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Abstract: In this article, we address the challenges in segmentation 

of online handwritten, isolated Kannada words. This is the maiden work 
in the field of segmentation of online handwritten Kannada words.  Due 
to the advent of tablet PCs and systems with pen-enabled interface, 
online handwriting recognition has got wide applications such as form 
filling, field data collection and word processing. In some of these 
applications, recognition of names of individuals is required and it is 
nearly impossible to maintain the lexicon of all possible names. Also, 
Kannada, being a Dravidian language, is morphologically rich and also 
agglutinative and thus does not have a finite lexicon. For example, a 
single root verb can easily lead to a few thousand words after 
morphological changes and agglutination. Hence, to make recognition 
of open vocabulary online handwritten Kannada words possible, one 
must necessarily look into the possibility of segmentation of online 
Kannada words into their constituent symbols. 

The modern Kannada script consists of 13 vowels, 34 consonants, 
2 other symbols, and 10 numerals. Old Kannada script has additional 3 
vowels and 2 consonants. In Kannada, a compound character called 
akshara is possible by combining consonants and vowels. A total of 
8,63,848 different aksharas are possible. We derived a minimal set of 
295 distinct symbols to recognize these characters. A corpus of isolated 
Kannada symbols (MILE Lab Kannada symbols data-set) is collected to 
study the various statistics about Kannada characters. For addressing 
the issue of segmentation, Kannada words are collected using a custom 
application running on a tablet PC from high school. We refer to this 
dataset as MILE Lab Kannada word dataset. 

We address the challenges in any online Kannada word into its 
constituent symbols. We approach the segmentation problem in two 
steps: preliminary segmentation (PS) and attention feed-based 
segmentation (AFS). In PS, we use the heuristics from language 
constructs to segment the word into a set of stroke groups (SG). Then in 
AFS method, we extract some features from each SG to suspect any 
under-segmentation or over-segmentation. Then we make use of (i) 
probability estimate from the classifier and (ii) attributes such as 
number of dominant points and inter stroke displacements from prior 
knowledge, to resolve the suspected stroke group by splitting or re-
grouping or retaining it. A segmentation accuracy of 83.4% is achieved 
by PS, which is increased to 94.3% by AFS. 

We use SVM classifier to recognize and get probability estimates 
for individual stroke groups. SVM is trained on MILE Lab Kannada 
symbols training data-set. The smoothed, normalized and re-sampled x, 
y-coordinates of online trace are used as a feature vector for each 



sample in the data-set. The character recognition accuracy of 56% is 
achieved by recognizing the PS outputs and 62% by recognizing the 
symbols segmented by AFS on the MILE Lab Kannada words. 

 
1  Handwriting Recognition System 
 
Handwriting recognition can be of two types: offline or online [1]. 

In offline handwriting recognition, the image of the handwritten 
document is given as input to the system and the system is trained to 
interpret the handwritten text in it. This has wide applications in 
recognition of addresses in postal mails, recognition of handwritten 
check amounts, reading handwritten responses on forms and automatic 
filing of faxes of handwritten material. 

In online handwriting recognition, the user writes on a special note 
pad or a tablet using a stylus where a sensor picks up the pen-tip 
movements x (t), y (t) as well as pen-up/pen-down switching. This data 
is referred to as digital ink [2] and can be regarded as a dynamic 
representation of handwriting. With the advent of Tablet PCs and PDAs 
with touch sensitive interfaces, online handwriting recognition has wide 
applications in form filling, word processing and also as text input 
method to PDAs. There is also a possibility for using online 
handwriting recognition in conjunction with speech synthesis, thereby 
empowering people with vocal disability to communicate with others. 

 
2  Literature survey 
 
Online handwriting recognition of isolated characters for non-Indic 

scripts is addressed in [3, 4, 5, 6, 7, 8]. Recognition of isolated 
characters for Indian languages is described in [9, 10, 11, 12, 13, 14, 15, 
16, 17, 18]. The recognition of isolated Kannada characters was first 
explored by Kunte et al. [19], where wavelet features were extracted 
from the character contour and used as features. Multi-layer feed-
forward neural networks with a single hid- den layer are trained for 
recognizing the characters. In [20], 295 symbols are derived from the 
Kannada character set and a divide and conquer technique is proposed 
to segment any character into three groups namely middle unit (MU), 
right auxiliary (RA) and bottom auxiliary (BA). These 295 symbols are 
grouped into MU, RA and BA stroke groups. PCA-based features are 
then derived specific to each stroke group. The subspace features of 
each class of stroke groups are fed to their respective nearest neighbour 
(NN) classifiers for classification. The results from these classifiers are 
then combined to generate the output character. In another work [21], 
statistical dynamic time warping (SDTW) has been employed to 
classify Kannada characters with x-y coordinates of the trace and their 
first order derivatives as features. The SDTW is reported to give a 2% 
improvement over the dynamic time warping (DTW). Orthogonal linear 
discriminant analysis (OLDA) on a set of PCA features have been 
recently attempted to the set of Kannada numerals [9]. 

Most of the applications of online handwriting recognition consider 
word as a basic unit rather than isolated characters. In the literature, the 



problem of online word recognition has been addressed by two 
methods:  analytical approach and holistic approach [1]. Analytical 
approach treats the word as a collection of simpler subunits such as 
characters and proceeds by segmenting the word into these units. Then 
it identifies these units and builds a word-level interpretation. This 
method can be effectively used to recognize any word. Since in this 
approach, we are decomposing the word into its constituent subunits, 
segmentation is a major challenging problem. On the other hand, 
holistic approach treats the word as a single, indivisible entity and 
attempts to recognize it using features of the word as whole. This 
approach can only be applied effectively for limited lexicons. When the 
lexicon is of bigger size, the ability of the holistic features to 
distinguish between different classes is diminished and it is also 
practically not feasible to collect the training data for training a holistic 
classifier. 

In Latin script, the words are usually written in cursive style, the 
recognition of which is addressed in [22, 23, 24, 25, 26]. In [27], the 
authors proposed a method for Japanese string recognition where a 
character string is described as a directional graph (called a candidate 
lattice) representing possible segmentation and character plausibilities. 
Then, by means of dynamic programming the candidate character 
sequence corresponding to the shortest path under linguistic constraints 
is selected as the segmentation and recognition result. Geometric 
context extracted from segments has been used for Japanese online 
handwriting recognition [28, 29].  A two  stage  segmentation  scheme 
has been proposed to  segment Chinese  characters  in [30, 31], where  
the  sequences of online handwritten strokes  are grouped based on 
geometrical information at a first stage and then the recognition results 
and  the  geometrical  features  from  the  pre-segmented characters are  
used in dynamic programming method to find the best segmentation 
path. 

In Indic scripts, the constituting words are rarely cursive except 
with the possible exception of Bangla [32, 33]. People generally write 
the compound characters or aksharas in a word separately from each 
other with possible overlaps. Recently, Sundaram et al. [34, 35, 42] 
proposed a feedback based segmentation strategy for lexicon free 
segmentation of online handwritten Tamil words. In that, they first did 
a preliminary segmentation based on horizontal overlap criterion and 
then used feedback from classifier and some inter-stroke features to 
correct segmentation errors from horizontal overlap criterion 
segmentation. They called this method as attention feedback 
segmentation (AFS). Bharath et al. [36] used a HMM framework for 
modeling the symbols and their relative positions in online Tamil 
words. However, their work adopts a segmentation-free approach. 

 
     3  Focus of the work 

 
Kannada is one of the scheduled languages of India and the official 

and administrative language of the state of Karnataka. Villages 
constitute the most population in India and most of the villagers prefer 



to write in their native language. Also, all the government forms are 
available in both the state language and English. So if people can 
interact with computers in the native language through the medium of 
handwriting, it will enable better technology penetration and will reach 
the masses. Thus arises the need for developing online handwriting 
recognition systems for Indian languages. 

We aim for the recognition of any online handwritten Kannada 
word (unrestricted vocabulary). There is currently limited research 
addressing the challenges pertaining to recognizing Kannada words 
[37]. Most of the reported techniques deal with the problem of 
recognizing isolated characters. We use AFS method to segment the 
online Kannada word into its constituent symbols. This is the maiden 
work in the field of segmentation of online handwritten Kannada words 
and there is clearly no prior work in this area on any Indic script, except 
Tamil. We first do a preliminary segmentation based on Kannada 
language constructs to get a set of stroke groups and then use feedback 
from classifier, number of dominant points and inter-stroke features to 
correct any segmentation errors. The individual symbols are then 
recognized and combined to get a word level interpretation. 
 
4  Choice of Kannada symbol set 
 

The Kannada alphabet was developed from the Kadamba and 
Chalaukya scripts, descendants of Brahmi which were used between the 
5th and 7th centuries A.D. In terms of the structure of the symbols used, 
Kannada is unrelated to the descendants of Devanagari such as Hindi, 
Bengali and Marathi. The modern Kannada script contains 49 phonemic 
letters which are divided into three groups: 13 independent vowels, 34 
consonants and two other letters, namely the anuswara  and the 
visarga ). Figures 1 and 2, respectively, list the set of vowels and 
consonants of modern Kannada script. In addition, the old (Hale) 
Kannada script has 3 more vowels (vocalic RR , vocalic L, vocalic 
LL) and two more consonants (RRA  , LLLA ). 

Further, it also has vowel modifiers and consonant modifiers for 
each vowel and consonant. The script has its own numerals. Each 
consonant combines with each of the vowels to form a compound 
character (CV combination) called akshara. Figure 3 lists the CV 
combinations corresponding to the consonants  /g/ and  /th/. 
Optionally, an akshara can have one or more consonants preceding a 
CV combination forming a canonical structure of ((C)C) CV. Thus, the 
number of theoretically possible combinations of Kannada characters is 
huge and is listed in Table 1. 

 

 
Figure 1. Set of vowels in Kannada 

 
 



 
Figure 2. Set of consonants in Kannada 

 

 
Figure 3. Set of all CV combinations for /g/ and /th/ 

 
Table 1. Number of possible combinations of Kannada Characters.  

(V: Vowels; C: Consonants; N: Numerals)       
Char Type V C CV CCV CCCV N Total 

Possible Combinations 18 36 648 23328 839808 10 863848 
 

From Table 1, it is clear that considering each combination as a 
separate class for recognition increases the computational cost and may 
reduce the recognition accuracy. Also, it is not practically feasible to 
ask writers to write all the combinations during data collection. In this 
section, we describe a method to get a comprehensive set of symbols 
that can be employed in the recognition of any Kannada akshara. 

All vowel modifiers change the shape of the consonant in the CV 
combination (Fig. 3). Based on their relative position in a CV 
combination, vowel modifiers can be classified into different types: (a) 
Some vowel modifiers have significant overlap in the writing direction. 
Examples of this case are shown in Fig. 4. These CVs are treated as 
distinct classes. (b) For some vowel modifiers, a special pattern is 
written at the bottom right of the modified consonant as shown in Fig. 
5. From the point of view of recognition, it would suffice to recognize 
the modifier separately and then append it to the corresponding base 
character. (c) Three vowel modifiers are written separately towards the 
right of the consonant as shown in Fig. 6. These vowel modifiers are 
segmented and recognized as separate classes, which reduces the 
number of classes. (d) Two vowel modifiers are written to the right of 
the consonants with less overlap in the writing direction as shown in 
Fig. 7. These CV combinations are treated as separate classes for 



recognition. (e) There are some special cases of these modifiers, where 
they are written from below the consonant as shown in Fig. 8. The 
corresponding CV combinations are again treated as distinct classes. (f) 
There are few characters, which can be split into different symbols. 
Examples of such cases are shown in Figure 9. The symbols shown in 
Figure 9(b) are considered as separate classes. 

 

 
 

Figure 4.  Examples of vowel modifiers which have significant overlap 
in the writing direction with the consonant in the CV combinations. 

 

 
Figure 5. The consonant /k/ with the two vowel modifiers below. 

 

 
Figure 6. The consonant /k/ with vowel modifiers written separately to 

the right. 
 

 
Figure 7. Vowel modifiers written to the right of consonant /k/ with 

some overlap. 
 

 
Figure 8. Special consonants for which few vowel modifiers start below 

the consonant and written towards right. 
 

 
Figure 9. (a) Examples of characters that can be split into two or more 

parts. (b) Symbols obtained after splitting the characters in (a). 
 

In a typical CCV (say, /dh/+/y/+/aa/) combination, the first 
consonant (/dh/) and the vowel (/aa/) are first written as a CV 
combination (/dhaa/). Then the consonant modifier of the middle 
consonant (/y/) is written below this CV combination. A few examples 
of such CCV combinations are shown in Fig. 10. A consonant modifier 
that occurs below a CV combination is referred to as “ottu”. 



 

 
 

Figure 10.  Example CCV combinantions, where the vowel added to the 
second consonant actually modifies the first consonant in the final 

grapheme of the akshara. 
 

In CCCV combinations, the first consonant and the final vowel are 
first combined as a normal CV combination. Then the consonant 
modifiers corresponding to the 2-nd and 3-rd consonants are written 
below this CV combination. A few examples of such CCCV 
combinations are shown in Fig. 11. Henceforth, we refer to the 
Kannada symbols (except ottus and the symbols in vowel modifiers 
written below the consonants) as the base characters. 
 

 
Figure 11. Example CCCV combinations 

 
Both in CCV and CCCV combinations, it would suffice to 

recognize the ottu separately and then append it to the corresponding 
base character. The issue of segmenting the ottu from an akshara is 
dealt with separately in Section 8. By this, the number of distinct 
symbols to be recognized by the classifier is reduced. 

There are four sets of consonants which differ by a dot at the 
middle of the grapheme or a short vertical line (padam) at the bottom of 
the grapheme or both. If these dots and padam can be removed at the 
time of preprocessing, such characters can be considered as the same 
symbol. Examples of these characters are shown in Fig. 12. 

In addition to all these characters, 9 Kannada numerals, 9 Hindu-
Arabic numerals and 22 special symbols used in poetry, shlokas and 
Kannada grammar are also considered for recognition. Thus, a total of 
295 classes are derived, by which any Kannada akshara can be formed 
[38]. The list of these 295 classes is shown in Appendix A. 
 

 
Figure 12. Consonants differing by a dot or vertical line or both. 



5  Datasets used for the experiments 
 
We have used two data sets. One contains Kannada symbols and the 
other has words. We collected the Kannada symbols from 69 writers, 
each writing all the 295 symbols, using a custom application running on 
a tablet PC. We have ensured that all the writers who participated in the 
data collection activity are native Kannada writers. From here on, we 
call this data set as MILE Lab Kannada symbol data set. We used this 
dataset to collect various statistics of Kannada symbols to be used in the 
segmentation of online handwritten Kannada words. 

We also collected one lakh isolated Kannada word samples using 
both Genius GNote 7 and a tablet PC [38]. Two word lists containing 
246 and 198 words each (DB1 and DB2) are selected to cover all the 
295 symbols. A total of about 500 native Kannada writers, of different 
age groups, contributed in building the word dataset. In this article, we 
report the results of only the experiments conducted on the data 
collected using tablet PC, which has a sampling rate of 1200 Hz and a 
spatial resolution of 2500 dpi along both X and Y directions. This part 
has 44, 772 words. 50 writers have written all the words in DB1 and the 
words in DB2 were written by 164 writers. From here on, we call this 
subset of the dataset as MILE Lab Kannada word dataset.  

This contains a mix of all kinds of handwriting styles: class A - 
proper strokes, easily segmentable; class B - segmentable with 
sophisticated methods; class C - broken and merged strokes, adjacent 
strokes overlapping heavily and delayed but valid strokes; class D - 
extraneous strokes or overwriting and strokes written in the opposite 
direction, but the resulting stroke groups having the potential to be 
properly recognized using offline features, after removing the 
extraneous strokes; class R – reject class, where the likelihood of 
recognition is low. Figure 13 presents sample words from our dataset. 
 

 
Figure 13. Some words from the MILE lab Kannada word dataset 



6  Overview of basic recognition module 
 

In this section, we present the details of the recognition system 
used in our experiments. The recognizer has been developed to work on 
isolated Kannada symbols. The following subsection outlines the 
preprocessing and feature extraction steps that generate a fixed 
dimensional vector for each symbol. Subsection 6.2 outlines the details 
of the classifier used in recognizing a Kannada symbol. 
                                                                                                                                                              
6.1 Preprocessing 

As discussed in Section 1, an online handwritten symbol, captured 
by a digitizer, is a sequence of x-y coordinates with pen-down and pen-
up events. The captured symbol is preprocessed in order to compensate 
for variations in time, scale and velocity. It comprises 3 steps: 
smoothing, normalization and re-sampling. Smoothing reduces the 
amount of high frequency noise in the input, resulting from the 
capturing device or jitters in writing. Smoothing is performed on each 
stroke separately using a Gaussian low-pass filter. 

After smoothing, the bounding box of the symbol is resized to a 
fixed size such that the scale variations are eliminated. Both x and y 
coordinates are separately mapped to the [0,1] range by a linear 
transformation. 

The input data from the digitizer is sampled uniformly with respect 
to time. Hence, it is resampled to get a fixed number Np of points 
uniformly sampled in space. The re-sampling is done as follows: we 
first compute the arc-length of each stroke by adding the Euclidean 
distances between successive points. The arc-length of the symbol is 
calculated by adding the arc-lengths of individual strokes. The number 
of samples for each stroke is chosen so that it is proportional to its arc-
length. The points from a smoothed stroke are then re-sampled at 
constant interval by using linear interpolation. The interval length is 
calculated by dividing the arc-length of the stroke by the number of 
intervals required. 

The final result of pre-processing is a new sequence of points {xi, 
yi}, (i = 1 to Np) regularly spaced in arc length. A feature vector x is 
constructed from this sequence as  
x = (x1, x2 ... xNp, y1, y2, ... yNp)    
We refer to x as the concatenated x − y coordinates in this work. We 
experimented with varying number of re-sampled points and observed 
that Np = 60 is quite sufficient in capturing the shape of the character 
including points of high curvature. Figure 14 illustrates the 
preprocessing steps on a sample of symbol  /II/.  
 



 
Figure 14. Pre-processing of a SG prior to deriving features for SVM. 
(a) Original SG. (b) Smoothed, normalized and re-sampled SG to 60 
samples. 
 
6.2 Recognition 

In our experiments, we use support vector machine (SVM) 
classifier, as it gives good generalization performance on unseen data, 
to recognize online handwritten Kannada symbols [39]. We incorporate 
the knowledge of probability estimates and the most favoured symbol 
returned by the SVM in our algorithm to improve the segmentation of 
online handwritten Kannada words. SVM is a supervised learning 
method for a 2-class pattern classification problem [39]. In this work, 
we used the LIBSVM software for learning the SVM parameters [41]. 
The OVO scheme is used for training. The samples corresponding to 
the 295 symbols in the MILE Lab Kannada symbols dataset are used to 
learn the optimal values for the model parameters. The RBF kernel is 
used as the kernel function. A recognition accuracy of 85% is obtained 
on the MILE Lab Kannada symbols test data set with parameters C = 
10 and γ  = 0.3. The kernel and the corresponding parameters are set 
after performing a 3-fold cross validation experiments on the MILE Lab 
Kannada symbols dataset. In the following section, we describe our 
proposed method for the segmentation of lexicon free, isolated online 
handwritten Kannada words. 
 
7   Proposed work 
 
Given an online Kannada word, our emphasis is to correctly segment it 
into its constituent symbols by employing a feed-back based strategy. 
During the collection of online handwritten words, the pen-tip 
movements x(t) and y(t) as well as pen-up/pen- down switching are 
sensed. The sequence of (x, y) coordinates sensed from a pen-down 
state to a pen-up state is considered as a stroke. The script being non-
cursive in nature, an online word is represented as a sequence of n 
strokes W = {s1, s2, s3, ..., sn}, where si  are the individual strokes. We 
segment the input word (W) into a sequence of m distinct patterns, 
referred to as stroke groups W = {S1, S2, S3, ..., Sm }, m ≤ n and Si ∩ 
Sj = Φ for i ≠ j. A stroke group Sk is defined as a set of one or more 
consecutive strokes, which is possibly a valid Kannada symbol. 

The block diagram of the proposed strategy is shown in Fig. 15. 



We first propose a preliminary segmentation (PS) based on horizontal 
overlap between successive strokes. However, due to the wide 
variability in handwriting, preliminary segmentation may not be perfect 
all the time. Hence, we adopt feature based attention and feedback from 
the recognition system to detect and correct any segmentation errors 
present after PS. 
 

 
Figure 15. Block diagram of proposed segmentation method 

 
8  Preliminary segmentation (PS) 
 
In Kannada, the strokes of the same symbol significantly overlap in the 
horizontal direction. Ottus occur at the bottom of consonants and a 
special symbol called padam occurs at the middle and below some 
consonants. Our algorithm segments the word based on the above a 
priori knowledge, by checking for (1) padam and dot detection, (2) 
bounding box (BB) overlap in writing direction and (3) portion of y-
range of a stroke below the previous SG, thus generating a set of SGs. 
 
Padam detection: A stroke si is represented as a sequence of ni points 
si = {p1, p2, … pni}. We define the degree of linearity of stroke si as L୧
where d(p, q) is the Euclidean distance between points p and q. A 
stroke si is detected as padam if all of the following conditions are 
satisfied.  
Li  < T0  (threshold  for linearity check). 
Its y -range should be greater than the x -range. 
Its y -mean should be less than the y -minimum of the previous SG. 
Its y-max should not be greater than middle y -value of previous SG. 
 
Dot detection: As discussed in section 4, some pairs of characters in 
Kannada just differ by the presence or absence of a small dot. Since we 
do not consider characters with dot as a separate class for recognition, 
we detect the dots from the word and set a flag for it, which is used at 
the time of unicode generation. A stroke si is detected as a dot if both 
the following conditions are satisfied. 
1. The height of its bounding box is less than α1 times the maximum of 
the heights of the bounding boxes of all the strokes in the word. 
2. The width of its bounding box is less than α2 times the maximum of 
the widths of the bounding boxes of all the strokes in the word. 
 
The bounding box overlap in the writing direction (horizontal) is 
quantified by 
 



 
                                                                                                                                                             
 
 
where ݔ௠௜௡ௌೖ ௠௜௡௜ݔ ,  and ݔ௠௔௫ௌೖ ௠௔௫௜ݔ ,  are the minimum and maximum x-
coordinates of stroke group Sk and stroke (si), respectively. The part of 
y-range of a stroke that lies below the previous SG is quantified by  

                                             
VBk

i =
ymin

Sk − ymin
i

ymax
i − ymin

i
 

where ݕ௠௜௡ௌೖ  is the minimum y-coordinate value of stoke group (Sk) and ݕ௠௜௡௜  and ݕ௠௔௫௜  are the minimum and maximum y-coordinate values of 
stroke (si), respectively. If the current stroke sc is written below the 
previous stroke group Sk, then that stroke is considered as an ottu and 
split from Sk to form the next stroke group Sk+1. Then we set the ottu 
status of Sk+1 to 1 (Sk+1.ottu = 1). Figures 16 and 17 depict the 
parameters employed for computing  ܸܤ௞௜   and HO. 

                                                                                                           

 
Figure 16. Parameters employed for calculating HO. 

Each stroke is shown by a different color. 
  

 
 

Figure 17. Parameters employed for calculating VB୩୧ . 
Each stroke is shown by a different color. 

 
In Kannada, a word always starts with a base character. So, we 

consider the first stroke of a word as a part of a base character, thus 
forming the first stroke group of the word. The flowchart for each 

⎜⎜⎝ −− imaxkSminkSmax xx,xxmax=HO



iteration in the proposed algorithm for preliminary segmentation is 
shown in Fig. 18. Figures 19 and 20 show the results after applying PS 
to different input words. In each iteration, if any stroke is detected as a 
padam or dot (block D1), then a corresponding flag is set to the current 
stroke group (Sk) under consideration (block P1), which is made use of 
at the time of unicode generation.  

For example, in Fig. 20(a), the first stroke is considered part of a 
base character. The second stroke is written completely below the 
previous stroke group and hence is considered to be an ottu and its ottu 
status is set to 1 (block P2). For the third stroke, (its predecessor stroke 
group is an ottu) its maximum y -value is above the mean y -value of 
the word and as shown in the flow chart (block D3), this stroke is 
considered part of a new base character and its ottu status is set to 0 
(block P3). The fourth stroke is written slightly below its predecessor 
stroke group which is a base character and the maximum y -value is 
also greater than mean y -value of the word. As shown in the flow chart 
(block P2), this stroke is split from its predecessor stroke group and its 
ottu status is set to 0. The fifth stroke has less horizontal overlap with 
its predecessor stroke group and hence is split from it and its ottu status 
is set to be the same as its predecessor stroke group (block P5). The 
algorithm continues for the rest of the strokes as shown in Fig. 18.  

However, preliminary segmentation may sometimes output a stroke 
group which is either (1) a merge of two valid symbols or (2) a part of a 
valid symbol. These errors are illustrated below: 
1. Merging of two valid symbols (under-segmentation): Figure 21(a) 
illustrates such an error in which a stroke group is formed by the 

merger of two valid symbols    and    in the word  . 
2. Splitting a symbol into two or more stroke groups (over-
segmentation): Figure 21(b) illustrates an over-segmentation error in 
which a symbol  is split into two stroke groups in the word  . 

In the next section, we discuss the proposed method of attention 
feedback segmentation (AFS) to correct the segmentation errors 
obtained after preliminary segmentation. 
 

 



             
 

Figure 18. Flow chart for each iteration in the preliminary segmentation (PS). 
 

                     
Figure 19. Results after applying PS. (a) Input online word. Each stroke 
is marked with a different color. (b) Word after doing PS. Each SG is 
marked with a different colour. The stroke order is blue, red, black, 
cyan, magenta, green and then the colours get repeated. 
 



                      
Figure 20. Results after applying PS. (a) Input online word.  Each 
stroke is marked with a different color. (b) Word after doing PS. Each 
SG is marked with a different colour.  
 

 
Figure 21. Illustration of under-segmentation and over-segmentation 
errors. (a) The /she/ and /I dheerga/ symbols got merged into a 
single stroke group. (b) The valid symbol /ga/ got split into two 
stroke groups as shown by the separate bounding boxes. 
 
9  Attention-feedback segmentation 
 
AFS aims to refine the segmentation errors introduced by PS. The block 
diagram of the AFS is shown in Figure 22. In this, we extract some 
features from PS stroke groups and use these features to suspect any 
SGs which are possibly wrongly segmented. Then, we use feedback 
from SVM probability estimates and statistics derived from the MILE 
lab Kannada symbols dataset and take a decision to retain, split or 
combine with adjacent stroke groups. We do AFS on only those SGs 
detected as possibly wrongly segmented and then split them, if 
necessary. Thereafter, we check for SGs, which are possibly part of a 
valid symbol and then combine them with appropriate neighboring 
stroke groups. 

                  
 

Figure 22. Block diagram of AFS. 
 

9.1 Features for attention 
We now describe the features we use to detect the wrongly 

segmented stroke groups. 



 
Inter-stroke feature: For the preprocessed stroke groups comprising q 
strokes (q > 1), we take the vertical displacement vi from the last point 
of the i-th stroke to the first point of the (i+1)-th stroke: 

( ) .11
1 q<i,yy=v +ii

lasti ≤−  The maximum of all {vi}, i=1···q−1, among 
all successive stroke pairs (vmax) is a feature for attention. The value of 
vmax can be positive or negative. For the stroke group  /kau/ in Fig. 
23, vmax is negative. The SG with vmax  > 0 may be under-segmented.  

In Kannada, for each consonant-vowel combination, a distinct 
shaped stroke is written at the top of the consonant. This vowel specific 
addition can be an extension of the consonant stroke or a separate new 
stroke. While writing such characters, sometimes the writer extends the 
additional stroke towards the right of the character. Because of this, 
there will be some space left below this extension and to the right of the 
character. So, most writers tend to start the next character from this 
space, thus causing significant amount of overlap between these 
characters in the writing direction. Our PS algorithm merges these 
characters, if the horizontal overlap between these characters exceeds 
the threshold T2. For all these merged SGs, vmax is greater than zero. 
This feature can be used to detect under-segmented stroke groups. Figure 24 
depicts the case, wherein two Kannada symbols /she/ and /E matra/ are 
merged by PS as a single SG. It is likely that the SVM classifier will indicate 
this SG to be an outlier by returning a low probability estimate to its most 
probable symbol. 
 

 
Figure 23. Illustration of vmax for the stroke group /kau/. (a) Stroke group 
/kau/ with the direction of trace marked by arrows. (b) Illustration of the 
three inter-stroke displacements v1, v2 and v3. (c) Illustration of vmax. For 
this stroke group, vmax  < 0. 
 

                                             
 

Figure 24. Two different symbols merged by PS. 
This combined stroke group satisfies vmax  > 0 

 
Mean y-coordinate of base characters: The mean of the mean y-



coordinates of all the stroke groups not detected as ottus in PS is a feature 
for attention. 

ymean
BC =

∑
i=1

p

ymean
Si (1−Si .ottu )

∑
i=1

p

(1−Si . ottu )
                                              

Here, p is the number of SGs identified by PS. Any SG lying 
completely above this mean value is suspected to be over-segmented. 

 
9.2  AFS strategy for under-segmented stroke groups 

As discussed in section 9.1, a stroke group Sk for which vmax  > 0 
may correspond to an under-segmented stroke group (USG). In this 
section, we outline the strategy for resolving such USGs. Figure 25 
shows the block diagram of the proposed strategy. We used the 
feedback from SVM probability estimates, statistics of vmax and 
number of dominant points obtained from MILE lab Kannada symbols 
dataset to split or retain the SG. 

Number of dominant points: The dominant points (DP) provide a 
rich structural description of a stroke group [34]. The algorithm starts 
by marking the first and last points of the stroke as DPs. Starting from 
the current DP, we compute the absolute angle between pen directions 
of successive points. Then we accumulate these angles along the online 
trace till the sum exceeds a threshold (Tθ). The point at which this 
happens is marked as the next DP and the process continues till the end 
of the stroke. The resultant number of DPs extracted is used as a feature 
for attention. Figure 26 shows the dominant points extracted for the 
stroke group  /ne/. 

Let vmax correspond to the inter-stroke gap between the r-th and (r 
+ 1)th strokes in Sk, respectively. Accordingly, we consider Sk as a 
possible merger of two valid symbols Sk1 and Sk2, defined by 

Sk1 = {sk1, sk2, … , skr} and Sk2 = {skr+1, skr+2, … , skq}  
 

 
         Figure 25. AFS module for susepected under-segmentation. 
 
 



 

 
 

Figure 26. Extraction of dominant points (DP) for a stroke group /NE/ 
 
Here, Ski denotes the i-th stroke in the k-th stroke group. We input 

the pre-processed stroke groups Sk, Sk1 and Sk2 to SVM and get the 
most probable symbols  ߱௧௢௣௞ , ߱௧௢௣௞ଵ  and ߱௧௢௣௞ଶ  with probability estimates 
P(߱௧௢௣௞ ), P(߱௧௢௣௞ଵ ) and P(߱௧௢௣௞ଶ ), respectively. We favour splitting Sk into 
two stroke groups Sk1 and Sk2, if 

                       [P(߱௧௢௣௞ଵ ) + P(߱௧௢௣௞ଶ )]/2 >  P(߱௧௢௣௞ ) 
Figure 27 illustrates the case wherein the wrongly segmented 

stroke group /shee/ in the word  gets correctly segmented to 2 
valid Kannada symbols, /she/ and /e/.  

                                  
 

Fig. 27. Illustration of AFS scheme to resolve poss ib ly  under-
segmented stroke groups. (a) Word wrongly segmented by PS. (b) 
Under-segmented SG which satisfies vmax > 0. (c) and (d) The 
extracted symbols are recognized separately. The SG is split since the 
mean probability estimate of extracted SGs exceeds that of combined 
SG. (e) Correctly segmented word. 
 
9.3 AFS strategy for over-segmented stroke groups 

 
Figure 28 shows the block diagram of the strategy for correcting over-
segmentation errors. As discussed in Sec. 9.1, a SG above the middle 
line of base characters can be suspected to be over-segmented. Let Sk 
be a SG, whose minimum y-coordinate is greater than mean y-
coordinate of base characters (ݕ௠௘௔௡஻஼ ). Let Sadj (k) be an adjacent stroke 
group to Sk, whose BB overlap is maximum in the writing direction. 
We temporarily merge these two stroke groups Sk  and  Sadj (k) to form 
another stroke group SM and input the pre-processed SGs Sk, Sadj (k) 



and SM to the SVM and get the most probable symbols ߱௧௢௣௞ , ߱௧௢௣௔ௗ௝ and ߱௧௢௣ெ  with probability estimates P(߱௧௢௣௞ ), P(߱௧௢௣௔ௗ௝) and P(߱௧௢௣ெ ), 
respectively. We merge the stroke groups Sk and Sadj(k) to form SM if 
 

                                                          
P (ωtop

k )+P (ωtop
adj (k ))

2
<P(ωtop

M )                                           

Figure 29 illustrates the case wherein the over-segmented stroke 
group  /ga/ in the word  gets correctly segmented by 
applying the above strategy. 
 

 
 

         Figure 28. AFS module for resolving over-segmentation errors. 
 

 
Figure 29. Illustration of AFS scheme to resolve over-segmented 
stroke groups. (a) Wrongly segmented word after applying PS (b) 
Stroke group suspected as over-segmented. (c) Adjacent stroke group 
whose BB overlap is maximum in the writing direction.  (d) The 
combined stroke group.  The stroke groups are merged if probability 
estimate of combined stroke group is greater than the mean probability 
estimate of individual stroke groups. (e)  Correctly segmented word. 
 
10  Results 
 
10.1 Experimental setup 
 
Before applying AFS to the input word, the parameters of the SVM are 
trained with the concatenated x and y coordinates of the pre-processed 



Kannada symbols as described in section 6.1. In addition, the statistics 
of the following two features are generated for each symbol ωi from the 
MILE Lab Kannada character data-set: (i) Maximum number of 
dominant points ஽ܶ௉௠௔௫ሺ߱௜ሻ across all samples of ωi. (ii) The maximum ݒ௠௔௫ሺ ௠ܶ௔௫ሺ߱௜ሻሻ,   across all samples of ωi . The threshold T0 used for 
linearity check in the padam detection is selected to 1.8. We extracted 
the padam strokes from the relevant symbols in the MILE Lab word 
data-set and calculated the Li for each stroke. Figure 30 shows the 
histogram of Li for these padam strokes with the bin size of 0.1. From 
Fig. 30, we can observe that Li is less than 1.8 for all padam strokes 
and hence we choose the threshold of 1.8 for Li . 
 

 
Figure 30. Histogram  of Li of padam strokes with the bin size of 0.1. 
 
  We extracted the dot strokes from the valid symbols in the MILE 
Lab word dataset and calculated the ratios of BB height and width of 
the dot stroke to the maximum BB height and width of all strokes 
in the word respectively. Figure 31 shows the histogram of these 
ratios for all the dot strokes with the bin size of 0.1. We observe that 
α1 and α2 are less than 0.4 for all dot strokes and hence we choose 
the threshold of 0.4 for both the parameters α1 and α2 used for 
dot detection. 
   The thresholds T1 and T2 used for VB and HO in PS are selected 
as 0.3 and 0.2, respectively. We calculated the minimum HO for 
the samples of all classes in the MILE Lab Kannada character 
dataset and selected an initial value for T2 as 0.2 from Fig. 32. 
Using this value, we calculate the segmentation errors given by PS 
and AFS by varying T1 from 0 to 1 as shown in Figure 33(a). From 
Figure 33(a), we can see that AFS is robust to the changes in VB. 
We then fixed the value of T1 to 0.3 and calculated the 
segmentation errors given by PS and AFS with varying T2 from 0 
to 1 as shown in Fig. 33(b). We can see from Figure 33(b) that 
segmentation accuracy peaks for values of HO from 0.2 to 0.4 and 
hence we have selected the value of T2 to be 0.2. 



 
Figure 31. Histogram of BB ratios of height and width of dot strokes 
respectively. (a) x-axis corresponds to ratio of BB height of a padam 
stroke to the maximum BB height of all the strokes in the 
corresponding word. Y-axis corresponds to its frequency. (b) x-axis 
corresponds to the ratio of BB width of a padam stroke to the  
maximum BB width of all the strokes in the corresponding word. Y-
axis corresponds to its frequency. 
 

 
Fig. 32. The histogram of minimum HO in each sample from 
MILE Lab Kannada character dataset with a bin size of 0.1. 

 
10.2 Segmentation results on MILE lab Kannada word data-set 
 

We implemented our algorithm in C language and tested on a total 
of 44772 words in MILE Lab Kannada word dataset. A few sample 
words, whose segmentations have been corrected by our approach, are 
shown in Tables 2 and 3. Application of the PS on each word in Table 2 
leads to a merge of valid symbols. On the other hand, at least one valid 
symbol in each word in Table 3 appears as more than one stroke group 
due to over-segmentation. The incorrect segmentation in turn increases 
the symbol recognition errors, as shown in the second column of the 
two tables. From the third columns, we observe that all the constituent 
symbols of these words are recognized correctly after the AFS. 

The segmentation and symbol recognition accuracies are shown in 
Table 4. An improvement of 10.9% in segmentation accuracy and 6% 
in symbol recognition rate are achieved by our AFS method. Although 



k K

there is an improvement, the symbol recognition accuracy itself is not 
so satisfactory because of training SVM classifier with only 69 samples 
per class in MILE Lab Kannada character dataset. Accordingly, the 
corresponding word recognition accuracy is also lower. Whenever two 
different symbols are joined as a single stroke, the word does not get 
properly segmented, since the proposed algorithm is not designed to 
handle such cases. Further, the two strokes in some symbol samples 
have zero or less horizontal overlap and AFS cannot merge them.  
 

 
Figure 33. Effectiveness  of AFS  and  PS  on  4000 words  from  
MILE  Lab  Kannada  word dataset as a function of VB and HO. (a) 
Variation of over-segmentation, under-segmentation errors after PS; 
PS and AFS accuracy with H O = 0 . 2  and VB varying from 0 to 1. 
(b) Variation of over-segmentation, under-segmentation errors after 
PS; PS and AFS accuracy with VB = 0.3 and HO varying from 0 to 1.

 
Table 2. Merger of two symbols by PS, split by AFS and consequent 
improvement in recognition. 
 

Input  word under-
segmented by PS 

Recognition o/p for
PS stroke groups 

Recognition o/p  for 
AFS stroke groups 

 
  

 
   

 
   

   
 
Table  3.  Splitting of symbols into two stroke groups by PS, correct 
segmentation by AFS and consequent improvement in recognition. 

 
Input  word over-
segmented by PS 

Recognition o/p for
PS stroke groups 

Output for SGs 
after AFS 



 

   

  

   
 
Table 4.  Performance evaluation of the proposed PS and AFS schemes 
on the words in the entire MILE word database. Total # of words = 
44772. Total  # of symbols = 183125. 
 

 PS AFS % Error 
reduction 

# of correctly segmented words 37339 42085  
# of segmentation errors 7433 2687 63.8

Segmentation accuracy in (%) 83.4 94.3 65.6
Symbol recognition accuracy (%) 56 62 13.6

Word recognition accuracy in
(%)

12.8 18.2 6.2
 

11 Conclusion and future work 
 
In this article, we proposed an attention feed-back based segmentation 
method for the segmentation of online handwritten Kannada words. 
Given an input online word, we use statistics learnt from data to 
perform preliminary segmentation to form a set of stroke groups. We 
then extract features like vmax and ݕ௠௘௔௡஻஼  to detect the possibly 
erroneous stroke groups. Thereafter, we use the feedback o f 
probability estimates from the classifier and statistics on inter-stroke 
feature vmax and number of dominant points to resolve the detected 
erroneous stroke group by splitting or merging with appropriate 
stroke group or retaining it. We employ the concatenated x, y 
coordinates of preprocessed symbol as features for training the SVM 
classifier. We showed that the AFS method improved the 
segmentation performance o f  PS and is robust to the parameters 
used in PS. 
 
However, the following improvements can be made for further 
enhanced performance.  

• Our algorithm fails to handle noise strokes and over-written 
strokes in the online input word. By handling these strokes, the 
segmentation and recognition accuracies can be improved. 

• Improving the classifier performance gives better quality 
feedback on the stroke groups and hence improves the AFS and 
word recognition performance further. 

• AFS cannot handle wrong, rare stroke orders and splitting of a 
single stroke into multiple by occasional writers. These can 
possibly be handled by combining offline classifiers, along with 



the online data based classifier. 
• When two characters are combined by cursive writing, all the 

above approaches fail, and one needs to think of new ways of 
handling such anomalies. 

• Incorporating bi-gram language models can further improve the 
performance.



Appendix A. The  list of 295 Kannada symbols 
 
 

  
 
Figure A.1: The list of all V, C, CV combinations and numerals in Kannada. The aksharas 
printed in bold format are our classes for the recognition.
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