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Abstract—We present a fractal coding method to recognize
online handwritten Tamil characters and propose a novel
technique to increase the efficiency in terms of time while
coding and decoding. This technique exploits the redundancy
in data, thereby achieving better compression and usage of
lesser memory. It also reduces the encoding time and causes
little distortion during reconstruction. Experiments have been
conducted to use these fractal codes to classify the online hand-
written Tamil characters from the IWFHR 2006 competition
dataset. In one approach, we use fractal coding and decoding
process. A recognition accuracy of 90% has been achieved by
using DTW for distortion evaluation during classification and
encoding processes as compared to 78% using nearest neighbor
classifier. In other experiments, we use the fractal code, fractal
dimensions and features derived from fractal codes as features
in separate classifiers. While the fractal code is successful as
a feature, the other two features are not able to capture the
wide within-class variations.
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I. INTRODUCTION

Fractal objects generally have complex fine structures
when viewed at arbitrarily small scale. These objects are
too crinkled to be described by conventional geometrical
measures like length, area or volume; instead they are often
characterized by fractal dimension which is strictly greater
than the topological dimension. They could be considered
as redundant objects as they are either made of transformed
copies of either themselves or part of themselves. The above
facts have been exploited in compression of any random
pattern. Fractal codes are the compressed representation of
the pattern, generated using fractal geometry.

A comprehensive study has been conducted in the present
research to examine the effectiveness of self similarity in en-
coding 1-D [3] [4] [5] [8] ordered online handwritten Tamil
characters. The mathematical theory behind the encoding
technique is of iterative contractive transformations in metric
spaces based on the work of Barnsley. A simplified version
of the fractal block coding technique for digital image [1] [2]
[9] has been used to encode the 1-D handwritten patterns.
The efficacy of the resultant fractal codes has been tested
on recognition of online handwritten characters. A novel
adaptive partitioning (where trace is segmented into equal or
unequal range segment based on cumulative angle) algorithm

has been proposed to reduce the extremely high computation
during the encoding and decoding process, with minor fall
in recognition accuracy. A significant jump in recognition
accuracy has been achieved by using DTW matching for
classification.

II. FRACTAL OVERVIEW

A new geometry was proposed by Benoit Mandelbrot
[10] which explains the complete geometrical property of
natural objects around us. This is not possible for clas-
sical geometry which defines geometry of objects using
approximation towards ideal objects. The difference between
natural and idealized objects is that natural objects are rarely
differentiable at any point, whereas idealized objects could
be. According to fractal geometry, most of the natural curves
are of infinite length yet enclosing finite area. Therefore, a
completely different form of representation called dimension
was introduced.

The dimension of embedding space which is decided by
the degree of freedom is not equal to the dimension of
objects until and unless the object is an ideal object. The
dimension of object depends on how it fills the embedding
space; therefore it is less than or equal to the dimension of
embedding space. One among the several ways of measuring
dimension is box counting method as defined below.

Dim = lim
ε→0

lnN(ε)

ln( 1ε )
(1)

where: N(ε) = no. of squares required to cover the
image (2-d case) or no. of segments joining 2 points (1-
d case) and ε = side length of square (2-d case) or length
between 2 points (for 1-d case). The evaluated dimension
signifies the identity of the object, which represents the
crookedness, roughness, smoothness of the object. Fractals
are geometrical objects having fractional dimension.

Convergent sequence: A sequence could be of points,
images, any random set. One special kind of sequence is
”convergent sequence” which satisfies the Cauchy conver-
gent theorem and therefore called Cauchy sequence.

For the current study, we work in a space which is com-
plete, compact and closed. The elements of this space are
all possible online handwritten patterns. Here we deal with
Cauchy sequences present in this space. Cauchy sequence



has a limit point at which this sequence converges. This
limit point itself is a part of the metric space defined by the
property of completeness. So we need to define some type
of step by which we can start from any online pattern and
on continuously taking that step we converge to a particular
pattern. The simplest way of taking that step would be linear
mapping. This can be written as:
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Here, a, b, l, m perform rotation and flipping of points
xn and yn whereas e and f translate the flipped and rotated
points by e along x and f along y direction. The parameters
a, b, l, m, e and f define the affine transform W. A collection
of transformations can be used and we can take the union
of all of them to get the final transformed pattern. Iterations
of these steps will converge to a particular pattern which is
the limit point of this Cauchy sequence. To accomplish this,
we need a contractive transformation (W), which satisfies
Banach’s contraction mapping theorem. Transformation is
contractive if: ∣∣∣∣ a b

l m

∣∣∣∣ < 1 (3)

Banach’s Contraction Mapping Theorem: Let (X,d) be a
complete (means that all Cauchy sequences in this metric
space converge to points which are members of this metric
space) metric space (it is the space where the d is defined)
and W(X) → X is contraction mapping i.e

d(W (x),W (y)) < λ(d(x, y)), 0 < λ < 1, allx, yεX (4)

If the above condition is satisfied, then it states that W
has a unique fixed point. In other words, it states that if W
is applied iteratively on (x, y), then it leads to a Cauchy
sequence, which converges to a unique fixed point.

The above concept is used in fractal compression [1],
which works on the assumption that there is lot of self
similarity in any natural object/pattern. Fractal codes are
generated which is the compressed representation of the
pattern.

In this work, fractal coding of handwritten characters
is carried out segment wise (where each segment contains
some fixed length of the character), where the self similarity
for each sub segment Ri (range segment in the written char-
acter) is found across the written character and appropriate
affine transform (Wi) is generated and stored. This collection
of affine transforms corresponding to all the sub segments
of the pattern is enough to regenerate the concerned original
pattern with minor distortion.

III. BUILDING OF FRACTAL CODES FOR HANDWRITTEN
CHARACTERS

The raw online handwritten character is preprocessed by
smoothing, re-sampling the trace into 200 equispaced points
and normalizing the bounding box. The preprocessed locus
is divided into non-overlapping range segments, each having
a fixed number of points (R). Last point of each range is also
the first point of the next range.

A. Creating pool of domain segments:

The domain pool is formed for each character locus, as
the collection of all possible domain segments. The number
of points in each domain segment can be anything more than
range segment (D > R). In our experiments, D = 2R. A D-
point window is first located at the beginning of the stroke.
Domain pool is obtained by sliding the window along the
stroke, δ points at a time, in such a way that it does not
cross the end point of the stroke. δ is chosen as R/2 in our
experiments.

B. Constructing transformed Domain pool:

Transformed domain pool is constructed by multiplying
each of the domain segments with the eight isometrics. Steps
are as follows:

1) Each domain is translated to its centroid and scaled
down by the contractivity factor (s=0.5).

2) The following transformations are applied to each
candidate domain segment.[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 0
0 −1

]
,

[
0 1
−1 0

]
,[

−1 0
0 1

]
,

[
0 −1
1 0

]
,

[
−1 0
0 −1

]
,

[
0 −1
−1 0

]
The above transformations reflect and rotate the domain

segment about different axes, producing a family of geomet-
rically related transformed domain segments.

In domain pool, matching blocks will be looked for, in
order to encode the online handwritten character.

C. Searching most identical domain segment for each range:

Each of the affine transformed domain segments is re-
sampled into R points and then centroid of each of the
re-sampled domain is translated to that of the concerned
range segment. Distance between them is found. Similarly
distances w.r.t to the entire transformed domain is calcu-
lated. The most similar domain segment corresponding to
each range segment is identified and fractal code is stored
corresponding to the particular range.

Fractal codes corresponding to each range segment con-
sists of:

1) The range segment index.
2) The range segment centroid.
3) Index of the most similar domain segment.
4) The domain segment transformation index, i.e. out of

8 transformations, the index of one used is stored.



The above steps are repeated for all the character samples
to obtain the fractal codes.

D. Issue related to constructing fractal codes:

The whole character is divided into equisized range seg-
ments. Smaller the number of points in each range segment,
more minutely the complexity in any region of the character
can be captured. Relations between range size, number of
range segments and the speed of encoding are given by,

1) number of range segments per character is inversely
propotional to number of points in each range.

2) encoding speed per character is inversely propotional
to number of range segments per character

There are regions in a character, where the curliness is
minimal; in those areas, the size of the range segment could
be increased, still encoding the region precisely.

E. Steps to encode a handwritten character where the
number of points in each range is variable:

Cumulative angle θC is calculated starting from the first
point and traversing the character stroke till it crosses a
threshold θT which is empirically set. Smaller the threshold,
finer is the encoding. As shown in the Fig 2.

Figure 1. Original Tamil handwritten character /aa/

Figure 2. The above figure shows the distortion caused at the end of
reconstruction for different choices of the value of the threshold, namely
0, 10, 30, 50, 70 and 90 degrees. Here reconstruction is performed using
the fractal codes of the Tamil handwritten character /aa/ (shown in Fig 1).
For encoding, different range sizes of 4, 8, 12, 16 and 20 are used.

F. Algorithm for adaptive partitioning

1) Domain pools of different sizes, namely 8, 16, 24, 32
and 40 are constructed corresponding to range sizes
of 4, 8, 12, 16 and 20. By size, we mean number of
points in each domain.

2) Start from the first point and move along the character
from one point to the next and calculate the cumulative
change in angle θC .

3) The point at which the cumulative angle θC crosses
the threshold θT (i.e. θC > θT ) is found. The number
of points (K) till the penultimate point is noted.

4) The range size which is closest and less than K is
chosen. Then the most suitable domain is chosen from
the corresponding domain pool and the fractal codes
are stored.

5) Then the last point of the present range is considered
as the first point of the new range and the process
repeats starting from step 2.

• In this case, along with the usual information in the
fractal codes, the size of the range chosen is also stored.

• In case the end point is reached with θC < θT , then
step 4 is followed, with K including the last point also
since θC < θT ).

• If at the end, the left over points are less than the size
of the smallest range, then they are discarded.

IV. RECONSTRUCTION OF A PATTERN FROM ITS
FRACTAL CODES

Algorithm for reconstruction: Banach’s contractive map-
ping theorem states that if a contractive mapping ’W’ (which
are the fractal codes here) is defined, then on applying the
mapping iteratively on any sequence of the same space, a
Cauchy’s sequence results which will converge to a unique
fixed point.

A. Case I: Range having fixed number of points

1) A random initial pattern having the same number of
points is taken or generated.

2) A domain pool of size double that of the range is
created in the manner similar to how it was done
during the encoding process.

3) First fractal code is taken corresponding to the first
range of the pattern, and operations are performed
on the corresponding domain indicated by the domain
index in code of first range.

4) The indicated domain segment’s origin is shifted to its
centroid and then it is scaled down by the contractivity
factor (in this research it is 0.5).

5) Then the affine transformation as indicated in the code
is applied on the scaled domain segment.

6) Finally the transformed domain’s centroid is shifted
to the range segment centroid as present in the fractal
code.



7) The above steps 3 to 6 are repeated to decode the
entire range segment.

8) Then the whole decoded locus is smoothened.
The above 3 to 8 steps are repeated till the termination

condition is satisfied to finally converge to a fixed and unique
pattern.

Termination condition could be:
1) Fixed number of iterations which could be empirically

set (enough for a pattern to converge)
2) Minimal or no distortion between the patterns pro-

duced by 2 consecutive iterations.

Figure 3. In the above image, reconstruction process is shown which starts
from a random straight line and finally converges to a pattern which is very
close to the original pattern after 8 iterations. The original pattern (in Fig
1) was encoded using variable range (range sizes of 4, 8, 12, 16 and 20)
with a threshold angle of 30 degree.

B. Case II: Range having variable number of points

In this case, multiple domain pools are created out of the
random pattern taken for reconstruction. Using the range
size information in the fractal code, the domain segment is
picked up from the appropriate domain pool. The rest of the
steps are the same as the case of reconstruction with fixed
range size.

Using above two methods, fractal codes of any given
pattern can be created and the same pattern could be decoded
using any random pattern after applying this reconstruction
algorithm iteratively for a few times, as shown in Fig 3.

V. CHARACTER CLASSIFICATION USING FRACTAL CODES

1. Classification using fractal Codes in construction and
reconstruction: The above fractal encoding and decoding
method has been used for classification of characters [6]
[7]. Assume that a sample of a class (say /aa/) is encoded
and fractal codes are obtained. Let the reconstruction process
be iteratively applied first on a random pattern of any class
other than /aa/ (see Fig. 4) and secondly on any sample of the

same class (i.e. /aa/, see Fig. 5). Then the distortion between
the initial pattern and the pattern reconstructed after first
iteration is higher in the first case than in the second. The
reason behind this is that reconstruction process converges
to the pattern whose code is used for reconstruction. And
since the class of the initial pattern in the second case and
the fractal code is same, the distortion in the second case is
smaller than the first case.

Figure 4. The above image shows the distortion created, when an iteration
of reconstruction was performed. This shows that the distortion is huge if
the starting pattern (above left) is very different from the original pattern,
whose fractal codes are used for reconstruction (in this case Fig 1).

Figure 5. The above image shows the distortion created, when an iteration
of reconstruction was performed. This shows that the distortion is much
less if the starting pattern (above left)is not very different from the original
pattern, whose fractal codes are used for reconstruction (in this case Fig 1)

Classification Algorithm:
In the present research, fractal codes of ’N’ samples of

all the 156 classes are computed and stored. The test sample
is classified as follows.

a) An iteration of the reconstruction algorithm is applied
on the test sample using the fractal code of each sample of
each class.

b) The distortion ’D’ is calculated between the initial pat-
tern and the pattern obtained after one step of reconstruction.
Thus the distortion matrix of size 156*N is obtained.

c) The row number (in the matrix) of the minimum value
of the distortion is assigned to the test sample.

Distortion evaluation: Using Euclidean distance metric
matches the patterns point by point, which can increase the
distance unusually. This explains the decrease in classifica-
tion accuracy seen in Table I. This drawback is addressed
by DTW, which matches similar subsections of the patterns



Table I
RESULTS DEMONSTRATING INCREASED ACCURACY WITH DTW.

Fixed
Range Size

DTW
used?

No. of Train-
ing samples

No. of Test
samples

Accuracy
(%)

4 No 20 50 78.9
4 Yes 20 50 90.4

Table II
EFFICACY OF ADAPTIVE PARTITIONING IN REDUCING ENCODING TIME,
WITH MARGINAL DROP IN ACCURACY. RANGE SIZES USED: 4, 8, 16, 24,
32. NO. OF TRAINING AND TESTING SAMPLES USED: 5 AND 30. NO. OF

CLASSES:156. CLASSIFIER: DTW.

Threshold
angle (degree)

Encoding time
per sample (sec)

Accuracy (in
%)

0 31 89.0
10 22 86.4
30 12 85.0
50 10 83.6
70 8 81.6
90 6 80.9

thus producing a reasonable distance between them. Thus
DTW results in an increased accuracy as shown by Table I.

2. Classification using the fractal codes as features in
the Nearest Neighbor: This method gives an accuracy of
approximately 65%

3. Classification using fractal dimension or features de-
rived from the fractal codes: Fractal dimension is a unique
identity of any pattern or object but because of the mere
nature of handwritten character recognition (i.e. large vari-
ation within every class), it fails completely to classify any
random sample.

Due to the same reason, features derived from the fractal
codes like multiple mapping vector accumulator (MMVA)
[8] and domain range collocation matrix (DRCLM) [8] com-
pletely fail in the case of handwritten character recognition,
even though they have been successful in problems like face
recognition [9] and signature verification [3] [8].

VI. RESULTS

The classifier was evaluated on IWFHR 2006 competition
dataset. The results in Table I show the improvement in
accuracy achieved by using DTW during encoding and
classification. Table II shows the improvement achieved in
encoding time by using adaptive partitioning algorithm. It
also shows its effect on the recognition accuracy, which
shows that even though fine details of the patterns are
marginally lost, the basic characteristics of data are still
contained even when the adaptive partitioning algorithm is
applied for encoding at as high an angle as 90 degree.
Table III compares the recognition accuracy obtained by
different classifiers. This shows the ability of fractal method
to achieve a good accuracy of 90% with less training, due
to the matching done at the small segment level.

Table III
RESULT COMPARISON OF DIFFERENT RECOGNITION METHODS.

Classifier No. of train-
ing samples

No. of Test
samples

Recognition
time
(sec/sample)

Accuracy
(%)

Fractal 20 50 135 90.4
HMM 250 100 2.0 85.2
SDTW 250 100 0.5 83.9
SVM 250 180 0.8 86.0

VII. CONCLUSION

The experiments conducted show the potency of adaptive
partitioning to decrease the encoding time and efficacy of
DTW matching at the time of encoding and classification
to improve recognition accuracy to 90.4%. To our best
knowledge, this is the maiden report on reducing the fractal
encoding time of online data such as handwriting.
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