
 A novel hierarchical classification scheme for online Tamil character
recognition

Abstract

In this paper we propose a novel three level
hierarchical classification scheme for online character
recognition for Tamil, a classical Indian language. We
make use of the prior knowledge of the writing rules of
a Tamil character to build the first level of the classifier
for which we outline two methods. The first method
utilizes the quantized slope information while the other
relies on the trajectory of pen motion for grouping. The
number of strokes in the preprocessed character is used
for grouping characters at the second level while a k-
Nearest Neighbor classifier is employed at the final
level. The method that uses the trajectory of the pen
motion information is robust to variations in the length
of the character and therefore outperforms the method
using quantized slope information at the first level of the
classifier thereby leading to an increase in the final
classification accuracy at the third level from 85% to
94%.

1. Introduction

In online handwriting recognition a machine is made
to recognize the writing as a user writes on a pressure
sensitive screen with a stylus. The stylus captures
information about the position of the pen tip as a
sequence of points in time. This spatio-temporal
information of the character being traced is the only
input available to the online recognition system. Online
handwriting recognition can be easily extended to
customize an individual’s writing. Extensive research
in the past two decades has led to the development of
online handwritten script recognition systems for
languages like English [1], Chinese [2] and Japanese
[3]. However not much attention has been given to
develop similar systems appropriate to Indian
languages. Symbols requiring several key strokes to
define a character are a common feature of Indian
languages. This attribute can be well utilized for online
handwriting recognition in the Indian scenario.

 In this paper we attempt to evolve an online
recognition system for Tamil characters. Tamil is a
popular South Indian language spoken by a significant
population in countries such as Singapore, Malaysia and
Sri Lanka besides India. There are totally 247 letters
(consonants, vowels and consonant vowel
combinations) in the Tamil alphabet. Each letter is
represented either as a separate symbol or as a
combination of discrete symbols, which we refer to as
‘characters’ in this work. Only 156 distinct symbols or
‘characters’ are needed to recognize all the 247 letters in
the Tamil alphabet. Samples of each of these characters
constitute a separate class. So far as the work on online
handwriting recognition for Tamil is concerned, Aparna
et al. [4] have used string matching schemes.
Dimensionality reduction techniques like Principal
Component Analysis have also been employed for
online character recognition.

We propose a new hierarchical approach to classify
Tamil characters based on the prior knowledge of the
rules for writing the language. The structure at the start
of each character is used for building the first level of
the classifier while the number of strokes of the
preprocessed character is employed to perform the
grouping at the second level. This hierarchical
classification strategy reduces the search space for
classifying a given test character at each succeeding
level.
 The outline of this paper is as follows: Section 2
highlights the preprocessing steps performed on the raw
character. The proposed hierarchical classification
technique is outlined in Section 3. Section 4 discusses
two different methods to detect the structure at the start
of a Tamil character for grouping characters at the first
level of the classifier. Section 5 illustrates the
performance of the above methods and its overall effect
on the final classification accuracy. Section 6
summarizes the proposed approach and possible
avenues for further research.

2. Preprocessing

 Prior to recognition, the input data is smoothed to
reduce noise. Dehooking algorithms [5] are applied to

remove hooks if any that may appear at the beginning
and end of the character. The character is then
resampled to obtain a constant number of points
uniformly sampled in space following which it is
normalized by centering and rescaling.
 We adopt a stroke concatenation technique based on
a distance criterion. We define two strokes to be in
proximity [4] of each other if the distance between a
pair of points of the respective strokes is less than a pre
defined threshold. Let N denote the number of strokes in
the raw character. We briefly outline our stroke
concatenation strategy below:

1. For a character with N=1 goto Step 4.
2. If N=2, concatenate the strokes if they are the

proximity of each other. Goto Step 4.
3. If (N>2)

 (a) Concatenate the first N-1 strokes if stroke i
is in the proximity of stroke i+1 for all i ∈
{1, 2… N-2}; otherwise goto Step (c).

 (b) Concatenate the (N-1) th stroke with the Nth
stroke if they are in the proximity of each
other. Goto step 4.

 (c) If the length of the last 2 strokes are
negligible compared to the total length of the
character, do not concatenate the character;
otherwise reject the character.

 4. End

 If the character at the end of the stroke concatenation
algorithm has 2 strokes, we assume the last stroke to be
that of the vowel modifier. This type of stroke
concatenation regards certain consonant vowel
combination characters (such as ©, À, è) as being made
up of a single stroke provided the proximity criterion is
satisfied between all consecutive strokes in the
character. Pure vowels D and @ satisfy the ‘If’
condition in Step 3 (c) and so are regarded as characters
with 3 strokes.

3. Proposed Hierarchical Classification

Let (xi, yi) denote the pen coordinate at location i of

the preprocessed character P. Before outlining our
hierarchical classification technique, a few definitions
need to be put in perspective:
• A point (xi+1, yi+1) is said to be an ‘ascender’ with

respect to its previous point (xi, yi) if we have
yi+1>yi. Likewise we define (xi+1, yi+1) to be a
‘descender’ with respect to (xi, yi) if we have
yi+1<yi.

• A point (xi, yi) is said to be a ‘critical point' (CP) if
any one of the two conditions (i) and (ii) are
satisfied. (i) yi > yi+1 and yi > yi-1

 (ii) yi < yi+1 and yi < yi-1.

The aforementioned definitions hold good
irrespective of the relation between xi and xi+1.

A careful examination of the Tamil characters
reveals that the locus traced by the stylus around the
starting point of a character is either a line, semi loop or
a loop. We make use of this important structural
observation to classify the 156 characters into two
groups at the first level – Group 1 comprising of
characters such as M, N, T for which the locus is a line
and Group 2 comprising of characters for which the
locus is either a semi loop or a loop like A, X, Þ.
Characters under Group 1 can be further subdivided
depending on whether the second sample (x2, y2) is an
ascender or descender with respect to the first sample
(x1, y1). For simplicity, we assign a variable B1 to take
one of the 3 values for a given preprocessed character P.

B1 = 0

 = 1

 = 2

 if P is assigned to Group 1
 and (x2, y2) is an ascender
 with respect to (x1, y1).
 if P is assigned to Group 1
and (x2, y2) is a descender (1)
with respect to (x1, y1).
 if P is assigned to Group 2

 The number of strokes of the preprocessed
character P (identified by counting the number of pen
down and pen up events) is considered for grouping at
the second level and a variable B2 is assigned as below

 B2 = 0
 = 1
 = 2

if P has 1 stroke.
if P has 2 strokes. (2)
if P has 3 strokes

 Table 1 shows the grouping of Tamil characters for
valid combinations of B1 and B2 .Given a test character,
it is assigned to one of the groups in Table 1 for final
classification at the third level.

4. Structural Recognition of Tamil
characters

 In this section, we explore two different methods to
detect whether the Tamil character starts with a semi
loop, loop or a line and thereby to accordingly assign a
value to B1. In effect, we are building the first level of
the classifier. The first method outlined in Section 4.1
groups the characters on the basis of the quantized slope
information which we refer to it as the ‘Chain code
method’ in this work. The other method discussed in
Section 4.2 uses the pen motion dynamics as features
and so is named as ‘Dynamics of Pen Motion method’
for sake of simplicity.

Table 1. Grouping of the 156 Tamil characters

B2 B1

0 0 L M N R S W \ b ¢
¹ Ï Ð Ñ Õ Ö Ú ß á â

ã ç è ì ñ ô

0 1 P T U V Z ¥ © « ¼ À Â Ó × Ø

Ù Ý å é ê ë ï

0 2 A B C E G H I J K O

Q X Y [] ^ ` _ a − ®

³ Ä Å Ê Ò Ô Û Ü Þ à ä

æ í î ð æ ù# ú û#

1 0 ¡ £ § ¨ ¬ ± · ¸ º ¾ ¿ Ã È

Î b÷ bø d e f j k o t z

1 1 ª ¯ Á Æ h l m n r c

1 2 F ¤ ¦ ° ² µ ´ ¶ » ½ Ç

É Ì Ë Í ^÷ `÷ _÷ a÷ ^ø

`ø _ø aø g i p q s u v

x w y J[

2 0 D

2 2 @

4.1 Chain code method

Let Np be the number of points in the preprocessed
character P.

 1 Quantize the slope angle of the segment between

 two consecutive points of P into 8 levels [1]. Let Q
denotes the set of quantized slope values for a given
P. Then we have:

Q= {qi}

where i = 1,2,3,….., Np
 qi ∈ {0,1,2,…..,7} (3)

2 Examine a subset S of quantized slope values in

Q and calculate the frequency of each quantized
level or direction code in this subset. Subset S is
formed with first Th% (Th being a user defined
threshold) of the number of samples in P (Np).

3 If the absolute difference between any consecutive
quantized slope values in S is greater than a
threshold T1, goto Step 6.

4 If (x2, y2) is an ascender with respect to (x1, y1)
and the frequency of any one of the direction codes
in S is more than Th1 % (Th1 being an empirically
defined threshold), set B1 =0. Go to Step 7.

5 If (x2, y2) is a descender with respect to (x1, y1)
and the frequency of one of the direction codes in S
is more than Th1 %, set B1 =1. Go to Step 7.

6 Set B1 =2.
7 End

 We found that this technique is very sensitive to the
length of the character and may sometimes fail to correctly
group a character having a longer trajectory. To illustrate
this point, consider the characters P and ï shown in Figure
1. We see that the character ï has a longer length than P.
However the number of preprocessed points in these 2
characters Np is the same. Accordingly, there is larger
spacing between successive points in ï than in P. By
considering a subset S of set Q, there is high probability that
the character ï could get misclassified in Group 2 when
the condition in Step 3 of the algorithm is satisfied by any 2
consecutive quantized slope values in S.

To overcome this problem, we propose the ‘Dynamics of
Pen Motion method’ in Section 4.2 that performs grouping
of characters at the first level while being robust to
variations in the length of the character. This algorithm
extensively makes use of the pen motion dynamics
including critical points as its features and does not rely on
any thresholds.

Figure 1. Character P is longer than ï. ï
has a higher chance of getting into Group 2
instead of Group 1 if any 2 consecutive
quantized slope values in S are greater than
a threshold T1.

4.2 Dynamics of Pen Motion method

 Let Np denote the number of sample points in the
preprocessed character P and CPi be the ith encountered
critical point as the loci of the pen is traced. Let the
location of CPi in P be ind(i). Thus we may write:
CPi= (xind (i), yind (i)).

1. Find the first 2 encountered critical points CP1 and

CP2. If P has only one critical point, its last sample
point is taken as CP2.

2. Compare the x coordinate values of CP1 and CP2
and assign the minimum value and its

corresponding pen position in P to xmin and indmin
respectively.

3. If the second sample (x2, y2) of P is an ascender
with respect to the first sample (x1, y1), perform
steps 4 to 6. Otherwise perform steps 8 and 9.

 Steps 4 to 6 assign P to either one of the following
 (i) Group 1 and sets B1 =0

 (ii) Group 2 and sets B1 =2
4. Consider the segment from the first sample point

to the location of the first critical point ind(1). In
this segment, search for a location loc (1<= loc <
ind(1)) whose x coordinate xloc is greater than xind(1).
If loc , set B≠ ∅ 1 =2 and goto step 10; else goto
Step 5.

5. Starting from indmin, move along the trajectory to
find that position gre whose x coordinate value xgre
is just greater than the x coordinate value of CP1,
xind(1). If xgre = , set B∅ 1 =0 and goto Step 10;
otherwise goto Step 6.

6. Compare the y coordinate value at gre, ygre with
yind(1), the y coordinate value of CP1. If ygre>yind(1)
set B1 =2; else set B1 =0.

7. Goto step 10.
 Steps 8 and 9 assign P to either one of the following

(i) Group 1 and sets B1 =1
(ii) Group 2 and sets B1 =2

8. Starting from indmin, move along the trajectory to
find that position gre whose x coordinate value xgre
is just greater than the x coordinate value of the
first sample x1.

9. Compare the y coordinate value at gre, ygre with y1,
the y coordinate value of first sample. If ygre > y1,
set B1 =2; otherwise set B1 =1.

10. End

 To illustrate this method, consider the preprocessed
character U shown in Figure 2.
• U has 2 critical points CP1 = (0.012, 0.109) and

CP2 = (0.895, 0.817).
• The minimum x coordinate value (xmin) by

comparing 0.012 and 0.895 is 0.012 and its location
(indmin) in U is 27.

• The second sample (x2, y2) = (0.101, 0.933) is a
descender with respect to the first sample (x1, y1) =
(0.101, 0.961) since 0.961 > 0.933. So from step 3
of the algorithm, we branch to step 8.

• We have x1 = 0.101. The value of x just greater
than x1 (xgre) is 0.111 and its position gre in the
character U is 31.

• We have ygre = 0.133. Since ygre < y1, we assign the
character U to Group 1 and set B1=1 (by Step 9).

• Stop.
 Similarly for the character A shown in Figure 3, (x2,
y2) is an ascender to (x1, y1) since y2 > y1. In step 4 of

the algorithm, we have loc =∅ ; so we branch to Step 5
and find the location gre at which xgre > xind(1). Since
ygre > yind(1), we conclude from step 6, that A belongs to
Group 2 and accordingly assign B1 =2.

 Unlike the Chain code method, this method does
not require any predefined threshold and is therefore
robust to the variations in the length of the character.

 Figure 2. Character U is assigned to

Group 1 with B1=1 since ygre<y1.

 Figure 3. Character A is assigned to
 Group 2 with B1= 2 since ygre> yind(1).

5. Experimental Results and Discussion

The data base of Tamil characters was collected

from 15 native Tamil writers using a custom application
running on a tablet PC. Each writer was made to input
10 samples of each of the 156 distinct characters. To
avoid the problem of segmentation of the characters,
users were asked to write each character in a bounding
box. Samples of each of the 156 characters form a
distinct class. In this section, we present our results for
the writer dependent scenario. The characters are
resampled to 90 points.

 Given a preprocessed test character, depending on
the values B1 and B2, it is matched against the groups in
Table 1. To finally recognize this character from the
subset of characters in the matched group, k Nearest

Neighbor algorithm is used. The distance from the
centroid to each pen coordinate of the character is used
as the feature for classification. Euclidean distance is
employed as a measure of similarity for the k- NN
classifier.
 In the first experiment, we design the hierarchical
classifier by incorporating the Chain code method to
group characters at the first level. For implementing the
Chain code method, we set the thresholds: Th= 10,
T1=3 and Th1=80. We have used 6 training templates
per class. Table 2 (a) shows the average classification
accuracy across the 15 writers at each level of the
hierarchical classifier. The possible factors for the lower
grouping accuracy of 91.2% at the first level are:
1. A character gets wrongly grouped when the

difference between consecutive slope values in the
predefined subset S exceeds the threshold T1.

2. A character is assigned to an incorrect group if
there is no unique directional code in S whose
frequency is greater than the threshold Th1 % of the
total number of quantized slope values in S. This
scenario occurs when the structure at the start of the
character is a steep rising or falling curve but nearly
approaching a line.

 The number of strokes in the preprocessed character
P is used for grouping characters at the second level and
there is no deviation in the grouping accuracy at this
level compared to the first. The k -NN classifier is used
at the final level with two different values of k (k =1 and
k =5).

In the second experiment, we build the same
hierarchical structure but employ the Dynamics of Pen
Motion method for the first level of the classifier. This
method is automated and does not require any pre
defined parameters. By using the prior knowledge of the
writing rules of a character, this method gives greater
grouping accuracy (above 99%) at the first level thereby
improving the final recognition accuracy. This is
suggested by the results in Table 2 (b). Any
misgrouping at the first level can be attributed to
unconventional handwriting that produces non-standard
structures at the start of the preprocessed character.
 Some of the confusion pairs and triplets are listed

below (J, K) (G, H) (L, N, R) ([, û,]) (Ý, Ø, ê).
Most of the ambiguity arises because these characters
look visually similar and a simple k Nearest Neighbor
may not be powerful enough to track minor variations
that distinguish these characters.

6. Conclusions

 We have proposed a novel hierarchical scheme for
online Tamil characters by utilizing the a-priori
structural information at the start of each character and
the number of strokes involved. We adopted two

methods for building the first level of the classifier –
‘Chain code’ method and ‘Dynamics of pen motion’
method and established the superiority of the latter
method. In conclusion, a hierarchical structure
employing the pen motion dynamics to construct the
first level classifier drastically improves the final
classification accuracy. Further potential areas of
research are to develop a grouping strategy based on
number of loops and cusps in the character and extend
the idea of this work to other Indian languages.

Table 2 (a). Average classification accuracy
across 15 writers with Chain code method
employed at first level.

 1st level 2 nd level 3 rd level

 k=1

91.2 %

91.2 %

82.3 %

 k=5

91.2 %

91.2 %

86.4 %

Table 2 (b). Average classification accuracy
across 15 writers with Dynamics of pen motion
method employed at first level.

 1st level 2 nd level 3 rd level

 k =1

99.2%

99.2%

92.2 %

 k =5

99.2%

99.2%

95.3 %

References

[1] C.C.Tappert, C.Y.Suen and T. Wakahara. The state of

online handwriting recognition. IEEE Trans. on Pattern.
Analysis and Machine Intelligence, 12 (8), pp.787-807,
August 1990.

[2] Cheng-Lin Liu, Stefan Jaeger and Masaki Nakagawa.
 Recognition of Chinese Characters: The State-of-the-Art.

IEEE Trans.on Pattern Analysis and Machine
Intelligence, 26 (2), pp.198-213, 2004.

[3] S. Jaeger, C.-L. Liu and M. Nakagawa . The state of the
art in Japanese online handwriting recognition compared
to techniques in western handwriting recognition . Intl
Journal on Document Analysis and Recognition, Springer
Berlin 6 (2): pp. 75-88, October 2003.

[4] K.H. Aparna, Vidhya Subramanian, M. Kasirajan, G.
Vijay Prakash, V.S. Chakravarthy, Sriganesh
Madhavanath. Online Handwriting Recognition for
Tamil. Proceedings of the 9th Intl Workshop on Frontiers
in Handwriting Recognition (IWFHR -9), pp 438- 443
October 2004.

[5] W. Guerfali and R. Plamondon. Normalizing and
Restoring On-Line Handwriting, Pattern Recognition,
vol. 16, no. 5, 1993.

http://www.springerlink.com/index/T6GLAT9XBWD3CN9K.pdf

	1. Introduction
	[3] S. Jaeger, C.-L. Liu and M. Nakagawa . The state of t

