
Development of OHWR System for Kannada

A G Ramakrishnan and J Shashidhar
Medical Intelligence and Language Engineering Laboratory

Dept of Electrical Engg, Indian Institute of Science, Bangalore.
sshashidhar.127@gmail.com, ramkiag@ee.iisc.ernet.in

Abstract: In this article, we address the challenges in segmentation

of online handwritten, isolated Kannada words. This is the maiden work
in the field of segmentation of online handwritten Kannada words. Due
to the advent of tablet PCs and systems with pen-enabled interface,
online handwriting recognition has got wide applications such as form
filling, field data collection and word processing. In some of these
applications, recognition of names of individuals is required and it is
nearly impossible to maintain the lexicon of all possible names. Also,
Kannada, being a Dravidian language, is morphologically rich and also
agglutinative and thus does not have a finite lexicon. For example, a
single root verb can easily lead to a few thousand words after
morphological changes and agglutination. Hence, to make recognition
of open vocabulary online handwritten Kannada words possible, one
must necessarily look into the possibility of segmentation of online
Kannada words into their constituent symbols.

The modern Kannada script consists of 13 vowels, 34 consonants,
2 other symbols, and 10 numerals. Old Kannada script has additional 3
vowels and 2 consonants. In Kannada, a compound character called
akshara is possible by combining consonants and vowels. A total of
8,63,848 different aksharas are possible. We derived a minimal set of
295 distinct symbols to recognize these characters. A corpus of isolated
Kannada symbols (MILE Lab Kannada symbols data-set) is collected to
study the various statistics about Kannada characters. For addressing
the issue of segmentation, Kannada words are collected using a custom
application running on a tablet PC from high school. We refer to this
dataset as MILE Lab Kannada word dataset.

We address the challenges in any online Kannada word into its
constituent symbols. We approach the segmentation problem in two
steps: preliminary segmentation (PS) and attention feed-based
segmentation (AFS). In PS, we use the heuristics from language
constructs to segment the word into a set of stroke groups (SG). Then in
AFS method, we extract some features from each SG to suspect any
under-segmentation or over-segmentation. Then we make use of (i)
probability estimate from the classifier and (ii) attributes such as
number of dominant points and inter stroke displacements from prior
knowledge, to resolve the suspected stroke group by splitting or re-
grouping or retaining it. A segmentation accuracy of 83.4% is achieved
by PS, which is increased to 94.3% by AFS.

We use SVM classifier to recognize and get probability estimates
for individual stroke groups. SVM is trained on MILE Lab Kannada
symbols training data-set. The smoothed, normalized and re-sampled x,
y-coordinates of online trace are used as a feature vector for each

sample in the data-set. The character recognition accuracy of 56% is
achieved by recognizing the PS outputs and 62% by recognizing the
symbols segmented by AFS on the MILE Lab Kannada words.

1 Handwriting Recognition System

Handwriting recognition can be of two types: offline or online [1].

In offline handwriting recognition, the image of the handwritten
document is given as input to the system and the system is trained to
interpret the handwritten text in it. This has wide applications in
recognition of addresses in postal mails, recognition of handwritten
check amounts, reading handwritten responses on forms and automatic
filing of faxes of handwritten material.

In online handwriting recognition, the user writes on a special note
pad or a tablet using a stylus where a sensor picks up the pen-tip
movements x (t), y (t) as well as pen-up/pen-down switching. This data
is referred to as digital ink [2] and can be regarded as a dynamic
representation of handwriting. With the advent of Tablet PCs and PDAs
with touch sensitive interfaces, online handwriting recognition has wide
applications in form filling, word processing and also as text input
method to PDAs. There is also a possibility for using online
handwriting recognition in conjunction with speech synthesis, thereby
empowering people with vocal disability to communicate with others.

2 Literature survey

Online handwriting recognition of isolated characters for non-Indic

scripts is addressed in [3, 4, 5, 6, 7, 8]. Recognition of isolated
characters for Indian languages is described in [9, 10, 11, 12, 13, 14, 15,
16, 17, 18]. The recognition of isolated Kannada characters was first
explored by Kunte et al. [19], where wavelet features were extracted
from the character contour and used as features. Multi-layer feed-
forward neural networks with a single hid- den layer are trained for
recognizing the characters. In [20], 295 symbols are derived from the
Kannada character set and a divide and conquer technique is proposed
to segment any character into three groups namely middle unit (MU),
right auxiliary (RA) and bottom auxiliary (BA). These 295 symbols are
grouped into MU, RA and BA stroke groups. PCA-based features are
then derived specific to each stroke group. The subspace features of
each class of stroke groups are fed to their respective nearest neighbour
(NN) classifiers for classification. The results from these classifiers are
then combined to generate the output character. In another work [21],
statistical dynamic time warping (SDTW) has been employed to
classify Kannada characters with x-y coordinates of the trace and their
first order derivatives as features. The SDTW is reported to give a 2%
improvement over the dynamic time warping (DTW). Orthogonal linear
discriminant analysis (OLDA) on a set of PCA features have been
recently attempted to the set of Kannada numerals [9].

Most of the applications of online handwriting recognition consider
word as a basic unit rather than isolated characters. In the literature, the

problem of online word recognition has been addressed by two
methods: analytical approach and holistic approach [1]. Analytical
approach treats the word as a collection of simpler subunits such as
characters and proceeds by segmenting the word into these units. Then
it identifies these units and builds a word-level interpretation. This
method can be effectively used to recognize any word. Since in this
approach, we are decomposing the word into its constituent subunits,
segmentation is a major challenging problem. On the other hand,
holistic approach treats the word as a single, indivisible entity and
attempts to recognize it using features of the word as whole. This
approach can only be applied effectively for limited lexicons. When the
lexicon is of bigger size, the ability of the holistic features to
distinguish between different classes is diminished and it is also
practically not feasible to collect the training data for training a holistic
classifier.

In Latin script, the words are usually written in cursive style, the
recognition of which is addressed in [22, 23, 24, 25, 26]. In [27], the
authors proposed a method for Japanese string recognition where a
character string is described as a directional graph (called a candidate
lattice) representing possible segmentation and character plausibilities.
Then, by means of dynamic programming the candidate character
sequence corresponding to the shortest path under linguistic constraints
is selected as the segmentation and recognition result. Geometric
context extracted from segments has been used for Japanese online
handwriting recognition [28, 29]. A two stage segmentation scheme
has been proposed to segment Chinese characters in [30, 31], where
the sequences of online handwritten strokes are grouped based on
geometrical information at a first stage and then the recognition results
and the geometrical features from the pre-segmented characters are
used in dynamic programming method to find the best segmentation
path.

In Indic scripts, the constituting words are rarely cursive except
with the possible exception of Bangla [32, 33]. People generally write
the compound characters or aksharas in a word separately from each
other with possible overlaps. Recently, Sundaram et al. [34, 35, 42]
proposed a feedback based segmentation strategy for lexicon free
segmentation of online handwritten Tamil words. In that, they first did
a preliminary segmentation based on horizontal overlap criterion and
then used feedback from classifier and some inter-stroke features to
correct segmentation errors from horizontal overlap criterion
segmentation. They called this method as attention feedback
segmentation (AFS). Bharath et al. [36] used a HMM framework for
modeling the symbols and their relative positions in online Tamil
words. However, their work adopts a segmentation-free approach.

 3 Focus of the work

Kannada is one of the scheduled languages of India and the official

and administrative language of the state of Karnataka. Villages
constitute the most population in India and most of the villagers prefer

to write in their native language. Also, all the government forms are
available in both the state language and English. So if people can
interact with computers in the native language through the medium of
handwriting, it will enable better technology penetration and will reach
the masses. Thus arises the need for developing online handwriting
recognition systems for Indian languages.

We aim for the recognition of any online handwritten Kannada
word (unrestricted vocabulary). There is currently limited research
addressing the challenges pertaining to recognizing Kannada words
[37]. Most of the reported techniques deal with the problem of
recognizing isolated characters. We use AFS method to segment the
online Kannada word into its constituent symbols. This is the maiden
work in the field of segmentation of online handwritten Kannada words
and there is clearly no prior work in this area on any Indic script, except
Tamil. We first do a preliminary segmentation based on Kannada
language constructs to get a set of stroke groups and then use feedback
from classifier, number of dominant points and inter-stroke features to
correct any segmentation errors. The individual symbols are then
recognized and combined to get a word level interpretation.

4 Choice of Kannada symbol set

The Kannada alphabet was developed from the Kadamba and
Chalaukya scripts, descendants of Brahmi which were used between the
5th and 7th centuries A.D. In terms of the structure of the symbols used,
Kannada is unrelated to the descendants of Devanagari such as Hindi,
Bengali and Marathi. The modern Kannada script contains 49 phonemic
letters which are divided into three groups: 13 independent vowels, 34
consonants and two other letters, namely the anuswara and the
visarga). Figures 1 and 2, respectively, list the set of vowels and
consonants of modern Kannada script. In addition, the old (Hale)
Kannada script has 3 more vowels (vocalic RR , vocalic L, vocalic
LL) and two more consonants (RRA , LLLA).

Further, it also has vowel modifiers and consonant modifiers for
each vowel and consonant. The script has its own numerals. Each
consonant combines with each of the vowels to form a compound
character (CV combination) called akshara. Figure 3 lists the CV
combinations corresponding to the consonants /g/ and /th/.
Optionally, an akshara can have one or more consonants preceding a
CV combination forming a canonical structure of ((C)C) CV. Thus, the
number of theoretically possible combinations of Kannada characters is
huge and is listed in Table 1.

Figure 1. Set of vowels in Kannada

Figure 2. Set of consonants in Kannada

Figure 3. Set of all CV combinations for /g/ and /th/

Table 1. Number of possible combinations of Kannada Characters.

(V: Vowels; C: Consonants; N: Numerals)
Char Type V C CV CCV CCCV N Total

Possible Combinations 18 36 648 23328 839808 10 863848

From Table 1, it is clear that considering each combination as a
separate class for recognition increases the computational cost and may
reduce the recognition accuracy. Also, it is not practically feasible to
ask writers to write all the combinations during data collection. In this
section, we describe a method to get a comprehensive set of symbols
that can be employed in the recognition of any Kannada akshara.

All vowel modifiers change the shape of the consonant in the CV
combination (Fig. 3). Based on their relative position in a CV
combination, vowel modifiers can be classified into different types: (a)
Some vowel modifiers have significant overlap in the writing direction.
Examples of this case are shown in Fig. 4. These CVs are treated as
distinct classes. (b) For some vowel modifiers, a special pattern is
written at the bottom right of the modified consonant as shown in Fig.
5. From the point of view of recognition, it would suffice to recognize
the modifier separately and then append it to the corresponding base
character. (c) Three vowel modifiers are written separately towards the
right of the consonant as shown in Fig. 6. These vowel modifiers are
segmented and recognized as separate classes, which reduces the
number of classes. (d) Two vowel modifiers are written to the right of
the consonants with less overlap in the writing direction as shown in
Fig. 7. These CV combinations are treated as separate classes for

recognition. (e) There are some special cases of these modifiers, where
they are written from below the consonant as shown in Fig. 8. The
corresponding CV combinations are again treated as distinct classes. (f)
There are few characters, which can be split into different symbols.
Examples of such cases are shown in Figure 9. The symbols shown in
Figure 9(b) are considered as separate classes.

Figure 4. Examples of vowel modifiers which have significant overlap
in the writing direction with the consonant in the CV combinations.

Figure 5. The consonant /k/ with the two vowel modifiers below.

Figure 6. The consonant /k/ with vowel modifiers written separately to

the right.

Figure 7. Vowel modifiers written to the right of consonant /k/ with

some overlap.

Figure 8. Special consonants for which few vowel modifiers start below

the consonant and written towards right.

Figure 9. (a) Examples of characters that can be split into two or more

parts. (b) Symbols obtained after splitting the characters in (a).

In a typical CCV (say, /dh/+/y/+/aa/) combination, the first
consonant (/dh/) and the vowel (/aa/) are first written as a CV
combination (/dhaa/). Then the consonant modifier of the middle
consonant (/y/) is written below this CV combination. A few examples
of such CCV combinations are shown in Fig. 10. A consonant modifier
that occurs below a CV combination is referred to as “ottu”.

Figure 10. Example CCV combinantions, where the vowel added to the
second consonant actually modifies the first consonant in the final

grapheme of the akshara.

In CCCV combinations, the first consonant and the final vowel are
first combined as a normal CV combination. Then the consonant
modifiers corresponding to the 2-nd and 3-rd consonants are written
below this CV combination. A few examples of such CCCV
combinations are shown in Fig. 11. Henceforth, we refer to the
Kannada symbols (except ottus and the symbols in vowel modifiers
written below the consonants) as the base characters.

Figure 11. Example CCCV combinations

Both in CCV and CCCV combinations, it would suffice to

recognize the ottu separately and then append it to the corresponding
base character. The issue of segmenting the ottu from an akshara is
dealt with separately in Section 8. By this, the number of distinct
symbols to be recognized by the classifier is reduced.

There are four sets of consonants which differ by a dot at the
middle of the grapheme or a short vertical line (padam) at the bottom of
the grapheme or both. If these dots and padam can be removed at the
time of preprocessing, such characters can be considered as the same
symbol. Examples of these characters are shown in Fig. 12.

In addition to all these characters, 9 Kannada numerals, 9 Hindu-
Arabic numerals and 22 special symbols used in poetry, shlokas and
Kannada grammar are also considered for recognition. Thus, a total of
295 classes are derived, by which any Kannada akshara can be formed
[38]. The list of these 295 classes is shown in Appendix A.

Figure 12. Consonants differing by a dot or vertical line or both.

5 Datasets used for the experiments

We have used two data sets. One contains Kannada symbols and the
other has words. We collected the Kannada symbols from 69 writers,
each writing all the 295 symbols, using a custom application running on
a tablet PC. We have ensured that all the writers who participated in the
data collection activity are native Kannada writers. From here on, we
call this data set as MILE Lab Kannada symbol data set. We used this
dataset to collect various statistics of Kannada symbols to be used in the
segmentation of online handwritten Kannada words.

We also collected one lakh isolated Kannada word samples using
both Genius GNote 7 and a tablet PC [38]. Two word lists containing
246 and 198 words each (DB1 and DB2) are selected to cover all the
295 symbols. A total of about 500 native Kannada writers, of different
age groups, contributed in building the word dataset. In this article, we
report the results of only the experiments conducted on the data
collected using tablet PC, which has a sampling rate of 1200 Hz and a
spatial resolution of 2500 dpi along both X and Y directions. This part
has 44, 772 words. 50 writers have written all the words in DB1 and the
words in DB2 were written by 164 writers. From here on, we call this
subset of the dataset as MILE Lab Kannada word dataset.

This contains a mix of all kinds of handwriting styles: class A -
proper strokes, easily segmentable; class B - segmentable with
sophisticated methods; class C - broken and merged strokes, adjacent
strokes overlapping heavily and delayed but valid strokes; class D -
extraneous strokes or overwriting and strokes written in the opposite
direction, but the resulting stroke groups having the potential to be
properly recognized using offline features, after removing the
extraneous strokes; class R – reject class, where the likelihood of
recognition is low. Figure 13 presents sample words from our dataset.

Figure 13. Some words from the MILE lab Kannada word dataset

6 Overview of basic recognition module

In this section, we present the details of the recognition system
used in our experiments. The recognizer has been developed to work on
isolated Kannada symbols. The following subsection outlines the
preprocessing and feature extraction steps that generate a fixed
dimensional vector for each symbol. Subsection 6.2 outlines the details
of the classifier used in recognizing a Kannada symbol.

6.1 Preprocessing

As discussed in Section 1, an online handwritten symbol, captured
by a digitizer, is a sequence of x-y coordinates with pen-down and pen-
up events. The captured symbol is preprocessed in order to compensate
for variations in time, scale and velocity. It comprises 3 steps:
smoothing, normalization and re-sampling. Smoothing reduces the
amount of high frequency noise in the input, resulting from the
capturing device or jitters in writing. Smoothing is performed on each
stroke separately using a Gaussian low-pass filter.

After smoothing, the bounding box of the symbol is resized to a
fixed size such that the scale variations are eliminated. Both x and y
coordinates are separately mapped to the [0,1] range by a linear
transformation.

The input data from the digitizer is sampled uniformly with respect
to time. Hence, it is resampled to get a fixed number Np of points
uniformly sampled in space. The re-sampling is done as follows: we
first compute the arc-length of each stroke by adding the Euclidean
distances between successive points. The arc-length of the symbol is
calculated by adding the arc-lengths of individual strokes. The number
of samples for each stroke is chosen so that it is proportional to its arc-
length. The points from a smoothed stroke are then re-sampled at
constant interval by using linear interpolation. The interval length is
calculated by dividing the arc-length of the stroke by the number of
intervals required.

The final result of pre-processing is a new sequence of points {xi,
yi}, (i = 1 to Np) regularly spaced in arc length. A feature vector x is
constructed from this sequence as
x = (x1, x2 ... xNp, y1, y2, ... yNp)
We refer to x as the concatenated x − y coordinates in this work. We
experimented with varying number of re-sampled points and observed
that Np = 60 is quite sufficient in capturing the shape of the character
including points of high curvature. Figure 14 illustrates the
preprocessing steps on a sample of symbol /II/.

Figure 14. Pre-processing of a SG prior to deriving features for SVM.
(a) Original SG. (b) Smoothed, normalized and re-sampled SG to 60
samples.

6.2 Recognition

In our experiments, we use support vector machine (SVM)
classifier, as it gives good generalization performance on unseen data,
to recognize online handwritten Kannada symbols [39]. We incorporate
the knowledge of probability estimates and the most favoured symbol
returned by the SVM in our algorithm to improve the segmentation of
online handwritten Kannada words. SVM is a supervised learning
method for a 2-class pattern classification problem [39]. In this work,
we used the LIBSVM software for learning the SVM parameters [41].
The OVO scheme is used for training. The samples corresponding to
the 295 symbols in the MILE Lab Kannada symbols dataset are used to
learn the optimal values for the model parameters. The RBF kernel is
used as the kernel function. A recognition accuracy of 85% is obtained
on the MILE Lab Kannada symbols test data set with parameters C =
10 and γ = 0.3. The kernel and the corresponding parameters are set
after performing a 3-fold cross validation experiments on the MILE Lab
Kannada symbols dataset. In the following section, we describe our
proposed method for the segmentation of lexicon free, isolated online
handwritten Kannada words.

7 Proposed work

Given an online Kannada word, our emphasis is to correctly segment it
into its constituent symbols by employing a feed-back based strategy.
During the collection of online handwritten words, the pen-tip
movements x(t) and y(t) as well as pen-up/pen- down switching are
sensed. The sequence of (x, y) coordinates sensed from a pen-down
state to a pen-up state is considered as a stroke. The script being non-
cursive in nature, an online word is represented as a sequence of n
strokes W = {s1, s2, s3, ..., sn}, where si are the individual strokes. We
segment the input word (W) into a sequence of m distinct patterns,
referred to as stroke groups W = {S1, S2, S3, ..., Sm }, m ≤ n and Si ∩
Sj = Φ for i ≠ j. A stroke group Sk is defined as a set of one or more
consecutive strokes, which is possibly a valid Kannada symbol.

The block diagram of the proposed strategy is shown in Fig. 15.

We first propose a preliminary segmentation (PS) based on horizontal
overlap between successive strokes. However, due to the wide
variability in handwriting, preliminary segmentation may not be perfect
all the time. Hence, we adopt feature based attention and feedback from
the recognition system to detect and correct any segmentation errors
present after PS.

Figure 15. Block diagram of proposed segmentation method

8 Preliminary segmentation (PS)

In Kannada, the strokes of the same symbol significantly overlap in the
horizontal direction. Ottus occur at the bottom of consonants and a
special symbol called padam occurs at the middle and below some
consonants. Our algorithm segments the word based on the above a
priori knowledge, by checking for (1) padam and dot detection, (2)
bounding box (BB) overlap in writing direction and (3) portion of y-
range of a stroke below the previous SG, thus generating a set of SGs.

Padam detection: A stroke si is represented as a sequence of ni points
si = {p1, p2, … pni}. We define the degree of linearity of stroke si as L୧
where d(p, q) is the Euclidean distance between points p and q. A
stroke si is detected as padam if all of the following conditions are
satisfied.
Li < T0 (threshold for linearity check).
Its y -range should be greater than the x -range.
Its y -mean should be less than the y -minimum of the previous SG.
Its y-max should not be greater than middle y -value of previous SG.

Dot detection: As discussed in section 4, some pairs of characters in
Kannada just differ by the presence or absence of a small dot. Since we
do not consider characters with dot as a separate class for recognition,
we detect the dots from the word and set a flag for it, which is used at
the time of unicode generation. A stroke si is detected as a dot if both
the following conditions are satisfied.
1. The height of its bounding box is less than α1 times the maximum of
the heights of the bounding boxes of all the strokes in the word.
2. The width of its bounding box is less than α2 times the maximum of
the widths of the bounding boxes of all the strokes in the word.

The bounding box overlap in the writing direction (horizontal) is
quantified by

where ݔ௠௜௡ௌೖ ௠௜௡௜ݔ , and ݔ௠௔௫ௌೖ ௠௔௫௜ݔ , are the minimum and maximum x-
coordinates of stroke group Sk and stroke (si), respectively. The part of
y-range of a stroke that lies below the previous SG is quantified by

VBk

i =
ymin

Sk − ymin
i

ymax
i − ymin

i

where ݕ௠௜௡ௌೖ is the minimum y-coordinate value of stoke group (Sk) and ݕ௠௜௡௜ and ݕ௠௔௫௜ are the minimum and maximum y-coordinate values of
stroke (si), respectively. If the current stroke sc is written below the
previous stroke group Sk, then that stroke is considered as an ottu and
split from Sk to form the next stroke group Sk+1. Then we set the ottu
status of Sk+1 to 1 (Sk+1.ottu = 1). Figures 16 and 17 depict the
parameters employed for computing ܸܤ௞௜ and HO.

Figure 16. Parameters employed for calculating HO.

Each stroke is shown by a different color.

Figure 17. Parameters employed for calculating VB୩୧ .
Each stroke is shown by a different color.

In Kannada, a word always starts with a base character. So, we

consider the first stroke of a word as a part of a base character, thus
forming the first stroke group of the word. The flowchart for each

⎜⎜⎝ −− imaxkSminkSmax xx,xxmax=HO

iteration in the proposed algorithm for preliminary segmentation is
shown in Fig. 18. Figures 19 and 20 show the results after applying PS
to different input words. In each iteration, if any stroke is detected as a
padam or dot (block D1), then a corresponding flag is set to the current
stroke group (Sk) under consideration (block P1), which is made use of
at the time of unicode generation.

For example, in Fig. 20(a), the first stroke is considered part of a
base character. The second stroke is written completely below the
previous stroke group and hence is considered to be an ottu and its ottu
status is set to 1 (block P2). For the third stroke, (its predecessor stroke
group is an ottu) its maximum y -value is above the mean y -value of
the word and as shown in the flow chart (block D3), this stroke is
considered part of a new base character and its ottu status is set to 0
(block P3). The fourth stroke is written slightly below its predecessor
stroke group which is a base character and the maximum y -value is
also greater than mean y -value of the word. As shown in the flow chart
(block P2), this stroke is split from its predecessor stroke group and its
ottu status is set to 0. The fifth stroke has less horizontal overlap with
its predecessor stroke group and hence is split from it and its ottu status
is set to be the same as its predecessor stroke group (block P5). The
algorithm continues for the rest of the strokes as shown in Fig. 18.

However, preliminary segmentation may sometimes output a stroke
group which is either (1) a merge of two valid symbols or (2) a part of a
valid symbol. These errors are illustrated below:
1. Merging of two valid symbols (under-segmentation): Figure 21(a)
illustrates such an error in which a stroke group is formed by the

merger of two valid symbols and in the word .
2. Splitting a symbol into two or more stroke groups (over-
segmentation): Figure 21(b) illustrates an over-segmentation error in
which a symbol is split into two stroke groups in the word .

In the next section, we discuss the proposed method of attention
feedback segmentation (AFS) to correct the segmentation errors
obtained after preliminary segmentation.

Figure 18. Flow chart for each iteration in the preliminary segmentation (PS).

Figure 19. Results after applying PS. (a) Input online word. Each stroke
is marked with a different color. (b) Word after doing PS. Each SG is
marked with a different colour. The stroke order is blue, red, black,
cyan, magenta, green and then the colours get repeated.

Figure 20. Results after applying PS. (a) Input online word. Each
stroke is marked with a different color. (b) Word after doing PS. Each
SG is marked with a different colour.

Figure 21. Illustration of under-segmentation and over-segmentation
errors. (a) The /she/ and /I dheerga/ symbols got merged into a
single stroke group. (b) The valid symbol /ga/ got split into two
stroke groups as shown by the separate bounding boxes.

9 Attention-feedback segmentation

AFS aims to refine the segmentation errors introduced by PS. The block
diagram of the AFS is shown in Figure 22. In this, we extract some
features from PS stroke groups and use these features to suspect any
SGs which are possibly wrongly segmented. Then, we use feedback
from SVM probability estimates and statistics derived from the MILE
lab Kannada symbols dataset and take a decision to retain, split or
combine with adjacent stroke groups. We do AFS on only those SGs
detected as possibly wrongly segmented and then split them, if
necessary. Thereafter, we check for SGs, which are possibly part of a
valid symbol and then combine them with appropriate neighboring
stroke groups.

Figure 22. Block diagram of AFS.

9.1 Features for attention
We now describe the features we use to detect the wrongly

segmented stroke groups.

Inter-stroke feature: For the preprocessed stroke groups comprising q
strokes (q > 1), we take the vertical displacement vi from the last point
of the i-th stroke to the first point of the (i+1)-th stroke:

() .11
1 q<i,yy=v +ii

lasti ≤− The maximum of all {vi}, i=1···q−1, among
all successive stroke pairs (vmax) is a feature for attention. The value of
vmax can be positive or negative. For the stroke group /kau/ in Fig.
23, vmax is negative. The SG with vmax > 0 may be under-segmented.

In Kannada, for each consonant-vowel combination, a distinct
shaped stroke is written at the top of the consonant. This vowel specific
addition can be an extension of the consonant stroke or a separate new
stroke. While writing such characters, sometimes the writer extends the
additional stroke towards the right of the character. Because of this,
there will be some space left below this extension and to the right of the
character. So, most writers tend to start the next character from this
space, thus causing significant amount of overlap between these
characters in the writing direction. Our PS algorithm merges these
characters, if the horizontal overlap between these characters exceeds
the threshold T2. For all these merged SGs, vmax is greater than zero.
This feature can be used to detect under-segmented stroke groups. Figure 24
depicts the case, wherein two Kannada symbols /she/ and /E matra/ are
merged by PS as a single SG. It is likely that the SVM classifier will indicate
this SG to be an outlier by returning a low probability estimate to its most
probable symbol.

Figure 23. Illustration of vmax for the stroke group /kau/. (a) Stroke group
/kau/ with the direction of trace marked by arrows. (b) Illustration of the
three inter-stroke displacements v1, v2 and v3. (c) Illustration of vmax. For
this stroke group, vmax < 0.

Figure 24. Two different symbols merged by PS.
This combined stroke group satisfies vmax > 0

Mean y-coordinate of base characters: The mean of the mean y-

coordinates of all the stroke groups not detected as ottus in PS is a feature
for attention.

ymean
BC =

∑
i=1

p

ymean
Si (1−Si .ottu)

∑
i=1

p

(1−Si . ottu)

Here, p is the number of SGs identified by PS. Any SG lying
completely above this mean value is suspected to be over-segmented.

9.2 AFS strategy for under-segmented stroke groups

As discussed in section 9.1, a stroke group Sk for which vmax > 0
may correspond to an under-segmented stroke group (USG). In this
section, we outline the strategy for resolving such USGs. Figure 25
shows the block diagram of the proposed strategy. We used the
feedback from SVM probability estimates, statistics of vmax and
number of dominant points obtained from MILE lab Kannada symbols
dataset to split or retain the SG.

Number of dominant points: The dominant points (DP) provide a
rich structural description of a stroke group [34]. The algorithm starts
by marking the first and last points of the stroke as DPs. Starting from
the current DP, we compute the absolute angle between pen directions
of successive points. Then we accumulate these angles along the online
trace till the sum exceeds a threshold (Tθ). The point at which this
happens is marked as the next DP and the process continues till the end
of the stroke. The resultant number of DPs extracted is used as a feature
for attention. Figure 26 shows the dominant points extracted for the
stroke group /ne/.

Let vmax correspond to the inter-stroke gap between the r-th and (r
+ 1)th strokes in Sk, respectively. Accordingly, we consider Sk as a
possible merger of two valid symbols Sk1 and Sk2, defined by

Sk1 = {sk1, sk2, … , skr} and Sk2 = {skr+1, skr+2, … , skq}

 Figure 25. AFS module for susepected under-segmentation.

Figure 26. Extraction of dominant points (DP) for a stroke group /NE/

Here, Ski denotes the i-th stroke in the k-th stroke group. We input

the pre-processed stroke groups Sk, Sk1 and Sk2 to SVM and get the
most probable symbols ߱௧௢௣௞ , ߱௧௢௣௞ଵ and ߱௧௢௣௞ଶ with probability estimates
P(߱௧௢௣௞), P(߱௧௢௣௞ଵ) and P(߱௧௢௣௞ଶ), respectively. We favour splitting Sk into
two stroke groups Sk1 and Sk2, if

 [P(߱௧௢௣௞ଵ) + P(߱௧௢௣௞ଶ)]/2 > P(߱௧௢௣௞)
Figure 27 illustrates the case wherein the wrongly segmented

stroke group /shee/ in the word gets correctly segmented to 2
valid Kannada symbols, /she/ and /e/.

Fig. 27. Illustration of AFS scheme to resolve poss ib ly under-
segmented stroke groups. (a) Word wrongly segmented by PS. (b)
Under-segmented SG which satisfies vmax > 0. (c) and (d) The
extracted symbols are recognized separately. The SG is split since the
mean probability estimate of extracted SGs exceeds that of combined
SG. (e) Correctly segmented word.

9.3 AFS strategy for over-segmented stroke groups

Figure 28 shows the block diagram of the strategy for correcting over-
segmentation errors. As discussed in Sec. 9.1, a SG above the middle
line of base characters can be suspected to be over-segmented. Let Sk
be a SG, whose minimum y-coordinate is greater than mean y-
coordinate of base characters (ݕ௠௘௔௡஻஼). Let Sadj (k) be an adjacent stroke
group to Sk, whose BB overlap is maximum in the writing direction.
We temporarily merge these two stroke groups Sk and Sadj (k) to form
another stroke group SM and input the pre-processed SGs Sk, Sadj (k)

and SM to the SVM and get the most probable symbols ߱௧௢௣௞ , ߱௧௢௣௔ௗ௝ and ߱௧௢௣ெ with probability estimates P(߱௧௢௣௞), P(߱௧௢௣௔ௗ௝) and P(߱௧௢௣ெ),
respectively. We merge the stroke groups Sk and Sadj(k) to form SM if

P (ωtop

k)+P (ωtop
adj (k))

2
<P(ωtop

M)

Figure 29 illustrates the case wherein the over-segmented stroke
group /ga/ in the word gets correctly segmented by
applying the above strategy.

 Figure 28. AFS module for resolving over-segmentation errors.

Figure 29. Illustration of AFS scheme to resolve over-segmented
stroke groups. (a) Wrongly segmented word after applying PS (b)
Stroke group suspected as over-segmented. (c) Adjacent stroke group
whose BB overlap is maximum in the writing direction. (d) The
combined stroke group. The stroke groups are merged if probability
estimate of combined stroke group is greater than the mean probability
estimate of individual stroke groups. (e) Correctly segmented word.

10 Results

10.1 Experimental setup

Before applying AFS to the input word, the parameters of the SVM are
trained with the concatenated x and y coordinates of the pre-processed

Kannada symbols as described in section 6.1. In addition, the statistics
of the following two features are generated for each symbol ωi from the
MILE Lab Kannada character data-set: (i) Maximum number of
dominant points ஽ܶ௉௠௔௫ሺ߱௜ሻ across all samples of ωi. (ii) The maximum ݒ௠௔௫ሺ ௠ܶ௔௫ሺ߱௜ሻሻ, across all samples of ωi . The threshold T0 used for
linearity check in the padam detection is selected to 1.8. We extracted
the padam strokes from the relevant symbols in the MILE Lab word
data-set and calculated the Li for each stroke. Figure 30 shows the
histogram of Li for these padam strokes with the bin size of 0.1. From
Fig. 30, we can observe that Li is less than 1.8 for all padam strokes
and hence we choose the threshold of 1.8 for Li .

Figure 30. Histogram of Li of padam strokes with the bin size of 0.1.

 We extracted the dot strokes from the valid symbols in the MILE
Lab word dataset and calculated the ratios of BB height and width of
the dot stroke to the maximum BB height and width of all strokes
in the word respectively. Figure 31 shows the histogram of these
ratios for all the dot strokes with the bin size of 0.1. We observe that
α1 and α2 are less than 0.4 for all dot strokes and hence we choose
the threshold of 0.4 for both the parameters α1 and α2 used for
dot detection.
 The thresholds T1 and T2 used for VB and HO in PS are selected
as 0.3 and 0.2, respectively. We calculated the minimum HO for
the samples of all classes in the MILE Lab Kannada character
dataset and selected an initial value for T2 as 0.2 from Fig. 32.
Using this value, we calculate the segmentation errors given by PS
and AFS by varying T1 from 0 to 1 as shown in Figure 33(a). From
Figure 33(a), we can see that AFS is robust to the changes in VB.
We then fixed the value of T1 to 0.3 and calculated the
segmentation errors given by PS and AFS with varying T2 from 0
to 1 as shown in Fig. 33(b). We can see from Figure 33(b) that
segmentation accuracy peaks for values of HO from 0.2 to 0.4 and
hence we have selected the value of T2 to be 0.2.

Figure 31. Histogram of BB ratios of height and width of dot strokes
respectively. (a) x-axis corresponds to ratio of BB height of a padam
stroke to the maximum BB height of all the strokes in the
corresponding word. Y-axis corresponds to its frequency. (b) x-axis
corresponds to the ratio of BB width of a padam stroke to the
maximum BB width of all the strokes in the corresponding word. Y-
axis corresponds to its frequency.

Fig. 32. The histogram of minimum HO in each sample from
MILE Lab Kannada character dataset with a bin size of 0.1.

10.2 Segmentation results on MILE lab Kannada word data-set

We implemented our algorithm in C language and tested on a total
of 44772 words in MILE Lab Kannada word dataset. A few sample
words, whose segmentations have been corrected by our approach, are
shown in Tables 2 and 3. Application of the PS on each word in Table 2
leads to a merge of valid symbols. On the other hand, at least one valid
symbol in each word in Table 3 appears as more than one stroke group
due to over-segmentation. The incorrect segmentation in turn increases
the symbol recognition errors, as shown in the second column of the
two tables. From the third columns, we observe that all the constituent
symbols of these words are recognized correctly after the AFS.

The segmentation and symbol recognition accuracies are shown in
Table 4. An improvement of 10.9% in segmentation accuracy and 6%
in symbol recognition rate are achieved by our AFS method. Although

k K

there is an improvement, the symbol recognition accuracy itself is not
so satisfactory because of training SVM classifier with only 69 samples
per class in MILE Lab Kannada character dataset. Accordingly, the
corresponding word recognition accuracy is also lower. Whenever two
different symbols are joined as a single stroke, the word does not get
properly segmented, since the proposed algorithm is not designed to
handle such cases. Further, the two strokes in some symbol samples
have zero or less horizontal overlap and AFS cannot merge them.

Figure 33. Effectiveness of AFS and PS on 4000 words from
MILE Lab Kannada word dataset as a function of VB and HO. (a)
Variation of over-segmentation, under-segmentation errors after PS;
PS and AFS accuracy with H O = 0 . 2 and VB varying from 0 to 1.
(b) Variation of over-segmentation, under-segmentation errors after
PS; PS and AFS accuracy with VB = 0.3 and HO varying from 0 to 1.

Table 2. Merger of two symbols by PS, split by AFS and consequent
improvement in recognition.

Input word under-
segmented by PS

Recognition o/p for
PS stroke groups

Recognition o/p for
AFS stroke groups

Table 3. Splitting of symbols into two stroke groups by PS, correct
segmentation by AFS and consequent improvement in recognition.

Input word over-
segmented by PS

Recognition o/p for
PS stroke groups

Output for SGs
after AFS

Table 4. Performance evaluation of the proposed PS and AFS schemes
on the words in the entire MILE word database. Total # of words =
44772. Total # of symbols = 183125.

 PS AFS % Error
reduction

of correctly segmented words 37339 42085
of segmentation errors 7433 2687 63.8

Segmentation accuracy in (%) 83.4 94.3 65.6
Symbol recognition accuracy (%) 56 62 13.6

Word recognition accuracy in
(%)

12.8 18.2 6.2

11 Conclusion and future work

In this article, we proposed an attention feed-back based segmentation
method for the segmentation of online handwritten Kannada words.
Given an input online word, we use statistics learnt from data to
perform preliminary segmentation to form a set of stroke groups. We
then extract features like vmax and ݕ௠௘௔௡஻஼ to detect the possibly
erroneous stroke groups. Thereafter, we use the feedback o f
probability estimates from the classifier and statistics on inter-stroke
feature vmax and number of dominant points to resolve the detected
erroneous stroke group by splitting or merging with appropriate
stroke group or retaining it. We employ the concatenated x, y
coordinates of preprocessed symbol as features for training the SVM
classifier. We showed that the AFS method improved the
segmentation performance o f PS and is robust to the parameters
used in PS.

However, the following improvements can be made for further
enhanced performance.

• Our algorithm fails to handle noise strokes and over-written
strokes in the online input word. By handling these strokes, the
segmentation and recognition accuracies can be improved.

• Improving the classifier performance gives better quality
feedback on the stroke groups and hence improves the AFS and
word recognition performance further.

• AFS cannot handle wrong, rare stroke orders and splitting of a
single stroke into multiple by occasional writers. These can
possibly be handled by combining offline classifiers, along with

the online data based classifier.
• When two characters are combined by cursive writing, all the

above approaches fail, and one needs to think of new ways of
handling such anomalies.

• Incorporating bi-gram language models can further improve the
performance.

Appendix A. The list of 295 Kannada symbols

Figure A.1: The list of all V, C, CV combinations and numerals in Kannada. The aksharas
printed in bold format are our classes for the recognition.

References

1. S Madhvanath, V Govindaraju, The role of holistic paradigms in handwritten word
recognition, IEEE Trans.PAMI 23(2) (2001) 149-164.

2. http://www.research.ibm.com/electricInk/
3. S Uchida, H Sakoe, A survey of elastic matching techniques for handwritten char-

acter recognition, IEICE Transactions (2005) 1781-1790.
4. SD Connell, AK Jain, Template-based online character recognition, PR (2001) 1-14.
5. J Hu, M K Brown, W Turin, HMM based online handwriting recognition, IEEE

Trans. PAMI (1996) 1039-1045.
6. H J Kim, K H Kim, S K Kim, J K Lee, Online recognition of handwritten Chinese

characters based on hidden Markov models, PR 30(9) (1997) 1489-1500.
7. A Senior, K Nathan, Writer adaptation of a HMM handwriting recognition system.

Proc. ICASSP (1997) 1447-1450.
8. Plamondon, F J Maarse, An evaluation of motor models of handwriting, IEEE Trans,

SMC 19(5) (1989) 1060-1072.
9. M M Prasad, M Sukumar, A G Ramakrishnan, Orthogonal LDA in PCA

Transformed Subspace, Proc. ICFHR (2010) 172-175.
10. U Bhattacharya, B K Gupta, S Parui, Direction code based features for recognition of

online handwritten characters of Bangla, Proc. ICDAR(1) (2007) 58-62.
11. S K Parui, K Guin, U Bhattacharya, B B Chaudhuri, Online handwritten Bangla

character recognition using HMM, Proc. ICPR (2008) 1-4.
12. A Jayaraman, C C Sekhar, V S Chakravarthy, Modular Approach to Recognition of

Strokes in Telugu Script, Proc.ICDAR (2007) 501-505.
13. N Joshi, G Sita, A G Ramakrishnan, V Deepu, S Madhvanath, Machine recognition

of online handwritten Devanagari characters, Proc. ICDAR (2005) 1156-1160.
14. A K Sharma, R Kumar, R K Sharma, Rearrangement of recognized strokes in online

handwritten Gurmukhi word recognition, Proc. ICDAR (2009) 1241-1245.
15. G Shankar, V Anoop, V S Chakravarthy, LEKHAK [MAL]: A system for online

recognition of handwritten Malayalam characters, Proc.NCC (2003) 463-467.
16. B S Raghavendra, C K Narayanan, G Sita, A G Ramakrishnan, M Sriganesh, Pro-

totype learning methods for online handwriting recognition, Proc. ICDAR (2005)
287-291.

17. S Kiran, K S Prasad, R Kunwar, A G Ramakrishnan, Comparison of HMM and
SDTW for Tamil handwritten character recognition, Proc. SPCOM (2010) 1-4.

18. A Bharath, S Madhvanath, Hidden Markov m odels for online h andwritten
Tamil word recognition, Proc. ICDAR (2007) 506-510.

19. S R Kunte, S Samuel, Wavelet features based online recognition of handwritten
Kannada characters, Journal Visualization Society of Japan (20) (2000) 417-420.

20. M M Prasad, M Sukumar, A G Ramakrishnan, Divide and conquer technique in
online handwritten Kannada character recognition, Proc. MOCR (2009) 1-6.

21. K Rituraj, P Mohan, K Shashikiran and A G Ramakrishnan, Unrestricted Kannada
online handwritten akshara recognition using SDTW, Proc. ICSPCOM (2010) 1-5.

22. S Jaeger, S Manke, J Reichert, A Waibel, Online handwriting recognition: the
NPen++ recognizer, IJDAR (2001) 169-180.

23. F Camastra, A SVM-based cursive character recognizer, PR (40) (2007) 3721-3727.
24. A W Senior, A J Robinson, An offline cursive handwriting recognition system, IEEE

Trans PAMI (20) (1998) 309-321.
25. A L Koerich, R Sabourin, C Y. Suen, Recognition and verification of Unconstrained

Handwritten Words, IEEE Trans. PAMI 27(10) (2005) 1509-1522.
26. L E S Oliveira, R Sabourin, F Bortolozzi, C Y Suen, Automatic recognition of hand

written numerical strings: A recognition and verification strategy, IEEE Trans. PAMI
24(11) (2002) 1438-1454 .

27. Murase H, Online recognition of free-format Japanese handwritings, Proc. ICPR
(1988) 1143-1147.

28. B Zhu, X D Zhou, C L Liu, M Nagakawa, A robust model for on-line handwritten
Japanese text recognition, IJDAR (2010) 121-131.

29. X D. Zhou, J L Yu, C L Liu, T Nagasaki, K Marukawa, Online handwritten
Japanese character string recognition incorporating geometric context, Proc. ICDAR
(2007) 48-52.

30. S Y Zhao, Z R Chi, P F Shi, Two-stage segmentation of unconstrained handwritten
Chinese characters, PR (36) (2003) 145-156.

31. X Gao, P M Lallican, C Viard-Gaudin, A two-stage online handwritten Chinese
character segmentation algorithm based on dynamic programming, Proc.ICDAR
(2005) 735-739.

32. U Bhattacharya, A Nigam, Y S Rawat, S K Parui, An analytic scheme for online
handwritten Bangla cursive word recognition, Proc. ICFHR (2008) 320-325.

33. G A Fink, S Vajda, U Bhattacharya, S K Parui, B B Chaudhuri, Online Bangla word
recognition using sub-stroke level f eatures and hidden Markov models, Proc. ICFHR
(2010) 393-398.

34. S Sundaram, A G Ramakrishnan, Attention-feedback based robust segmentation of
online handwritten isolated Tamil words, ACM Transactions on Asian Language
Information Processing, 2012.

35. S Sundaram, A G Ramakrishnan, Lexicon-Free, novel segmentation of online hand-
written Indic words, Proc. ICDAR (2011) 1175-1179.

36. A Bharath, S Madhvanath, HMM-based lexicon-driven and lexicon-free word
recognition for online handwritten Indic scripts, IEEE Trans. PAMI 24(11) (2011).

37. R Kunwar, K Shashikiran, A G Ramakrishnan, Online handwritten Kannada word
recognizer with unrestricted vocabulary, Proc. ICFHR (2010) 611-616.

38. Nethravathi B, Archana CP, Shashikiran K, Vijay Kumar and A G Ramakrishnan,
Creation of a huge annotated database for Tamil and Kannada OHR, Proc. ICFHR
(2010) 23-26.

39. Christopher J.C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2:121-167, 1998.

40. Duda, Hart, Stork, Pattern Classification, Springer Wiley, 1995.
41. http://www.csie.ntu.edu.tw/ cjlin/libsvm/
42. Suresh Sundaram and A. G. Ramakrishnan, “Attention feedback based robust

segmentation of online handwritten words,” Indian Patent Office Reference. No:
03974/CHE/2010.

