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Abstract

Speech segmentation is the process of identifying the boundaries between words,

syllables or phones in the recorded waveforms of spoken natural languages. The

lowest level of speech segmentation is the breakup and classification of the sound

signal into a string of phones. The difficulty of this problem is compounded by the

phenomenon of co-articulation of speech sounds.

The classical solution to this problem is to manually label and segment spec-

trograms. In the first step of this two step process, a trained person listens to a

speech signal, recognizes the word and phone sequence, and roughly determines the

position of each phonetic boundary. The second step involves examining several

features of the speech signal to place a boundary mark at the point where these

features best satisfy a certain set of conditions specific for that kind of phonetic

boundary. Manual segmentation of speech into phones is a highly time-consuming

and painstaking process. Required for a variety of applications, such as acoustic

analysis, or building speech synthesis databases for high-quality speech output sys-

tems, the time required to carry out this process for even relatively small speech

databases can rapidly accumulate to prohibitive levels. This calls for automating

the segmentation process.

The state-of-art segmentation techniques use Hidden Markov Models (HMM) for

phone states. They give an average accuracy of over 95% within 20 ms of manually

obtained boundaries. However, HMM based methods require large training data for

good performance. Another major disadvantage of such speech recognition based

segmentation techniques is that they cannot handle very long utterances, which are
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necessary for prosody modeling in speech synthesis applications.

Development of Text to Speech (TTS) systems in Indian languages has been dif-

ficult till date owing to the non-availability of sizeable segmented speech databases

of good quality. Further, no prosody models exist for most of the Indian lan-

guages. Therefore, long utterances (at the paragraph level and monologues) have

been recorded, as part of this work, for creating the databases.

This thesis aims at automating segmentation of very long speech sentences

recorded for the application of corpus-based TTS synthesis for multiple Indian lan-

guages. In this explicit segmentation problem, we need to force align boundaries in

any utterance from its known phonetic transcription.

The major disadvantage of forcing boundary alignments on the entire speech

waveform of a long utterance is the accumulation of boundary errors. To overcome

this, we force boundaries between 2 known phones (here, 2 successive stop conso-

nants are chosen) at a time. Here, the approach used is silence detection as a marker

for stop consonants. This method gives around 89% (for Hindi database) accuracy

and is language independent and training free. These stop consonants act as anchor

points for the next stage.

Two methods for explicit segmentation have been proposed. Both the methods

rely on the accuracy of the above stop consonant detection stage.

Another common stage is the recently proposed implicit method which uses Bach

scale filter bank to obtain the feature vectors. The Euclidean Distance of the Mean

of the Logarithm (EDML) of these feature vectors shows peaks at the point where

the spectrum changes. The method performs with an accuracy of 87% within 20 ms

of manually obtained boundaries and also achieves a low deletion and insertion rate

of 3.2% and 21.4% respectively, for 100 sentences of Hindi database.

The first method is a three stage approach. The first is the stop consonant de-

tection stage followed by the next, which uses Quatieri’s sinusoidal model to classify

sounds as voiced/unvoiced within 2 successive stop consonants. The final stage uses
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the EDML function of Bach scale feature vectors to further obtain boundaries within

the voiced and unvoiced regions. It gives a Frame Error Rate (FER) of 26.1% for

Hindi database.

The second method proposed uses duration statistics of the phones of the lan-

guage. It again uses the EDML function of Bach scale filter bank to obtain the

peaks at the phone transitions and uses the duration statistics to assign probability

to each peak being a boundary. In this method, the FER performance improves to

22.8% for the Hindi database.

Both the methods are equally promising for the fact that they give low frame

error rates. Results show that the second method outperforms the first, because it

incorporates the knowledge of durations.

For the proposed approaches to be useful, manual interventions are required at

the output of each stage. However, this intervention is less tedious and reduces

the time taken to segment each sentence by around 60% as compared to the time

taken for manual segmentation. The approaches have been successfully tested on

3 different languages, 100 sentences each - Kannada, Tamil and English (we have

used TIMIT database for validating the algorithms).

In conclusion, a practical solution to the segmentation problem is proposed.

Also, the algorithm being training free, language independent (ES-SABSF method)

and speaker independent makes it useful in developing TTS systems for multiple

languages reducing the segmentation overhead. This method is currently being

used in the lab for segmenting long Kannada utterances, spoken by reading a set of

1115 phonetically rich sentences.
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Chapter 1

Introduction

Of course, this fragmentation is not unique to research in the field of

spoken language processing. Since Descartes, scientific reductionism has

dominated as the main paradigm for understanding natural phenomena.

For over 400 years, scientists have made tremendous progress across the

breadth of human knowledge by making assumptions and approximations

in order to partition a problem into more easily addressable sub-parts.

However, the downside of the standard scientific method is that it leads

inevitably to greater and greater knowledge about smaller and smaller

aspects of a problem. As a result, progress towards the unification of

different theories can be slow and ponderous, and success on the scientific

grand challenges continues to elude the scientific community [1].

Speech segmentation is the determination of the beginning and ending bound-

aries of acoustic units. Generally, segmentation is divided into two levels:

• Lexical segmentation : Decomposition of spoken language into smaller lex-

ical segments such as paragraphs, sentences, phrases, words and syllables.

• Phonemic segmentation : Segmentation and classification of the sound

signal at the lowest level to a string of acoustic elements (phones), which
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represent distinct target configurations of the speech tract (w.r.t. articulation

as well as form of excitation).

Speech segmentation at the phone level refers to the process of getting accurate

time markers indicating the beginning and ending of phones in a spoken sentence.

Many speech processing problems usually require segmenting the speech corpora

into phonemic units and also labeling them. Usually, the goal is to save or process

these units or to reduce the quantity of information to code.

When dealing with speech transmission , segmentation is used to locate the

stationary segments over which the signal can be modeled with a unique time-

invariant model. This allows for the increase of the average estimation interval,

which in turn enables the reduction of the baud rate required to maintain the high

quality transmission [2].

The analysis of speech sounds in different contexts requires a tedious work of col-

lecting samples of the sounds because of which speech segmentation becomes impor-

tant in speech recognizers . Although actual techniques do not require an explicit

segmentation, it is accepted that faster training and better results are achieved if

the modeling techniques are initialized with some segmentation of the speech. This

is specially important for the methods which require time consuming procedures for

training. Furthermore, the labels are used to evaluate recognition systems. The per-

formance of the systems is usually measured by aligning the recognized transcription

with the reference transcription [3].

Finally, segmentation of speech is also important in speech synthesis . Here, a

large number of units need to be segmented to build a dictionary of sub-word units.

This thesis attempts to automate this process.

A high quality unit selection speech synthesizer requires the recording of proper

data. Although a number of studies have investigated what data is correct for a

particular domain [4, 5], typical recorded databases only have isolated sentences,

and this appears insufficient for constructing natural and consistent prosody above

the sentence level. It is required to record from a single speaker, utterances of a
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paragraph and longer monologues, which cover various phonetic-acoustic contexts.

To use such databases for the construction of a unit selection synthesizer, it is

necessary to segment and label the positions of the units. In speech synthesis,

segmentation and annotation of the speech at the phonemic level has become a

standard requirement. The synthesis block of the Text-to-Speech (TTS) systems

concatenates the phone units (present in the inventory) based on the left and right

contexts. The quality of segmentation is crucial because an error in segmentation

results in an audible error in the synthesized speech. However, boundary errors of

the order of 20-30 ms are not audible and are considered acceptable.

Segmentation, from now on, refers to speech segmentation at phone level, unless

otherwise mentioned.

The difficulty of this segmentation problem is compounded because of the phe-

nomenon of co-articulation of speech sounds, where it may be modified in various

ways by the adjacent ones such as blending smoothly, fusing, splitting, or at times

even disappearing. This phenomenon may happen between adjacent words just as

easily as within a single word. Whether ‘true’ phone boundaries do exist is subject

to discussion. Therefore the term correct phone boundaries, here, refer to locations

in time-domain, which are marked by human experts based on prominent acoustic

events such as sudden changes in speech spectra or energy [6]. Hence, the classical

solution to this (segmentation) problem is to manually label and segment spectro-

grams. The process of manual labeling and segmenting of speech can be seen as

a two-step process. In the first step, a trained person listens to a speech signal,

recognizes the word and phoneme sequence, and roughly determines the position of

each phonetic boundary. The second step involves examining several speech signal

features (waveform, energy, spectrogram etc.,) to place a phonetic boundary time

mark, where these features best satisfy a certain set of conditions specific for that

kind of phonetic boundary [7].

The changes in spectral and temporal characteristics used to segment the phones

in a speech waveform can be seen in Fig. 1.1.

Manual labeling and segmentation, though reliable, has two disadvantages. First,
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it is very time consuming as manual labeling of a single utterance can take several

hours. The cost of establishing a sizeable acoustic phonetic database is therefore

high. More is the difficulty of generating reproducible results. Informal compar-

isons during the establishment of an acoustic-phonetic database of continuous speech

shows the near impossibility of two researchers obtaining identical segmentation re-

sults even though a strategy is laid down in fine detail. A rough segmentation at the

syllable level might be consistent. However, the finer segmentation remains arbi-

trary to a certain extent especially where several phones fall into one syllable without

exhibiting any discontinuities of the parameter functions or their derivatives. The

need for a large-scale acoustic-phonetic database and the concern about the validity

of the speech analysis performed on such a database call for the development of

automatic segmentation and labeling [8].

There are 2 types of automated segmentation: Implicit segmentation or

blind segmentation does not have any priori knowledge of the phonetic tran-

scription. Whereas, the problem of finding phonetic boundaries of a text given its

phonetic content is known in the literature as linguistically constrained seg-

Figure 1.1: Manual Segmentation using temporal and spectral changes for
the Kannada utterance - ‘SwasochAsadasangkyEkaDim’ using Praat software
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mentation or explicit segmentation .

Implicit segmentation methods result in ‘deletions ’ and ‘insertions ’. Absence

of an automated boundary within 20 ms of a manual boundary results in deleted

boundary. When there is more than one automated boundary within 20 ms of a

manual boundary or an automated boundary where there is no manual boundary,

it is an inserted boundary.

1.1 Literature survey of implicit methods

The earliest attempts at automated segmentation were achieved using the spectro-

gram of the signal and counting the number of zero-crossings in a region of speech

[9, 10].

Van Hemert used the intra frame correlation measure [11] between spectral

features to obtain the segments. Though the method resulted in 91% accuracy, the

experiments were on isolated words and not on continuous speech.

Statistical modeling (AR, ARMA) [12] has also been used. It is based on

Brandt’s model that every homogeneous segment of the signal is described by an

AR model of order p, and hence a jump in the AR coefficients and variance of the

residue corresponds to an event in speech signal.

The most popularly used methods are the Spectral Transition Measure (STM)

and the Maximum Likelihood (ML) segmentation methods [14].

STM method uses the fact that at the times when the vocal tract changes rapidly,

as at the boundaries between different speech sounds, the magnitude of the derivative

of the vector (representing spectral features) peaks. However, this method requires

a threshold for peak picking.

ML method is conditioned on the criteria that the acoustic inhomogeneity of a
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segment needs to be minimized. This inhomogeneity is seen as the intra-segmental

distortion i.e., distortion from the frames that span the segment to the centroid

of the segment. The centroid of a segment is viewed as the ML estimate of the

frames in the segment. ML segmentation method uses the dynamic programming

algorithm and is terminated when the distortion falls below a specified threshold.

Alternatively, the method can also be input with the number of segments required

(explicit method).

Another method which uses average level-crossing rate (A-LCR) has been sug-

gested by Sarkar [15]. This method explores detecting signal changes with a view

that temporal features are more reliable than the standard feature domain methods,

since both magnitude and phase information are retained. It uses the A-LCR to de-

tect significant temporal changes in the signal. The method outperforms STM and

doesn’t use the information of number of segments unlike STM and ML methods.

Nagarajan, Murthy and Hegde [16] have used group delay functions to segment

speech into syllable-like units. Three different minimum phase signals are derived

from the short term energy functions of three sub-bands of the speech signal, as if

it were a magnitude spectrum. Boundaries are defined by combining the peaks of

the group delay functions of each of these three sub-bands.

All the above cited methods do not need training and are implicit segmentation

methods. However, ML and STM methods can be modified to take into account the

number of segment boundaries required.

In automating the segmentation process for TTS corpora, a forced alignment

system can be used. The uttered word sequence is known in advance and the

phonetic transcription of the recordings can be derived from the orthographic text

using a grapheme to phoneme (G2P) converter. Thus, the task of the system is to

find the best alignment of the transcription sequence to the speech signal. This is

an explicit segmentation problem.

Although in few cases, the utterance may deviate from its phonetic transcription,

mainly due to dialectal variations, this problem is not dealt with in this work. It
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is assumed that the utterance corresponds to the phonetic transcription obtained

from G2P.

1.2 Literature survey of explicit methods

The most successful segmentation methods have been borrowed from automatic

speech recognition, such as Hidden Markov Models (HMM) [17] or Dynamic Time

Warping (DTW) [18], because automatic alignment can be viewed as a simplified

recognition task.

In a HMM based segmentation technique, the HMM recognizer is used to do

forced alignment. A known sequence of phoneme models is used with the Viterbi

algorithm to generate a phonetic alignment giving an accuracy of around 79%. Con-

text independent HMMs perform better than the context dependent HMMs. How-

ever, an initial estimate of the labeling is generated using a context dependent phone

based HMM (CDHMM) [13, 19]. Finer refinement of boundaries is achieved by pars-

ing through the sentence a second time. This refinement has been proposed using

various techniques: Fuzzy logic, neural networks, Gaussian mixture models (GMMs)

or Multi-layer perceptron (MLP) [20] with boundary accuracies of 94%, 96%, 94%

and 94% within 20 ms of manually determined boundaries. Further, the accuracy

increases to 99% when speaker adaptation techniques are used. On the other hand, if

DTW were used, the signal is aligned with some kind of known reference containing

the expected segments.

In the above methods, the boundaries are inferred from the recognition results,

which are not necessarily consistent with the correct phone boundaries. This might

not significantly affect the recognition accuracies of speech recognizers, but devia-

tions from prominent acoustic events affect the performance of speech processing

algorithms heavily relying on precise phone boundary detections [21]. Also, these

techniques do not appear to work that well on databases with longer utterances that

are required for better super-sentential prosodic modeling [22]. Hence, these tech-

niques also require a manual correction of boundaries. Also, they are data dependent
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- larger the training data, better is the performance of training based segmentation

methods.

1.3 Literature survey on segmentation for Indian

languages

A survey of segmentation techniques in the literature for Indian languages show

techniques segmenting Tamil and Telugu databases at syllable level explored by

Hema Murthy [16, 23, 24]. Subspace based segmentation at CV level was proposed

by Muralishankar and Vijayakrishna [25] for Kannada and Tamil languages. Pra-

hallad [26] proposes segmentation using neural networks on Hindi database with a

reported accuracy of 95%. Ananthakrishnan [27, 28] proposed a filter bank approach

for training-free, implicit segmentation at phone level (language independent), which

gave good segmentation accuracy for Indian languages. However, literature available

dealing with segmentation of speech at phone level for Indian languages is limited.

The scenario for Indian languages is such that large standard databases are

not available for training. Also, little literature is available for modeling prosody in

Indian languages [30, 31, 32]. Research in this area is very recent [33]. Therefore, we

have recorded long utterances at the paragraph level and monologues for creating the

databases. Typically, sentences have an average of 170 phones and some sentences

even extend to more than 1000 phones. Alignment of the text to recorded speech is

limited by the fact that standard techniques do not handle such very long utterances

well. Recently, Prahallad [34] discusses ways to handle issues in processing of large

multi-paragraph speech databases that can be used in speech synthesis.

The aim of this thesis is to automate the process of aligning a given sequence of

phones for long spoken utterances recorded for the purpose of development of TTS

application.

Instead of attempting to segment the long utterances at once, segmenting it
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within smaller regions leads to better accuracy of segmentation. Here, we attempt

to detect stop consonants and use them as anchor points for the next stage.

Two methods have been proposed for force aligning of boundaries. Both methods

rely on the accuracy of the above stop consonant detection stage. Another common

stage of both the algorithms is the use of Bach scale filter bank to obtain the feature

vectors. A distance function of these feature vectors shows peaks at the points,

where the spectrum significantly changes [27, 28].

The first method is a multi-stage approach, which combines 3 algorithms. The

first is the stop consonant detection stage. The next stage uses Quatieri’s sinusoidal

model [42] to classify sounds within 2 successive stop consonants as voiced/unvoiced.

The final stage uses the distance function of feature vectors of Bach scale filter bank

to further obtain boundaries within the voiced and unvoiced regions. In this work,

this method will be referred to as ‘Explicit Segmentation using Sinusoidal Analysis

and Bach Scale Filter-banks’ (ES-SABSF).

The second method uses duration statistics of the phonemes of the language. It

again uses the distance function of Bach feature vectors (i.e., feature vectors obtained

from Bach scale filter banks) to obtain peaks at the phone transitions and uses the

duration statistics to assign probability to a particular peak being a boundary. In

this thesis, this method will be referred to as ‘Explicit Segmentation using Duration

Statistics and Bach Scale Filter-bank’ (ES-DSBSF).

Both the methods are equally promising for the fact that they give low frame

error rates as compared to those proposed in the literature. However, results show

that the second method (ES-DSBSF) outperforms the first (ES-SABSF), because it

incorporates the knowledge of durations.

For the two proposed segmentation approaches to be useful, manual interventions

are required at the output of stop detection stage and the final stage. However, these

interventions are less tedious.

In conclusion, we have proposed a practical solution to the segmentation prob-
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lem. The proposed methods reduce the time taken to segment each sentence by

around 60% as compared to the time taken for manual segmentation. Being train-

ing free, language independent (method 1) and speaker independent, the algorithm

facilitates development of TTS systems for multiple languages with reduced segmen-

tation overhead.

The outline of the thesis is as follows : The detection of stop consonants is dealt

with in Chapter 2. Chapter 3 summarizes the implicit segmentation technique using

Bach scale filter bank. Chapters 4 and 5 describe the ES-SABSF and ES-DSBSF

methods, respectively along with a discussion on their performance. Chapter 6

concludes the thesis.



Chapter 2

Stop-consonant detection

The major disadvantage of forcing boundary alignments on long utterances is that

an error in detecting one of the segment boundary can result in error in subsequent

boundaries. To circumvent this drawback, we propose to force boundaries between

2 known phones, so that the boundary error occurring at the start of the speech

waveform does not propagate to the end. We can identify a phoneme class in either

of the two ways :

• Using a phoneme/ phoneme class recognition system

• Using a phoneme/ phoneme class detection system.

A recognition system will invariably lead to a system that requires training. How-

ever, our motivation is to segment speech with no training. Hence, a simple phoneme

class detection algorithm can be used.

The phonemes can be broadly classified into the following classes:

• Fricatives

• Vowels
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• Nasals

• Nasalized vowels

• Diphthongs

• Glides

• Stop consonants

• Silence

Fricatives, vowels, nasals, diphthongs, nasal vowels and glides need some stored

form of features to be able to detect them. Also, different phonemes in each class

require different features. However, stop consonants can be efficiently detected with-

out storing any features. Hence, we choose to detect all the stop consonants in the

utterance as the first step and this is described in this chapter.

2.1 The stop-consonants

A stop or plosive or occlusive is a consonant produced by stopping the airflow in

the vocal tract. All languages of the world have stops (some Polynesian languages

have only three). Most languages have at least [p], [t], [k], [n], [m]. In the articulation

of a stop consonant, three phases can be distinguished:

• Catch or occlusion : The airway closes so that no air can escape through the

mouth; hence the name occlusive. With nasal stops, the air escapes through

the nose.

• Hold or stop: The airway stays closed causing a pressure difference to build

up; hence the name, stop.

• Release, burst or plosive: The closure is opened. In the case of plosives, the

released airflow produces a sudden impulse, causing an audible sound; hence

the name plosive.
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In certain languages, some stops may lack the final release. These are called

unreleased stops. (Example. In English, [p] in ‘apt’ and [n] in ‘ant’ are unre-

leased stops.)

Based on the manner and place of articulation, stop consonants can be broadly

classified as:

• Nasal or oral stops: If the velum is lowered, thus allowing air to escape

through the nose during the production of the stop, then it is a nasal stop.

Else it is an oral stop.

• Voiced or unvoiced stops: Voiced stops are articulated with simultaneous

vibration of the vocal cords, while unvoiced stops are articulated without vi-

bration of cords.

• Aspirated or unaspirated stops: In aspirated stops, there is a strong frica-

tion noise after release, whereas unaspirated stops have no frication after re-

lease. Most Indian languages have separate phonemes for aspirated stops.

• Short or long stops: In a long stop, the second phase of the articulation of

the stop takes more time than a short stop. Typically, long stops take about

three times the closure duration of the short ones.

Stops may be made with more than one airstream mechanism:

• Pulmonic egressive: This is the normal mechanism, where the air flowing

outward is powered by the lungs (actually, the ribs and diaphragm). All

languages have pulmonic stops.

• Ejectives or glottalic egressive: In this mechanism, the airstream is pow-

ered by an upward movement of the glottis rather than by the lungs or di-

aphragm. Plosives, affricates and occasionally, fricatives may occur as ejec-

tives. All ejectives are unvoiced.
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• Implosives or glottalic ingressive: Here, the glottis moves downward, but

the lungs may be used simultaneously to provide voicing, and in some lan-

guages no air may actually flow into the mouth. The vast majority of implosive

consonants are voiced and they are frequent among African languages.

• Clicks: These are stops produced with two articulatory closures in the oral

cavity. The two closures involved are : an anterior one which is regarded as

primary and determines the click’s place of articulation, and a posterior one

which can be oral or nasal, voiced or voiceless.

The classification of stop consonant sounds based on manner of articulation

results in a stop sound containing 2 to 4 of the following events:

• Closure duration, which is mostly silent.

• Release with clearly marked noise burst.

• Frication after burst release for aspirated stops.

• Voice Onset Time, (VOT), which is the length of time that passes between the

release of the consonant and the beginning of the vibration of the vocal folds.

VOT is near zero for unvoiced stops, negative for voiced stops and positive for

aspirated stops.

These events are also called ‘micro-phonetic segments’ with respect to stop con-

sonants.

Most of the Indian languages have evolved from Sanskrit. Fig. 2.1 shows the tra-

ditional listing of the Sanskrit consonants with the (nearest) equivalents in English

or Spanish. Each consonant shown is deemed to be followed by the neutral vowel

schwa (/a/), and is named as such below [35].

Except the nasal plosives, we classify the rest of the combinations of voiced

or unvoiced, aspirated or unaspirated plosives in any Indian language in the stop

consonant class.
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Figure 2.1: Classification of stops in Sanskrit language: Along the rows is the
manner of articulation and along the columns is the place of articulation.

2.2 Detection of stop consonants

The algorithm proposes to detect silence as a marker for stop consonants. It can be

noted that every stop consonant has the silence as the cue for the closure region.

However, voiced stop consonants have a low frequency signal in the closure region.

To remove this low frequency signal, the speech signal is high pass filtered with a

Bessel filter, whose cutoff frequency is 400 Hz. The magnitude and phase responses

of the Bessel filter are shown in Fig. 2.2. A voiced stop consonant, before and after

high pass filtering is shown in Fig. 2.3(a) and (b) respectively.

The first few frames (considering a frame to be 10 ms long) of any spoken sentence

is predominantly silence. Now, the MFCCs of all the frames of the filtered speech
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are calculated. The Euclidean distance is computed between the MFCC of first

frame and MFCC of every other frame. If this distance drops below a threshold

value for a minimum of µ consecutive frames, then the algorithm decides that the

corresponding region may contain the silence part of a stop consonant or a silent

interval in speech or a combination of both. The frame within this region having the

minimum distance from the first silence frame is surely a stop consonant (or silence

or both) frame. Fig. 2.3(c) shows the output of the algorithm for the waveform in

Fig. 2.3(a).

2.3 Results and analysis

If an output frame from the stop detection algorithm is well within the stop region/

silence region, then the first sample of that particular frame is an accurate output. If

there is more than one output within a single stop region/ silence region, or if there
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Figure 2.2: Magnitude and phase response of the high-pass Bessel filter
with cutoff frequency 400Hz and sampling frequency 16KHz
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(a) Original speech waveform
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(b) High−pass filtered speech waveform
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Low frequencies in the closure of /b/

Absence of low frequencies in closure of /b/

Figure 2.3: (a). The original speech waveform for the Hindi utterance -
/U/n/k/O/b/A/i/zz/a/t/b/a/r/i/. There are 2 instances of the phoneme /b/. (b).
The high-pass filtered signal. The low frequency portion in the closure of /b/ also
known as voicing bar, is absent here in both instances of /b/ (c) Output of the stop
detection algorithm. The vertical lines denote the stop consonants, as detected by
the algorithm.

is an output where there is no stop/ silence, then such detections are considered

‘insertions’. If there is no output from the algorithm in a stop/ silence region, then

such zones are considered ‘deleted’.

Experiments are conducted for finding the optimal choice of µ . A graph plotting

percentage deletions and insertions of stops/silences for different values of µ is shown

in Fig. 2.4. The optimum choice of µ, namely 4, can be justified by considering the
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minimum duration of a stop consonant to be roughly around 40 ms.
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Figure 2.4: Performance of the stop detection algorithm for various values of µ
(minimum number of consecutive frames.)

Similar experiments are conducted for the choice of the order of the Bessel fil-

ter. A graph plotting the percentage insertions and deletions of stops/silences for

different orders of filters is shown in Fig. 2.5. Filter of order 8 is found to give the

minimum number of deletions and insertions and hence is considered as the optimal

choice for our work.

Experiments performed on 100 sentences from Hindi database (totaling to 2123

stop consonants and/or silence regions) give a stop consonant/silence detection ac-

curacy of 86.6% with 20% insertions. From the phonetic transcription, we know the

number of regions involving actual silence regions (between words) and the closure

regions of the stop consonants. Using this, the number of silence regions to be de-

tected is forced. In this case, the equal error rate (the number of insertions is equal

to the number of deletions) is 11.2% for 100 files of Hindi speech.

To further validate the algorithm, experiments are performed on 100 sentences of

TIMIT database. The equal error rate achieved is 18%. This is nearly comparable

to the stop detection accuracy reported in the literature (without training). The
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Figure 2.5: The effect of the order of the Bessel filter on the performance of the stop
detection algorithm.

results are compared in Table 2.1.

The algorithm is language independent and we tested its performance for three

different languages. The results are tabulated in Table 2.2.

The phonemes consistently getting detected as stops consonants are [n], [m] and

[w], with the nasals, [n] and [m] accounting for 42%, [w] accounting for 16% of the

total insertions. Interestingly, the fricatives [s] and [sh] accounted for 11% of the

Table 2.1: Performance comparison of detection of stop consonants in the TIMIT
database - Algorithms in the literature v/s proposed algorithm.

Stop detection algorithm Training Error rate

Bayesian classifier Yes 8.6%

Using Wavelets (unvoiced stops) No 4.5%

Using Wavelets(voiced stops) No 32.5%

Filter approach Yes 16%

Proposed method No 18%
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Table 2.2: Performance of the proposed stop consonant detection algorithm for
various languages

Language Error rate

Hindi 11.2%

English (TIMIT) 18%

Kannada 15%

insertions.

The acoustic attributes of nasal sounds are distinct from those of other sounds by

their stable concentration of energy in the lower frequency regions. For nasals, the

high density of formants in the central frequency range, together with the existence of

anti-formants causes the sound energy to be spread evenly throughout the frequency

range of 800-2300 Hz.

Acoustic analysis reveals that the approximants like [w] have low amplitude

energy and visible formant structure that are not present in the stops (which are

less sonorous than the approximants).

High pass filtering these sounds at around 400 Hz results in very low energy in

these sounds, giving way for wrong classification as a stop consonant.

The Euclidean distance between MFCC of the fricatives, [s] and [sh] and that of

stops is not very high and hence is found to cause the misclassification.

The stop consonants that were consistently not getting detected are [j], [g], [d],

[D] and [b]. It can be seen that these are voiced stop consonants. Among them, [j]

and [g] are prominent, accounting for 29.3% and 22.7% of undetected stops, respec-

tively. This is due to the fact that in the neighborhood of vowels, the amplitude of

closures of these voiced stops is quite high and the duration of the closure is lesser.

This is illustrated in Fig. 2.6 for an instance of /d/.

Experiments conducted by pre-classifying the nasals, [n] and [m] (which accounts
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Figure 2.6: Instance of stop consonant that cannot be detected: Waveform
and spectrogram of an utterance in Kannada - ”keLatudi”. The instance of /d/
cannot be detected by the expected amplitude change or spectral change or closure
duration (lasting for only 25 ms) and may be missed.

for 42% of insertions) as stops results in 87.5% of stop detection accuracy for the

Hindi database. It also results in the rise of insertion rate of fricatives, [s] and [sh]

from 11% to 34%. In the deletion list, the prominence of [j] and [g] reduce to around

10% each while [n] and [m] themselves account for around 32% deletion each. Hence,

the inclusion of [n] and [m] into the stop consonant class is not considered ‘fruitful’

here.

Both the proposed explicit segmentation methods rely on the above stop conso-

nant detection stage. The stop detection stage requires a very accurate G2P output

as its input. A manual intervention is required for such an accurate input to the stop

detection stage. The proposed stop consonant algorithm handles voiced, unvoiced

and aspirated stops well.
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The detection of stop consonants is regarded as an independent problem. Further

refinements are required to make it more accurate. However, for the present, it suf-

fices to perform minimum required manual intervention to correct any misclassified

stop consonants. Thus, in the next stage, we assume accurate stop consonant de-

tection and describe the algorithms for segmenting the phones between 2 successive

stop consonants.



Chapter 3

An overview of segmentation

method using Bach-scale filter

bank

3.1 The Bach scale filter bank

Since the explicit methods proposed for segmentation are built on the segmentation

method proposed by Ananthakrishnan in [27, 28, 29], this chapter summarizes the

approach. Majority of the contents of this chapter is from his masters thesis [29]

(with due acknowledgements and permission from the author) and is explained here

for clarity of the explicit methods proposed.

The inspiration for construction a ‘Bach’ scale is obtained from music, where

there are 12 semi-tones in an octave. Each of the semitones is related to the next

one by a ratio of approximately 2(1/12). This ratio was initially discovered by the

great musician of the 17th century, J.S. Bach [36]. This ratio of 2(1/12) holds true

for almost all genres of music and relates to some natural perceptual phenomenon.

A filter bank corresponding to this scale is designed. Fig. 3.1 shows the relation

between the frequency in ‘Hz’ and the relative ‘Bach’ scale.
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Figure 3.1: The frequency in ‘Hz’, corresponding to the relative ‘Bach’ scale, with
‘Base’ frequency of 55 Hz (Source : [28])

The formulation of the relative Bach scale is as follows:

Bach(f) = 12 ∗ log2

(
f

base

)
(3.1)

or

f(Bach) = base ∗ 2
Bach

12 (3.2)

The center frequency of the nth filter is given by:

f(n) = Base ∗ 2
n
12 (3.3)

For formulating the bandwidth, 2 approaches were used:
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• Linear approach with respect to center frequency :

BbachL(n) =
base ∗ (2

n+1
2 − 2

n−1
2 )

2
(3.4)

• Non-linear approach with respect to center frequency :

BbachN(n) = base ∗ (2(2
(n−1)∗log2( M−12

12 )

M −1)) (3.5)

The filters designed are lag-windows obtained by the standard Blackman-Tukey

spectral estimation method [37]. The design objective is to reduce the leakage

incurred by the window hn(k) as much as possible given the bandwidth fb(n) of the

nth filter of an arbitrary scale. The set of filter coefficients obtained is the eigenvector

associated with the maximum eigen value of the matrix with elements

γm,n = β ∗ sinc[(m− n) ∗ β ∗ π] (3.6)

where 2 ∗ β = fb(n) in radians/sec and

sinc[x] =





0 if x = 1
sin(x)

x
otherwise

(3.7)

The filter coefficients are real, symmetric and finite, so the phase responses are

linear. The number of filter coefficients, N(n), used to generate the nth filter is

determined by

N(n) = 2 ∗ round

(
1

fb(n)

)
(3.8)

The final set of filters hn(k) are obtained by modulating the low-pass filters ˜hn(k)

with the corresponding center frequency value fc(n)

hn(k) = ˜hn(k) ∗ e(
2πj∗k∗fc(n)

Fs
) (3.9)

where j =
√−1.
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The magnitude responses of the set of filters constructed by the ‘Bach’ linear

and non-linear scales are shown in Fig. 3.2.

Figure 3.2: The log magnitude responses of Bach scale filters with (a). Non
linear bandwidth(b). Linear bandwidth formulations.(Source : [27, 28])

Three more filter banks corresponding to Mel scale, Bark scale and Equivalent

Rectangular Bandwidth (ERB) scale are designed using Blackman-Tukey spectral

estimation method. In order to make a just comparison with the other scales, the

first filter for all the banks is shifted by ‘base’ frequency and the total number of

filters M is same for all (M = 79). A comparison of bandwidth of the filters against

the center frequencies is shown in figure 3.3.

Figure 3.3: The comparison of the bandwidths of different scales (Source : [28])
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3.2 Obtaining the feature vectors

The speech signal is filtered by each of the filters in the filter bank. So by using ‘M ’

filters, we obtain ‘M ’ filtered versions of the signal. Thus, for every time instant,

we obtain a M -dimensional feature vector, which corresponds to the set of outputs

of all the filters. The output of nth filter is obtained by

Fn(k) = hn(k) ∗ s(k) (3.10)

where s(k) is the speech signal and hn(k) is the nth filter of the filter bank. The

feature vectors | Fn(k) |n=1:M is a 2-D representation of the signal s(k).

3.3 Two class problem

Speech is considered as a sequence of quasi-stationary units : phones. Segmentation

should ideally segregate the signal into such quasi-stationary units. However, due

to co-articulation effects, the boundaries are not clearly defined. Consider the kth

speech sample s(k). Let the feature vectors obtained be denoted by Fn(k).

Consider a length of W seconds, which is equal to w number of samples where

w = W
Fs

. Let samples [s(k−w) : s(k)] ∈ Class X. Its corresponding feature vectors are

[Fn(k − w) : Fn(k)]. Let samples [s(k) : s(k + w)] ∈ Class Y. Its feature vectors are

[Fn(k) : Fn(k+w)]. The choice of W is made empirically. Several distance functions

(DF) can be defined, which denote the dissimilarity between the two classes. For

every sample k ∈ [1 : T ] of s(k), a corresponding DF(k) (discussed in the next

section) can be found using the distance measures, where T is the total length of

the signal s(k). By the definition of a phone, the dissimilarity or distance between

the classes X and Y on either side of the kth sample, should be local maximum

when k is on a phone boundary. The segment boundary is attributed to the point

of maximum difference between the two regions on either side of a sample of speech.

This corresponds to a peak in the distance function. The intensity of the peak is
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not relevant for segmentation; the mere presence denotes a phone boundary.

3.4 Distance functions

Suppose we have two sets of w M -dimensional feature vectors extracted from samples

belonging to class X and class Y, respectively. i.e, Sx = (x1, x2, x3, ..., xw) ∈ X and

Sy = (y1, y2, y3, ..., yw) ∈ Y . Let us define µX and µY to be the M-dimensional

feature means of sets, Sx and Sy, respectively given by the equation below

µX =

∑w
i=1 xi

w
µY =

∑w
i=1 yi

w
(3.11)

The following distance measures can be formulated :-

1. Euclidean Distance of Mean Features (EDM) :

EDM(X, Y ) = ‖µX − µY ‖ (3.12)

2. Euclidean Distance of Mean Log Features (EDML) :

`µX
=

∑w
i=1 log10 xi

w
`µY

=

∑w
i=1 log10 yi

w
(3.13)

EDML(X,Y ) = ‖`µX
− `µY

‖ (3.14)

3. Normalized Euclidean Distance of Mean Log Features (NEDML) :

νX = ‖`µX
‖ νY = ‖`µY

‖ (3.15)

NEDML(X, Y ) =
(`µX

− `µY
)T (`µX

− `µY
)

νXνY

(3.16)
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4. Kullback-Leibler Distance (KLD) [38] : It is an asymmetric distance function.

KLD(X,Y ) = ‖
+∞∑

j=−∞
pX(j) ∗ loge

pX(j)

pY (j)
‖, (3.17)

where pX and pY are the ‘probability mass functions’ of classes X and Y,

respectively.

5. Itakura-Saito Distance (ISD) [39] : It is a symmetric distance function defined

for discrete random variables

ISD(X,Y ) = ‖
+∞∑

j=−∞

(
pX(j)

pY (j)
− loge

pX(j)

pY (j)
− 1

)
‖, (3.18)

where pX and pY are the ‘probability mass functions’ of classes X and Y,

respectively.

6. Mahalanobis Distance (MD) [40] : The MD between µX and µY is defined for

covariance matrix CXY , assuming that X and Y have the same distribution.

MD(X,Y ) =
√

(µX − µY )T C−1
XY (µX − µY ) (3.19)

3.5 Comparative analysis.

An accurate boundary is an automatically detected (AD) phoneme boundary which

falls within ±20 ms of a manually detected (MD) boundary. If more than one AD

boundary falls within ±20 ms of a MD boundary or no MD boundary is found within

±40 ms of an AD boundary, then such boundaries are considered to be ‘insertions’.

Similarly, if no AD boundary is found within ±40 ms of a MD boundary, then it is

considered a ‘deletion’.

The results are obtained for 100 sentences of English data from the TIMIT

database (Fs = 16000 Hz) containing male and female speakers. The data has a

Signal to Noise Ratio (SNR) of 36 dB. We also segmented 100 sentences of Hindi,
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Tamil and Kannada data each. All the data have an SNR of 30 dB and a sampling

frequency (Fs) of 16 kHz except Kannada, which has a sampling frequency of 44.1

kHz. The data available for Hindi, Kannada and Tamil are only that of male voices.

Comparisons relevent to this work are obtained from [29] and are listed in the

appendix (with due acknowledgements to the author):

• Proposed methods v/s methods in the literature - Table A.1.

• Proposed filter bank v/s other filter banks - Table A.2. (In order to make a

just comparison with the other perceptual scales, we impose identical values

for the parameters M and base for all scales, e.g. for m = 12, Fs = 11000 Hz

and base = 55 Hz, we obtain M = 79.)

• Various distance measures - Table A.3.

• Proposed method for different languages - Table A.4.

It was observed that the EDML function performs the best among the suggested

distance functions and Bach scale (with linear bandwidth formulation) filter bank

gives a slight improvement in performance over the other language independent

automated segmentation methods.

The stop detection algorithm was repeated using BFCC instead of MFCC (re-

placing the Mel scale by the proposed Bach scale). The results are compared in

Table 3.1. Performance variation is marginal. Hence, either MFCC or BFCC can

be used in the stop detection algorithm.

Table 3.1: Performance of the stop consonant detection algorithm using MFCC and
BFCC for various languages

Language Error rate using MFCC Error rate using BFCC

Hindi 11.2% 13.1%
TIMIT 18% 17.4%

Kannada 15% 14.5%
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A time-frequency representation of a speech signal using the Bach scale filter-

bank was proposed. The Bach scale tries to model the human perception of music.

This representation is a time-varying representation, since every time instant is rep-

resented by a unique set of frequency features. Why does the Bach scale perform

better than the other perceptual scales even though it does not emulate the perfor-

mance of the human ear in any way? In our opinion, the Bach scale probably gives us

an idea about how humans interpret frequencies. Two frequencies, that fall within

the scope of a semitone, may not be distinguished, even though the difference may

be perceived. This opens up a wide scope of research, which deals with discerning

between the ability to perceive and choosing to perceive. However, adequate studies

need to be performed in other applications, like speech recognition, unit selection

for TTS and speech coding, before coming to any conclusion about the effectiveness

of the Bach scale filter bank for speech1.

1Ananthakrishnan G, ‘Music and Speech Analysis Using the Bach Scale Filter-bank’, M.Sc
(Engg) thesis, Indian Institute of Science, Apr -2007, pp.66



Chapter 4

Explicit segmentation using

sinusoidal analysis and Bach scale

filter-bank

The explicit segmentation using sinusoidal analysis and Bach scale filter bank (ES-

SABSF) method is a combination of Quatieri’s model and EDML function of Bach

feature vectors and it proposes to explicitly segment speech signal between two stop

consonants. It is implemented as a 3-stage explicit segmentation technique in this

work.

4.1 Sinusoidal model for speech

One of the approaches in the analysis and synthesis of speech signals is to use

the speech production model in which speech is viewed as the result of passing

a source excitation waveform through a time-varying linear filter that models the

resonant cavities of the vocal tract. In certain applications, it suffices to assume

that the glottal excitation can be in one of the two states: voiced or unvoiced
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[41]. McAulay and Quatieri proposed a sinewave representation for speech signals

that is valid irrespective of the source state. This model comprises of sinusoidal

components having time varying amplitudes, frequencies and phases and it results

in an analysis/synthesis system based on explicit sinewave estimation [42]. In

voiced speech, these sinewaves are roughly harmonically related and linger over long

durations.

Karhunen-Loeve expansion [43, 44] allows random processes to be constructed

over a finite interval from a series expansion of harmonic sinusoids with uncorrelated

complex amplitudes.

Unvoiced speech is made up of fricatives and plosives, which can be seen as sam-

ple functions of a random process. A mathematical analysis based on Karhunen-

Loeve expansion shows that the sinusoidal model is valid even for unvoiced speech,

provided the frequencies are ‘close enough’ that the ensemble power spectral density

changes slowly over consecutive frequencies. In order to apply the sinusoidal model

to unvoiced speech, it is therefore necessary to assume that the frequencies corre-

sponding to the periodogram peaks will be ‘close enough’ to satisfy the requirement

imposed by the Karhunen-Loeve expansion. If the window width is constrained to

be at least 20 ms wide, then, ‘on the average’, this sinusoidal analysis will lead to a

set of periodogram peaks that will be approximately 100 Hz apart, and this should

provide a sufficiently dense sampling to satisfy the constraints of the Karhunen-

Loeve sinusoidal representation for the unvoiced case. Thus, unvoiced regions now

can still be represented by a large number of non-coherent sine-waves shorter in

durations.

The above analysis provides a justification for the representation of speech wave-

form in terms of the amplitudes, frequencies and phases of a set of sine waves. This

representation can be written more concisely as:

s(t) =
K(t)∑

k=1

Ak(t) expjθk(t) (4.1)



ES-SABSF method 34

where

Ak(t) = ak(t)M [t, Ωk(t)]

θk(t) = φk(t) + Φ[t, Ωk(t)]

=
∫ t

0
Ωk(σ)∂σ + Φ[t, Ωk(t)] + φk (4.2)

Equation 4.1 is the basic sinewave model that can be applied to any signal

whereas equation 4.2 is speech dependent. It is to be emphasized here that this

representation applies to a single analysis frame.

The sinusoidal analyzer is common to many applications. The first step in this

analysis of speech is to obtain different sets of parameters for each frame. In the

next stage, it is required to associate amplitudes, frequencies, and phases measured

on one frame with those that are obtained on a successive frame.

The model proposes to extract parameters (amplitudes, frequencies and phases)

of the sine-waves from the high resolution, short time Fourier transform (STFT)

by locating peaks of associated magnitude function. A hamming window of 20 ms

duration is used in the computation of STFT.

As speech evolves from frame to frame, different sets of these parameters are

obtained. Association of these parameters estimated at one frame with those of the

next frame is addressed as follows: If the number of peaks were constant from frame

to frame, then the parameter matching problem would simply require ordering of

peaks according to frequencies. However, the pitch and spectrum of speech changes

and hence the location and number of peaks also change during the rapidly varying

portions of speech.

In order to account for these rapid movements in spectral peaks and unequal

number of peaks from frame-to-frame, the concepts of birth and death are intro-

duced.

If a frequency (corresponding to a peak in the spectrum) on the current frame
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lies within the matching interval, [−∆, ∆], relative to its matched frequency on the

previous frame, then these 2 are part of a sine-wave track.

The matching procedure is made dynamic by allowing tracks to begin at any

frame (a birth) and to terminate at any frame (a death). These events occur when

successive frequencies do not fall within the matching interval. Fig. 4.1 shows the

sinusoidal tracks obtained from this analysis for a segment of speech.
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(b). Sinusoidal Analysis of speech waveform in (a)

Figure 4.1: Sinusoidal analysis of speech: (a). The portion of speech waveform
between a silence region and a stop consonant from the utterance - ‘ She had’ with
the phones /sh/,/iy/,/hv/,/ae/,/d/ from TIMIT database. (b). The sinusoidal
tracks of the above waveform. The voiced portions have harmonics whereas the
unvoiced do not have any. Each track is given a different color for distinguishing
between them.

4.1.1 Segmentation into voiced and unvoiced regions

Voiced regions of speech contain harmonics and usually extend for long durations

whereas unvoiced regions contain noise-like signals/transients without harmonics.
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By giving weights to the number of births or deaths of sinusoidal components in

a frame along with the duration of each track, the voiced and unvoiced regions can

be separated easily.

Results obtained by segmenting speech using sinusoidal model into voiced/unvoiced

regions are tabulated in Table 4.1.

Table 4.1: Comparison of performance of sinusoidal model for different languages

Language %Matched v/uv boundaries % Insertions % Deletions

English 60.2 44.7 39.8

Hindi 68.8 50.5 31.2

Tamil 65.1 48.3 34.9

Recently, Sainath and Hazen [45] have employed this sinusoidal model for

segment-based speech recognizer. They have shown that the word error rate (WER)

degrades gracefully in the presence of noise.

4.2 The ES-SABSF algorithm

A 3-stage segmentation technique is proposed. The first stage detects the stop

consonants. The next stage which segments the speech waveform between successive

stop consonants into voiced or unvoiced regions using the sinusoidal model. The final

stage further segments these voiced (or unvoiced) regions at the phonemic level using

the EDML function of Bach feature vectors. Fig. 4.2 shows the block diagram of

the proposed 3-stage ES-SABSF algorithm.

The first stage was dealt with in chapter 2. The output of the first stage is the

start of a frame considered to be surely part of a stop consonant (or silence) by the

algorithm.

Consider the portion of the waveform between the silence region and a stop

consonant as shown in figure 4.3(a).
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Figure 4.2: Block diagram of the proposed ES-SABSF algorithm.

Using the phonetic transcription, the phones are classified as either voiced or

unvoiced. Unvoiced speech sounds include fricatives and stop consonants, while the

rest are considered voiced. Between the successive stop consonants, the number of

voiced to unvoiced transitions and vice versa can be obtained from the transcription

and the required number of transitions can be detected using Quatieri’s speech model

as explained in section 4.1. The output of this model are the boundaries of voiced

and unvoiced regions between pairs of stop consonant frames. Fig. 4.3(b) shows the

output of stage 2 for the waveform shown in Fig. 4.3(a).

The final stage further segments the voiced (unvoiced) regions into the required

number of phones (for example, the voiced region may have a vowel followed by a

glide and then a nasal) . The number (N) of required boundaries is known and the

best N such boundaries are chosen from the values of EDML function from the Bach

feature vectors.

Fig. 4.4 shows the EDML contour for the voiced portion (which contains a vowel,

followed by a nasal and then another vowel).

All the above boundaries are combined to form the automatically detected bound-
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(b) Sinusoidal analysis of the speech waveform

/n/ /o/ /s/ /E/ /n/ /A/ /k/

Figure 4.3: (a). The portion of Hindi speech utterance between 2 silence regions
- /n/o/s/E/n/A/k/. The vertical lines indicate the manually detected boundaries.
(b). Sinusoidal analysis of the speech waveform in (a). The thin vertical lines
indicate uv/v transitions whereas the thick vertical lines indicate v/uv transitions
as detected by the algorithm.

aries, shown in Fig. 4.5.

Fig 4.6 to 4.14 show the outputs of the ES-SABSF algorithm at different stages

for 3 other languages - English (TIMIT), Tamil and Kannada.

Another example of performance of the ES-SABSF algorithm for a section of

Hindi utterance is shown from Fig 4.15 to 4.17.

4.3 Results and discussion

The algorithm has been tested on 100 sentences each from TIMIT, Hindi, Kannada

and Tamil databases. Table 4.2 compares the performance of the proposed ES-
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(b) EDML function contour for the speech waveform in (a)

Figure 4.4: Segmenting for multiple boundaries within the voiced regions
using EDML function:(a). The voiced portion of speech containing the vowels
/E/, /n/ and /A/ (in Fig. 4.3(a)). The vertical lines indicates the manually detected
boundaries. (b). The EDML function contour for the waveform in (a). The function
peaks at the transition of phones. The vertical lines indicate the boundaries as
detected by the algorithm.

SABSF algorithm on 100 sentences of TIMIT database with that of other methods

proposed in literature. The performance is measured as the percentage of detected

boundaries that lie within a tolerance region of 25 ms.

Table 4.2: Comparison of segmentation performances on TIMIT database: Algo-
rithms in the literature vs ES-SABSF.

Segmentation algorithm %Matched phone boundaries

NTN [46] 66.6%

HMM [46] 65.7%

Dynamic Programming [46] 70.9%

ES-SABSF 67.8%

However, just knowing how many boundaries matched (or mismatched) does
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Figure 4.5: A segment of speech waveform from Hindi database (Fig. 4.3(a)) with
its automated and manually detected boundaries.

0 2000 4000 6000 8000 10000 12000 14000
−1

−0.5

0

0.5

1

Samples −−>

A
m

pl
itu

de
 −

−
>
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(b) Sinusoidal analysis of speech waveform

/g/ /r/ /iy/ /s/ /iy/ /w/ /aa/ /sh/

Figure 4.6: (a). A portion of English speech utterance between 2 stop regions -
/g/r/iy/s/iy/w/aa/sh/ from the TIMIT database. The vertical lines indicate the
manually detected boundaries. (b). Output of sinusoidal analysis of the speech
waveform in (a). The thin vertical lines indicate uv/v transitions, whereas the thick
vertical lines indicate v/uv transitions as detected by the algorithm.
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(b) EDML function contour for the speech waveform in (a)

Figure 4.7: Segmenting for multiple boundaries within the voiced region
from TIMIT using EDML function:(a). The voiced portion of speech con-
taining the vowels /iy/, /w/ and /aa/ (in Fig. 4.6(a)). The solid vertical lines
indicate the manually detected boundaries. (b). The EDML function contour for
the waveform in (a). The function peaks at the transition of phones. The vertical
lines indicate the boundaries as detected by the algorithm. It can be seen that the
second boundary detected is wrong. This is because, in the case of vowel-semivowel-
vowel transition, the event is not very explicit in either time or spectral domain. In
such cases, it is more advantageous to simply place the boundary by dividing the
region into equal segments, as shown by the dotted lines in 4.7(a).

not give us a clear picture of the algorithm. It is required to know how far the

mismatched boundaries are from the ‘true’ boundaries. Hence, another performance

measure employed is the Frame Error Rate (FER). It is the ratio of the number of

misclassified frames to the total number of frames in a sentence. Table 4.3 lists the

results for the proposed method, assuming error free detection of stop consonants.

From the Figs. 4.7 and 4.10, it can be observed that segmentation for multiple

boundaries can be erroneous within voiced regions. This is particularly true, when

the transition is from a vowel to a glide/diphthong or vice-versa. In such situations,
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Figure 4.8: A segment of speech waveform from the TIMIT database (Fig. 4.6(a))
with the boundaries detected manually and by the algorithm.

Table 4.3: Frame Error Rate (FER) between successive stop consonants of the
proposed ES-SABSF method for different languages.

Language %FER

English (TIMIT) 36.3

Hindi 26.06

Tamil 34.3

Kannada 33.7

segmenting the voiced region into equal parts reduces the FER. The EDML function

performs well for a nasal to vowel/glide/diphthong transitions or vice versa as can

be observed from Figs. 4.13 and 4.16. However, the next method (ES-DSBSF)

attempts to address this problem by using the duration statistics of the language.
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(a) Speech waveform

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1000

2000

3000

4000

5000

6000

Samples −−>

F
re

qu
en

cy
(H

z)
 −

−
>

(b) Sinusoidal analysis of the speech waveform

/O/ /l/ /i/ /y/ /a/ /n/ /u/ /kl//pl/

Figure 4.9: (a). A portion of a Tamil utterance between 2 stop regions -
/pl/O/l/i/y/a/n/u/kl/. The vertical lines indicate the manual boundaries.(b). Re-
sult of sinusoidal analysis of the speech waveform in (a). The thin vertical lines
indicate uv/v transitions whereas the thick vertical lines indicate v/uv transitions,
as detected by the algorithm.
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(b) EDML function contour for the speech waveform in (a)

Though there is a peak here
it is missed because of

 presence of other dominant
 peaks

Figure 4.10: Segmenting a voiced region in Tamil for multiple boundaries
using EDML function:(a). The voiced portion of speech containing the vowels
/O/, /l/, /i/, /y/, /a/, /n/ and /u/ (Fig. 4.9(a)). The solid vertical lines indicates
the manual boundaries. (b). The EDML function contour for the waveform in
(a). The function peaks at the transitions of phones. The vertical lines indicate
the boundaries detected by the algorithm. All the boundaries detected are wrong.
This is because of peaks in the EDML function, when there is a small error in the
output of sinusoidal model (v/uv or uv/v transitions) i.e., EDML function is very
sensitive to its input. In such cases also, it is more advantageous to simply place
the boundary by dividing the region into equal segments, as shown by the dotted
lines in 4.10(a).
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Figure 4.11: A speech segment from the Tamil database (Fig. 4.9(a)) with its bound-
aries detected automatically and manually.

0 2000 4000 6000 8000 10000 12000 14000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Samples −−>

A
m

pl
itu

de
 −

−>
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(b) Sinusoidal analysis of speech waveform in (a)

/g/ /a/ /m/ /a/ /p/

Figure 4.12: (a). A portion of a Kannada speech utterance between 2 stop regions
- /g/a/m/a/p/. The vertical lines indicate the manually detected boundaries.(b).
Sinusoidal tracks of the speech waveform in (a). The thin vertical line indicate uv/v
transition, whereas the thick vertical line indicate v/uv transition, as detected by
the algorithm.
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(b) EDML function contour for the speech waveform in (a)

Figure 4.13: Segmenting a voiced segment in Kannada for multiple bound-
aries using EDML function:(a). The voiced portion of speech containing the
vowels /a/, /m/, /a/ (Fig. 4.12(a)). The solid vertical lines indicates the manually
detected boundaries. (b). The EDML function contour for the waveform in (a).
Here, the function peaks at the transition of phones. The vertical lines indicate
the boundaries as detected by the algorithm. It can be seen that all the bound-
aries detected are accurate (within ±20 ms). This happens when there is a nasal to
vowel/glide/diphthong transition or vice versa.
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Figure 4.14: A speech segment from the Kannada database (Fig. 4.12(a)) with
boundaries detected automatically and manually.
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1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1000

2000

3000

4000

Samples −−>

Fr
eq

ue
nc

y 
(H

z)
 −

−>

(b) Sinusoidal analysis of speech waveform in (a)

/a/ /n/ /s/ /u/ /n/ /i/ /k//h#/

Figure 4.15: (a). Another portion of Hindi speech utterance between a silence
and a stop regions - /h#/a/n/s/u/n/i/k/. The vertical lines indicate the manually
detected boundaries.(b). Sinusoidal analysis of the speech waveform in (a). The
thin vertical lines indicate uv/v transitions, whereas the thick vertical lines indicate
v/uv transitions, as detected by the algorithm.
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Figure 4.16: Segmenting in a voiced regions in Hindi (example 2) for mul-
tiple boundaries using EDML function:(a). The voiced portion of speech con-
taining the vowels /u/, /n/, /i/ (Fig. 4.15(a)). The solid vertical lines indicates the
manually detected boundaries. (b). The EDML function contour for the waveform
in (a). The function peaks at the transition of phones. The vertical lines indicate
the boundaries as detected by the algorithm. All the boundaries detected are ac-
curate within ±20 ms. This happens when there is nasal to vowel/glide/diphthong
transitions or vice versa.
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Figure 4.17: A portion of speech waveform from the Hindi database (Fig. 4.15(a))
with boundaries detected manually and automatically - example 2.



Chapter 5

Explicit segmentation using

duration statistics and Bach scale

filter-bank

The ES-DSBSF method presents another automated explicit phonetic segmentation

algorithm that aligns the signal of the utterance to a phonetic transcription. This

is especially useful in the context of Text-to-Speech systems, where a huge database

of phonetically segmented speech is needed. Unlike the ES-SABSF algorithm, this

explicit algorithm uses the statistical knowledge of the durations of the phones

and the distance function of the Bach feature vectors to force align the boundaries

between successive stop consonants.

5.1 The proposed algorithm

We assume error free stop consonant detection and attempt segmentation of individ-

ual phonemes between pairs of successive stop consonants. Using the Bach feature

vectors, the EDML function is calculated for the speech signal between every pair
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of successive stop consonants.

With the knowledge of the regions of stop consonants, the end of the first stop

consonant, β1 and the start of the next stop consonant, β2 are found out using

energy change in the signal. This is illustrated in Fig. 5.1 for a portion of a Hindi

utterance .
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Figure 5.1: A portion of a Hindi speech utterance between a silence and a stop
region - /h#/a/n/s/U/n/i/k/. The vertical lines indicate the manually marked
boundaries. Also, the end of one stop consonant/silence (β1) and the beginning of
the next, (β2) are identified. The speech waveform between β1 and β2 is input to
the ES-DSBSF algorithm.

The aim is to segment the speech waveform between β1 and β2 for every successive

pair of stop consonants. For that, we consider a rectangular window of size ` times

the standard deviation of the duration of the next phone, centered at β1 + x where

x is the mean duration of the next phone. Within this window, the maximum

of the EDML function, EDML(max) is computed and all the peaks greater than

α ∗EDML(max) are detected. If the number of such peaks exceeds λ1 or is less than

λ2(where λ1 > λ2), then the best λ1 possible peaks within that window are chosen.

Again, another rectangular window, of size ` times the standard deviation of the

duration of the next phone, is centered at β1 + x + y where y is the mean duration
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of the next phone. The same peak finding process is repeated for all the phones

between successive stop consonants. Hence the possible choices are ≥ λ2 and ≤ λ1

for every boundary between two successive stop consonants to be detected .

Fig. 5.2 shows the EDML contour for the speech waveform in Fig. 5.1 . Also

shown are the peaks detected for λ1 chosen as 5 and λ2 chosen as 2.
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Figure 5.2: Contour of EDML function of the speech waveform between β1 and β2

depicted in Fig. 5.1. A window is centered at the point away from β1 by the mean
duration of phone /a/. The circles indicate the peaks chosen. It can be seen that
some peaks are common choices for two successive phones.

Assuming a Gaussian PDF for the duration of the phones, the probability of

transition to the next boundary is found out for each of these possible choices.

Now, the problem can be stated as: Find the best possible boundaries such that

the product of the transition probabilities in that path is maximized. Equivalently,

the sum of the negative log of the transition probabilities is minimized. We have

employed a graph theoretic approach to the problem, wherein each possible choice

for a boundary is a node and the transition probability is the weight of an edge.

This is illustrated in Fig. 5.3.
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Figure 5.3: Nodes with transition probabilities. The first and last nodes are
β1 and β2. Each choice for a boundary is considered a node. The edges indicate the
negative log of transition probability.

We want to find the best path that minimizes the cost of transition. Since the

start and end nodes (β1 and β2) are known, we employ Dijkstra’s greedy algorithm.

The best choices of nodes obtained from this algorithm are taken as the best possible

boundaries within the 2 stop consonants currently considered. Fig. 5.4 shows the

best possible boundaries obtained using the above algorithm as against the manually

detected boundaries.

Fig 5.5 to 5.13 show the outputs of the ES-DSBSF algorithm at different stages

for 3 other languages - English (TIMIT), Tamil and Kannada using the same speech

waveforms as in Fig. 4.6 to 4.17.

5.2 Results and discussion

The experiments are conducted on the Hindi database using the statistics of phone

durations computed from the ES-SABSF algorithm after a manual intervention.
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Figure 5.4: Manually and automatically determined boundaries between β1 and β2

for the speech waveform shown in Fig 5.1. The thin vertical lines are the manually
marked boundaries and the thick vertical lines are the boundaries identified by the
ES-DSBSF algorithm.
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Figure 5.5: A portion of an English speech utterance between 2 silence regions -
/g/r/iy/s/iy/w/aa/sh/epi/ from the TIMIT database. The vertical lines indicate
the manually detected boundaries. Also, the end of one stop consonant/silence β1

and the beginning of the next, β2 are identified. The waveform between β1 and β2

is input to the ES-DSBSF algorithm.
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Figure 5.6: Contour of EDML function of the speech waveform between β1 and β2

for the waveform depicted in Fig. 5.5. A window is centered at the point away from
β1 by the mean duration of phone /r/. The circles indicate the peaks chosen. It can
be seen that some peaks are common choices for successive phones.

Informal experiments showed that optimal results are obtained for the parameters

` = 8, α = 0.1, λ1 =5 and λ2 = 2. The performance on 100 sentences from the

MILE Hindi database is tabulated in Table 5.1. The experiments are repeated for

100 sentences each of Kannada, Tamil and TIMIT database.

Table 5.1: Frame Error Rate(FER) between 2 successive stop consonants for the
proposed ES-DSBSF method for different languages.

Language %FER

English (TIMIT) 22.6

Hindi 22.8

Tamil 27.6

Kannada 19.7

From Figs. 5.1 to 5.13, it can be observed that most of the boundaries are more
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Figure 5.7: The manually and automatically detected boundaries including β1 and
β2 for the waveform in Fig. 5.5. The thin vertical lines are the manually marked
boundaries and the thick vertical lines are those identified by the ES-DSBSF algo-
rithm. Even if one automated boundary deviates (as shown), it does not reflect on
the subsequent ones.
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Figure 5.8: A portion of a Tamil utterance between 2 stop regions -
/pl/O/l/i/y/a/n/u/kl/. The vertical lines indicate the manually marked bound-
aries. Also, the end of one stop consonant/silence (β1) and the beginning of the
next, (β2) are identified. The waveform between β1 and β2 is input to the ES-
DSBSF algorithm.
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Figure 5.9: Contour of EDML function of the speech waveform between β1 and β2

for the waveform depicted in Fig. 5.8. A window is centered at the point away from
β1 by the mean duration of phone /O/. The circles indicate the peaks chosen. It
can be seen that some peaks are common choices for successive phones.

accurate than those of ES-SABSF method, once the duration of the phones are

used. An error in one of the boundaries need not propagate to its consecutive one.

The ES-DSBSF algorithm promises good segmentation provided the statistics of the

phones are known. The statistics can be obtained from ES-SABSF method, after a

manual intervention for segmenting sentences of a particular language. The mean

durations and their standard deviations of the phones are scaled to the speaker’s

rate of speech between the current set of two stop consonants.
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Figure 5.10: The manually and automatically detected boundaries including β1 and
β2 for the waveform in Fig. 5.8. The thin vertical lines are the manually marked
boundaries and the thick vertical lines are those identified by the ES-DSBSF algo-
rithm. Here too, the detection errors in one boundary is not carried to the subse-
quent ones.
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Figure 5.11: A portion of a Kannada speech utterance between 2 stop regions -
/g/a/m/a/p/. The vertical lines indicate the manually detected boundaries. Also,
the end of one stop consonant/silence (β1) and the beginning of the next, (β2) are
identified. The speech waveform between β1 and β2 is input to the ES-DSBSF
algorithm.
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Figure 5.12: Contour of EDML function of the speech waveform between β1 and
β2 for the waveform depicted in Fig. 5.11. A window is centered at the point away
from β1 by the mean duration of phone /a/. The circles indicate the peaks chosen.
It can be seen that some peaks are common choices for successive phones
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Figure 5.13: The manually and automatically marked boundaries including β1 and
β2 for the waveform shown in Fig. 5.11. The thin vertical lines are the manually
marked boundaries and the thick vertical lines are those identified by the ES-DSBSF
algorithm.



Chapter 6

Conclusions and future work

Two algorithms have been proposed for explicitly segmenting speech signals. They

are training free, thus making it useful at the current scenarios with respect to

database for Indian languages.

The accuracies of the proposed segmentation methods are at least comparable,

if not better, to those of the methods that use training algorithms.

The advantage of this method over contemporary methods (like HMM-based

segmentation) is that this method can handle large number of phones (tested up to

700 phones) in a sentence.

Both the proposed methods rely on the accurate detection of stop consonants.

The stop detection stage requires a very accurate phonetic string as its input. A

manual intervention is required for such an accurate input to the stop detection

stage. The proposed stop consonant algorithm handles voiced, unvoiced and as-

pirated stops well. However, this detection algorithm being very crucial, calls for

higher accuracy and robustness. Further avenues of research include improvement

of the stop consonant detection algorithm for higher accuracy.

The ES-DSBSF algorithm promises good segmentation, provided the statistics of
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the phones are known. The statistics can be obtained applying ES-SABSF method

for segmenting sentences of a particular language and adding a manual intervention

if required.

The proposed practical solution for the segmentation problem is as follows: the

first method (ES-SABSF) is used on a few sentences (typically 100 to cover all the

phones in the language) to get the rough estimates of the boundaries. A manual

refinement of the boundaries is performed. This can be seen as the initialization

stage. Then, the duration statistics of the phones are obtained from these segmented

sentences. Then, the second segmentation algorithm (ES-DSBSF) is used. Again, a

manual refinement of the boundaries is required.

The performance of these algorithms are compared against that of manually

segmented speech sentences. To check the consistency of manual boundaries, 10

Kannada sentences are given independently to 2 trained segmenters. It is found that

the frame error rate is around 9% between the manual segmentations carried out

by them independently. Hence, the segmentation method using duration statistics

gives a good performance.

Depending on the phone transition to be detected, the effect of a variable size

window for the Euclidean distance using Bach scale filter bank can be studied. The

intuitive concept that detection of some more phone classes can improve the accuracy

of automated segmentation needs to be verified. Future work can attempt to use

the statistics of phone durations of one language for segmenting speech in another

similar/related language. Also, refinement of the boundaries using some training

algorithm can be tried to further minimize manual intervention.



Appendix A

Comparative analysis of Bach

scale filter bank

An accurate boundary is an AD phoneme boundary which falls within ±20 ms of

a MD boundary. If more than one AD segment boundary falls within ±20 ms of a

MD boundary or no MD boundary is found within ±40 ms of an AD boundary, then

such boundaries are considered to be ‘insertions’. Similarly, if no AD boundary is

found within ±40 ms of a MD boundary, then it is considered as a ‘deletion’.

The results are obtained for 100 sentences of English data from the TIMIT

database (Fs = 16000 Hz) containing male and female speakers. The data has a

Signal to Noise Ratio (SNR) of 36 dB. We also segmented 100 sentences of Hindi,

Kannada and Tamil data each. The Kannada database has a sampling frequency of

44.1 kHz while the Hindi and Tamil data have a sampling frequency of 16 kHz. All

the data have an SNR of 30 dB. The data available for Hindi, Kannada and Tamil

are only that of male voices.

The following comparisons are made:

• Proposed methods v/s methods in literature - Table A.1.
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• Proposed filter bank v/s other filter banks - Table A.2. (In order to make a just

comparison with the other perceptual scales, we assume the same parameters

of M and base for all scales, e.g. for m = 12, Fs = 11000 Hz and base = 55

Hz, we obtain M = 79.)

• Various distance measures - Table A.3.

• Proposed method for different languages - Table A.4.1

The following methods from the literature have been used on comparative basis

to study the proposed method.

1. ML Segmentation using MFCC with a symmetric lifter (1+A∗ sin(1/2(n/L)),

(A = 4, L is the MFCC dimension = 16) [14].

2. Spectral Transition measure (STM) using feature vector and lifter combina-

tion [14].

3. Average level crossing rate method (A-LCR) as described in [15] using non-

uniform level allocation.

Also, Fig. A.1 shows the performance of the Bach filter bank for a few distance

functions.

Table A.1: Segmentation performance of various methods on the TIMIT database.

Segmentation method used % Accuracy % Insertions %Deletions

ML [14] 80.8 18.8 19.2

STM [14] 70.1 25.2 29.9

A-LCR [15] 79.8 24.2 20.2

EDML with Bach scale 82.5 18.9 22.3

1Ananthakrishnan G, ‘Music and Speech Analysis Using the Bach Scale Filter-bank’, M.Sc
(Engg) thesis, Indian Institute of Science, Apr -2007, pp.29-33
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Table A.2: Comparison of segmentation performances of various filter-banks on
TIMIT database.

Filter-Bank Type %Accuracy % Insertions %Deletions

Mel 78.1 68.1 16.5

Bark 78.1 50.1 17.9

ERB 76.3 52.4 18.9

Bach 82.5 18.9 22.3

Table A.3: Comparison between the performances of various distance functions in
segmenting the Hindi database.

Distance function %Accuracy % Insertions % Deletions

EDM 80.6 25.6 4.5

EDML 86.6 21.4 3.2

NEDML 84.7 39.8 2.5

KLD 41.6 46.3 21.4

ISD 69.9 34.0 15.5

MD 35.2 37.3 35.2

Table A.4: Comparison of the segmentation performance of EDML using Bach
Linear filter-bank for various languages.

Language %Accuracy %Insertions %Deletions

English 82.5 18.9 22.3

Hindi 86.6 21.4 3.2

Tamil 81.9 23.7 15.3

Kannada 85.9 22.5 7.6
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Figure A.1: Segmentation using EDM, EDML and NEDML distance func-
tions. The vertical lines indicate the actual phone boundaries.(Source : [29])
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