’ initially, the difference between the fre-

quencies was increased gradually till he responded with ‘0’. The difference of frequencies
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was noted when he responded with ‘0’, and the inverse of the difference is taken as the time

resolution of the human ear at the mean of the two frequencies. Each user was asked to

repeat the experiment for 50 such frequency pairs. Figure B.2 shows the data obtained by

the experiment.
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Figure B.2: The experimental values obtained for time resolution

B.0.3 Discussion of Results

A power function was fit into the experimental data, and the best fit was for function

tr(f) = 0.6876 ∗ f−0.00794 − 0.6328 (B.1)

where ‘tr’ is the time resolution in seconds, as a function of f , the frequency in Hz.

Figure B.3 shows the fit of the Equation B.1. Figures B.4, B.5, B.6 and B.7 compare

the experimental data with the length of the filters obtained from various frequency scales.

Typically, it is considered that the roughness is not heard outside the critical bandwidth of

hearing. However, the experimental data shows that perception of roughness stops much



Appendix B. Determination of Time Resolution of the Human Ear at Various Frequencies 76

before the edge of the critical bandwidth. The non-linear formulation of the Bach scale has

the best approximation at lower frequencies and the Mel scale has the best approximation

at higher frequencies.
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Figure B.3: The power law approximation fit the data in Figure B.2

B.0.4 Conclusion

The experiment for obtaining the time resolution of the human ear using the minimum limit

of the perception of beats shows fairly interesting results. A better fit for the obtained ex-

perimental data may be proposed. The experimental data shows the possibility of proposing

a new perceptual scale based on this property. More detailed perceptual experiments need

to be performed in order to explore this phenomenon.
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Figure B.4: Comparison between the length of the filter proposed for Mel scale formulation

and the experimental data
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Figure B.5: Comparison between the length of the filter proposed for Bark scale formulation

and the experimental data
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Figure B.6: Comparison between the length of the filter proposed for Bach non-linear scale

formulation and the experimental data
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Figure B.7: Comparison between the length of the filter proposed for Bach linear scale

formulation and the experimental data
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