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Abstract 

We present an algorithm that performs prototype selection with high efficiency in terms of both classification time and accuracy. The proposed technique uses the weighted k-NNC algorithm for classification using the selected prototypes. The number of prototypes selected by this method is data dependant. An analogy with respect to Gaussian mixture models (GMM) is also presented. The unique feature of this algorithm is the method of using the outliers in the training corpus for classifying similar outliers in the test corpus. The method has been used to obtain the prototypes for a handwritten numeral database. 10% of the training data extracted as prototypes is able to classify with confidence about 80% of the test data. To classify the remaining test data, we make use of the remaining prototypes considered as outliers of the training data.
1. Introduction

There are two phases in pattern classification viz. design phase (abstractions are created/learnt) and classification phase (abstractions are used to classify a test pattern). The weighted or modified k-NN Classifier [1, 2, 3] is still one of the most successful classifiers. It has zero design time but a high classification time. This is because every training pattern present in the training corpus is used in classifying every test pattern. In order to increase the accuracy, the number of training patterns must be very large [1]. Thus, in general, the classification time is high if a higher accuracy is required.

In such situations, prototype selection is a good option. It prunes the search space, does away with outliers, and thus improves the classification time and possibly, the accuracy too. However, it is still an unsolved problem to select the prototypes from the training corpus that result in the best classification accuracy.

Another interesting variation of prototype selection is data abstraction [5]. Data abstraction is the process of obtaining a simple and compact representation of a data set.  Often used under a clustering context, it is a compact representation describing each cluster under the same class of patterns. Most common cluster representations are centroids, medoids [5] and nodes of classification trees. Both clustering and prototype selection come under the non-parametric approach.

On the other hand, there are statistical approaches in pattern classification [1]. They make an assumption that the decision problem is posed in probabilistic terms and the relevant probability values of the classes of data are known a priori. However, unless the class conditional probability density function (pdf) is known exactly, this may be an extremely difficult problem, since we do not even know the number of parameters to estimate. So we assume some standard known pdf and reduce the problem to estimating the parameters of the pdf. The Bayesian estimator and maximum-likelihood estimator [1, 2, 3] are the most frequently used procedures under this approach.

What this paper basically proposes is a non-parametric and essentially a heuristic algorithm for prototype selection. However, a suitable analogy in the parametric approach is also proposed.

2. Theory

The algorithm proposed in this paper is based on a model, which requires a background in optimum Bayes classifiers [1, 3]. The Bayes criterion says, ‘Classify the test pattern to the class which has maximum a posteriori probability’ i.e. max P(Ci|x) where Ci is the i​th class and x is the feature vector corresponding to the test pattern.

According to Bayes rule [1, 4],
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where ‘p’ denotes the probability density function (pdf) of a random variable and ‘P’ denotes the probability of an event.

Since p(x) is the same for all the classes for a given test pattern, the Bayes classification criterion is reduced to finding max p(x|Ci)P(Ci). Now P(Ci) is called the ‘a priori’ probability, which indicates the prior probability of the occurrence of a class of patterns. This seems like a simple problem if p(x|Ci) is known. However, this may not be known exactly and is usually considered as a Gaussian density. This approximation is not true for many real life scenarios, where the pdf may be multimodal. 

In order to solve such problems of multimodal densities, a new univariate pdf may be defined as follows
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where ‘(’ is the mean and ‘(2’ is the variance. The parameter ‘(’ is introduced to give a relative weight to individual Gaussian functions. ‘S’ is the total number of such Gaussian functions added together. Any function can be approximated with arbitrary accuracy with (2) as shown in Figure 2.1. In order to make the expression (2) a valid density function, the following condition must be satisfied
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Interchanging the summation and integral we get
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which implies that,
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Figure 2.1 – (a) Arbitrary Probability Density Function is expressed as (b) a sum of Gaussian functions

For an ‘n’ class problem, assuming equal a priori probabilities, the decision rule [2] is as follows

Decide Cm if
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Substituting the pdf defined in (2) into equation (6), we need to find
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To simplify calculations we find,
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Through Jensen’s inequality [4], 
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Thus the test criterion for the above pdf is obtained as: Given ‘x’, classify to class ‘i’ if it has


[image: image13.wmf]2

2

2

1

()

minlog

2

S

k

kk

k

i

i

i

i

i

i

C

k

i

x

m

gs

s

=

-

æö

æö

+

ç÷

ç÷

ç÷

ç÷

èø

èø

å



(10)

We can interpret this result as being linear with respect to the distance from the mean.
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where,
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The pdf in (2) can be extended for multivariate case as follows
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where Ck is the covariance matrix, and (k is the mean vector. Figure 2.2 (a) shows a synthetically generated dataset with the probability distribution function given by (13) and shown in Figure 2.2 (b).

The decision rule for ‘D’ independent features would be
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3. Algorithm for Training

As mentioned above, the problem of classification of any data with an arbitrary pdf becomes a rather simple problem if p(x|Ci) is known exactly. So as shown in section 2, the problem is reduced to finding (k, (k, (k for the particular class. There may not be any closed form solution for this problem, but a heuristic solution may be found given a training corpus. The method suggested in this paper is as follows.

Initially, consider the pdf of a class to be a uni-modal Gaussian pdf. From the given training data-set, select the pattern which is farthest from the mean ((0) of the class and group it under a different sub-class ((1). Thus we have two classes with two different ‘(’s, ‘(’s and ‘(’s. Initially, (1 will be the farthest pattern itself, (1 will be 0 and (1 will be 1/N where N is the total number of elements in the original class. Thus ( is proportional to the number of elements in the sub-class.
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Figure 2.2 – (a) A Probability density function and (b) Synthetic data generated from the same.
Now classify all the remaining patterns that are closer to (1 of the new sub-class as class (1 and those closer to the older (0 as class (0, updating (1 after each pattern is added to it. However, we may or may not choose to update (0 for every pattern lost. The choice depends on whether we want tightly bound sub-classes or loosely bound ones.

Now the same algorithm is applied to (0, (1, (2 and so on till some termination criterion is satisfied.

The parameters (k (mean) are calculated as the centroids of the sub-class vector spaces and (k (variance) are obtained as the unbiased estimate [2]
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(14)

where (k is the number of elements in the sub-class (k. (k is simply calculated as (k/N.

The termination criterion may not be unique. It may be based on the maximum number of sub-classes (Si), maximum allowed variance or maximum allowed value of ( and so on. Under the current context, the maximum allowed value for ( is used as the threshold for stopping the division.
The algorithm presented is as follows –

( - The original classes provided.
( - The mean corresponding to class (.
( - Subclass created from (.

( - The elements in (n (or (n).
( - Threshold obtained heuristically for maximum number of elements in a sub-class.

n – iteration number.

N – total number of elements in class (n (or (n)

C – Total number of classes
Start

For iteration ‘n’

a. Consider a particular class of patterns (n (or (nk) and compute its mean
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(d(k) is the value of the dth dimension of the kth training pattern and (d is the dth dimension of the mean vector of the class under consideration.

b. Find the pattern farthest from the computed mean.
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where dist (x, y) is any distance metric defined. In our case, squared Euclidean distance has been used.

c. Take any arbitrary pattern ( from the remaining patterns in (n and group it with either the ( or ( according to the following criteria
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d. Repeat step ‘c’ with the new mean values as the seeds for grouping all the remaining patterns. This completes the first iteration resulting in 2 sub-classes.

e. Repeat step ‘a’ to‘d’ for class (n to get subclasses (n1 (n2 (n3 (n4.... ( (n
The ( corresponding to ( is considered as the prototype for sub-class (.

This may be repeated till the number of elements in (n reaches a threshold (, obtained heuristically.

f. Repeat steps ‘a’ to ‘e’ for all the subclasses ( (n (i.e. (n1 (n2 (n3 (n4….) if they contain more elements than (.

g. Repeat step ‘a’ to ‘f’ for all the classes of patterns (1, (2, (3.... 

End
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Figure 3.1 – The means and variances obtained by the algorithm for the synthetically generated patterns.
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Figure 3.2 – The Probability Density Function Estimated by the algorithm

.

4. Algorithm for Testing

The method proposed for testing is essentially a heuristic one. The relation between the algorithm presented in this section, and the classification rule obtained in (11) will be explained in section 5.

After obtaining the sub-classes (or clusters) we may call the means ((i) of each sub-class as the prototypes that have been selected. So now we may apply a simple weighted k-Nearest Neighbor Classifier (k-NNC) to classify the training set. 

We can however exploit the very nature of obtaining prototypes as described in section 3 to improve our classification accuracy. All those sub-classes with less than a certain number of patterns (() may be considered as outliers or noisy data. So we may not include these prototypes in our classification effort. However those few test patterns, which are outliers themselves, usually get classified wrongly with the above condition.

So a parameter called ‘Confidence Measure’ (() is used to decide whether the given test pattern is an outlier or not. A simple logic is used to implement it. 

· First classify the given test pattern using non-outlier prototypes. 

· If confident about the classification, then stop.

· If confidence about the classification is below a particular threshold, then re-classify now, using all data (outliers as well as non-outliers).

The following new parameters are defined as follows
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(17)
where ( is the test pattern, (i are the prototypes corresponding to the ( nearest neighbors of (, (  is the figure of Merit for the prototype (i, (  is the figure of Merit for a Class of prototype (i and ( is the Confidence Measure.

The Algorithm presented is as follows –

( – as the ‘k’ in  k-NNC

( - Confidence Threshold

(- The maximum number of elements in an outlier sub-class.

( - number of elements in sub-class (
( - the prototype for sub-class (
( - The test pattern

( - The prototypes corresponding to the ( nearest neighbors of (
M – Total number of prototypes (sub-classes).

(  - The figure of Merit

(  - The figure of Merit for a Class

( - The Confidence Measure.

Given a Test pattern (
Start
a. If ((() < ( then the corresponding ( is considered an outlier.

b. Compute the (-nearest neighbors of the input test pattern ( ( such that ((() > (
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c. Compute for each of the neighbors, the following parameters
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d. If ( < (, then repeat step ‘b’ for ( such that ((() < ( 
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Replace the existing k-nearest neighbors with (p where (p is the merit of the pth outlier.

e. The class with 
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 is the class label of the given test pattern.

End
5. Experiments and Results

The experiments were conducted using handwritten digit data [6]. The training data consists of 667 patterns for each class of digits labeled from 0 to 9, totaling to 6670 patterns. The test data contains 3333 patterns. The dimensionality of each pattern is 192. 

The parameters (, (, ( and ( are determined heuristically. The performances of our prototype selection algorithm for different values of each of the parameters, keeping others constant are tabulated in Tables 5.1 to 5.4. From these tables, we can observe that the best parameters selected are for ( = 20, ( = 0.85, ( = 12 and ( = 15. Table 5.5 compares the performance of the various nearest neighbor classifier based methods.

We can see that the simple k-NNC method works remarkably better than the decision rule proposed in (11, 14). This may be because of the error in the estimated variances of each sub-class, or also because of the assumed infinite support of the Gaussian functions. If only the sub-classes with pdfs within the region of influence (k-nearest neighbors) are considered, we get better results as proved by Table 5.5. 

However we can see that the accuracy using the decision rule (14) is better than the Naïve Bayes classifier considering a simple Gaussian pdf.

6. Conclusion

A new method for prototype selection has thus been proposed, which provides a good classification accuracy and enhancement in terms of classification and design times.  Future work is to be carried out using different threshold criteria for sub-grouping. 

 It may be worthwhile exploring the aspect of regrouping clusters with less than a certain threshold of inter-subclass variance resulting in further reduction in number of prototypes selected without reducing classification accuracy.

Table 5.1 - Prototype selection performance

as a function of (. (( = 0.85, ( = 12, ( = 15)

	Value of (
	Design Time(DT) (sec)
	Number of Proto-types
	Classification Accuracy(CA) (%)

	40
	7.84 
	1411
	92.46

	30
	8.09
	1776
	92.82

	25
	8.16
	1998
	92.79

	20
	8.24
	2245
	93.2

	10
	8.47
	2997
	91.6


Table 5.2 - Prototype selection performance

as a function of ( (( = 20, ( = 12, ( = 15)
	Value of (
	# of corrected Patterns
	# of errors due to outliers
	CT (sec)
	CA (%)

	0.5
	194
	36
	6.28
	89.4

	0.7
	331
	65
	12.2
	92.6

	0.8
	349
	72
	15.7
	93.0

	0.85
	351
	75
	17.6
	93.2

	0.9
	350
	75
	19.23
	93.0


Table 5.3 - Prototype selection performance

as a function of ( (( = 20, ( = 0.85, ( = 12)

	Value of (
	# of outliers out of 2245 prototypes
	CT (secs)
	CA (%)

	0
	0
	21.3
	93.03

	5
	572
	18.4
	92.8

	10
	1034
	15.4
	92.8

	15
	1552
	17.6
	93.2


Table 5.4 - Prototype selection performance

as a function of ( (( = 20, ( = 0.85, ( = 15)

	Value of (
	CT (sec)
	CA (%)

	5
	10.39
	91.5

	10
	17.47
	92.8

	11
	18.5
	92.9

	12
	19.3
	93.2

	13
	20.4
	93.0

	14
	20.6
	92.8


Table 5.5 - Comparison of prototype selection performance of parametric and non-parametric methods
	Classifier
	DT (sec)
	CT (sec)
	CA (%)

	NNC [1]
	0
	56.4
	92.16

	Weighted 

k-NNC [1]
	0
	62.6
	92.88

	Leader [7]
	13.4
	18.6
	92.9

	Bootstrap 

k-NNC [6]
	12.6
	57.7
	92.88

	Medoids [5,7]
	13.6
	23.6
	91.18

	Proposed Method using k-NNC
	8.24
	17.6
	93.2

	Proposed method using decision rule given by  (14)
	8.24
	51.5
	87.3

	Naive Bayes classifier [7]
	2.1
	0.8
	81.01
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