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Abstract 
We present a fractal coding method to recognize online handwritten Tamil characters 
and propose a novel technique to increase the efficiency in terms of time while 
coding and decoding. This technique exploits the redundancy in data, thereby 
achieving better compression and usage of lesser memory. It also reduces the 
encoding time and causes little distortion during reconstruction. Experiments have 
been conducted to use these fractal codes to classify the online handwritten Tamil 
characters from the IWFHR 2006 competition dataset. In one approach, we use 
coding and decoding process. A recognition accuracy of 90% has been achieved by 
using DTW for distortion evaluation during classification and encoding processes as 
compared to 78% using nearest neighbor classifier. In other experiments, we use the 
fractal code, fractal dimensions and features derived from fractal codes as features 
in separate classifiers. Whereas the fractal code was successful as a feature, the 
other two features are not able to capture the wide within-class variations. 
 
Introduction 

Fractal codes are the compressed representation of patterns, based on 
iterative contractive transformations in metric spaces proposed by Barnsley. A 
simplified version of the fractal block coding technique for digital images has been 
used to encode the 1-D ordered online handwritten character patterns. A novel 
partitioning algorithm has been proposed to reduce the computation complexity of 
encoding and decoding, with a minor fall in recognition accuracy.  
Building fractal codes for handwritten characters 
We need to find the collection of affine transforms of the online handwritten 
character. The raw online handwritten character is first preprocessed using three 
steps: (i) smoothing (ii) re-sampling the variable number of points in each character 
to 60 points. (iii) normalizing the x and y coordinates between 0 and 1. The 



handwritten character locus is divided into non-overlapping range segments. Each 
range segment has a fixed number of points (R) in it. Last point of each range 
becomes the first point of the next range, except in the case of the last range. 
Creating a pool of domain segments 
The domain pool is formed for each character locus. Domain pool is the collection of 
all possible domain segments. The number of points in each domain segment is 
chosen to be double that in each range segment, D = 2R. Domain pool can be 
obtained by sliding the window containing D points at a time. The window is first 
located at the beginning of the stroke. The window is moved along the stroke by δ 
points, in such a way that it does not cross the end point of the stroke. The step δ 
has been chosen as R/2 in our experiments. 
 
Constructing transformed Domain pool 
Transformed domain pool is constructed by multiplying each domain segment with 
the eight isometrics that involve reflection and rotation about different axes. To begin 
with, each domain is translated to its centroid and scaled down by the contractivity 
factor (s=0.5). The following transformations are then applied to each of the 
candidate domain segment. 
 

 
 
The above transformations produce a whole family of geometrically related domain 
segments. In domain pool, matching blocks will be looked for encoding the online 
handwritten character.  
Searching for the most similar domain segment for each range: Each affine 
transformed domain segment is re-sampled into R points and then its centroid is 
translated to that of the concerned range segment. Distance between them is found. 
Similarly, distances w.r.t to the all the domain segments is calculated. The most 
similar domain segment corresponding to each range segment is identified and 
fractal code is stored corresponding to the particular range. The fractal codes are 
similarly obtained for all the online handwritten characters. 



Fractal codes corresponding to each range segment consists of (1) the range 
segment index, (2) the range segment centroid, (3) index of the most similar domain 
segment and (4) the index of transformation used out of the 8 transformations. 
Issue related to constructing fractal codes 
 The whole character is divided into range segments of equal number of 
points. Smaller the number of points in each range segment, the more minutely we 
can capture the 
complexity in any region of the character. The number of range segments per 
character is thus inversely proportional to the number of points in each range. Again, 
the encoding speed is inversely proportional to the number of range segments per 
character. It has been noted that there are certain region in a character where the 
curliness is minimal so in those area the range segment size could be increased still 
encoding the region precisely.   
Steps to encode a handwritten character where the number of points in each range 
is variable: 

 

 
Fig 1. Tamil handwritten character ‘aa’ 

 
Cumulative angle ‘θC’ is calculated starting from the first point and traversing 

the character stroke till it crosses an empirically set threshold of θT. Smaller the 
threshold, finer is the encoding. Figure 1 shows a sample of the handwritten 
character /aa/ in Tamil. Figure 2 shows the effect of the choice of the angle threshold 
on the reconstruction error. 

 
 



 
 
Fig 2. Illustration of the distortion in reconstruction with different angle thresholds ϕT. 
Here reconstruction is performed from the fractal codes of the character /aa/ shown 
in Fig 1. For encoding, different values of range sizes are used, namely, 4, 8, 12, 16 
and 20. 
Algorithm for partitioning 

1. Domain pool of different sizes (namely 8, 16, 24, 32, 40) are constructed 
corresponding to the range sizes of 4, 8, 12, 16 and 20. By size, we mean 
the number of points in each domain. 

2. Start from the first point and move along the character from one point to 
the next and calculate the cumulative change in angle θC.  

3. The No. of points (K) till the point penultimate to the one, where θC crosses 
the threshold ϕT is noted. 

4. The range size closest to and less than K is chosen. The most suitable 
domain is chosen from the corresponding domain pool and the fractal 
codes are stored. 

5. The last point of the present range is then considered as the first point of 
the new range and the process repeats starting from step 2. 

Along with the fractal codes, the size of the range chosen is also stored. If the end 
point is reached with θC  < ϕT, then step 4 is followed, where K includes the last point 
also since θC < ϕT). If at the end, few points are left which is less than the smallest 
range, they are discarded else step 4 is repeated. 
Algorithm for reconstruction: Banach’s contractive mapping theorem states: “If a 
contractive mapping ‘W’ (which are the fractal codes here) is defined, then iterative 



application of the mapping on any sequence of the same space will lead to a 
Cauchy’s sequence which will converge to a fixed, unique point. 
 
CASE I: Range having fixed number of points 
A random initial pattern having the same number of points is taken or generated. A 
domain pool of size double that of the range is created in a manner similar to the 
encoding process. First fractal code is taken corresponding to the first range of the 
pattern, and operations are performed on the corresponding domain indicated by the 
domain index in the code of first range. The indicated domain segment’s origin is 
shifted to its origin and then it is scaled down by the contractivity factor (0.5 here). 
Then the affine transformation as indicated in the code is applied on the scaled 
domain segment. Finally the transformed domain’s centroid is shifted to the range 
segment centroid as present in the fractal code. The above steps are repeated to 
decode all the range segments. Then the whole decoded locus is smoothened. The 
above steps are repeated till the termination condition is satisfied to finally converge 
to a fixed and unique pattern. Termination condition could be (i) an empirically set 
fixed number of iterations, sufficient for convergence or (ii) minimal or no distortion 
between two consecutive patterns produced by 2 consecutive iterations. 
 
CASE II: Range having variable number of points in each range 
In this case, multiple domain pools are created out of the random pattern taken for 
the reconstruction. Using the extra information given in the fractal code pertaining to 
the range size to be chosen so that domain segment is picked up from the 
appropriate domain pool. The rest of the steps are same as the case for the 
reconstruction with fixed range size. Using above two methods, fractal codes of any 
give pattern can be created and the same pattern could be decoded using any 
random pattern after applying this reconstruction algorithm iteratively for few times. 
 
1. Classification by using fractal codes in construction and reconstruction: 
The above fractal encoding and decoding method has been used for classification of 
characters. The assumption behind this classification is that if a sample of a class 
(say /a/) is encoded and fractal codes are obtained. The following process of 
reconstruction if started in 2 ways i.e. firstly by applying the reconstruction algorithm 



iteratively on a random pattern of any different class (anything other than ‘A’) and 
secondly doing the same on any random pattern of the same class (i.e. ‘A’) then the 
distortion between the initial pattern and the pattern obtained after first iteration of 
reconstruction is relatively much more in the first case than in the second. The 
reason behind this is that reconstruction process leads to convergence to the pattern 
whose code is used for reconstruction. And since the class of the initial pattern in the 
second case and the fractal code is same, the distortion in the second case is 
smaller than the first case. 

 
Fig 3. In the above image, reconstruction process is shown which starts from a 
random straight line and finally converges to a pattern which is very close to the 
original pattern after 8 iterations. The original pattern (in Fig 1) was encoded using 
different range sizes of 4, 8, 12, 16 and 20 with the threshold angle of 30 degrees. 
Character classification using fractal codes: 

 
Fig. 4. The above image shows the distortion created, when an iteration of 
reconstruction was performed. This shows that the distortion is huge if the 



starting pattern (above left) is very different from the original pattern, whose 
fractal codes are used for reconstruction (in this case Fig 1). 

 
Fig. 5. The above image shows the distortion created, when an iteration of 
reconstruction was performed. This shows that the distortion is much less if 
the starting pattern (above left) is not very different from the original pattern, 
whose fractal codes are used for reconstruction (in this case Fig 1). 
 

Classification Algorithm 
In the present research, fractal codes of ‘N’ samples of entire 156 classes are 
computed and stored. To classify a test sample, following steps are taken. 

a) An iteration of the reconstruction algorithm is applied on the test sample 
using the fractal code of each sample of each class. 

b) The distortion ‘D’ is calculated between the initial pattern and the pattern 
obtained after one step of reconstruction. Thus the distortion matrix of size 
156*N is obtained. 

c) The row number of the minimum value of the distortion is found from the 
distortion matrix and assigned to the test sample. 

Distortion evaluation:  
The distortion between two patterns can be evaluated by finding the distance 
between them. The distance between 2 patterns is measured by Nearest Neighbor 
(NN) method. The issue with NN is that the matching is done point by point which 
increases the distance unusually and thus decreases the classification accuracy 
(evident from the result table). This drawback in distance evaluation of NN is 
addressed by DTW pattern matching which is more intuitive. This intuitive matching 
takes place because DTW matches similar subsections of the patterns thus 
producing a reasonable distance between patterns. This method hence produces a 
remarkable increase in accuracy as shown Table 1. 
Classification using the fractal codes as a features in the Nearest Neighbor (NN) 



In this method, the fractal codes are used as features and fed into a NN classifier. An 
accuracy of approximately 65% is obtained. 
Classification using fractal dimension or features derived from the fractal codes 
Fractal dimension is a unique identity of any pattern or object. However, because of 
the mere nature of handwritten character recognition (i.e. large variation within every 
class), it fails completely to classify any random sample. The features derived from 
the fractal codes like MMVA and DRCLM, though successful in problems like face 
recognition and signature verification, fail in recognizing handwritten characters. 
Results 

Table 1: Results show how the DTW comparison during reconstruction 
 impacts the recognition accuracy. 

Fixed 
Range 
Size 

DTW 
used?

No. of 
Training 
samples 

No. of 
Testing 
samples 

Accuracy 
(in %) 

4 No 20 50 78.9 

4 Yes 20 50 90.4 

 
Table 2: Results show the efficacy of the Partitioning algorithm in improving the 
efficiency of the recognition system (in terms of time) with marginal drop in accuracy. 
Variable range sizes used (4, 8, 16, 24 and 32). No. of training and testing samples 
used are 5 and 30, respectively, No. of classes used is 156. 

Threshold 
angle 

(degree) 

DTW used for 
distortion 

evaluation? 

Encoding 
time per 
sample 
(sec) 

Accuracy 
(in %) 

0 Yes 31 90.44 

10 Yes 22 86.43 

30 Yes 12 85.04 

50 Yes 10 83.55 

70 Yes 8 81.60 

90 Yes 6 80.87 
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