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Abstract 
 

In this paper we propose a novel three level 
hierarchical classification scheme for online character 
recognition for Tamil, a classical Indian language. We 
make use of the prior knowledge of the writing rules of 
a Tamil character to build the first level of the classifier 
for which we outline two methods. The first method 
utilizes the quantized slope information while the other 
relies on the trajectory of pen motion for grouping. The 
number of strokes in the preprocessed character is used 
for grouping characters at the second level while a k-
Nearest Neighbor classifier is employed at the final 
level. The method that uses the trajectory of the pen 
motion information is robust to variations in the length 
of the character and therefore outperforms the method 
using quantized slope information at the first level of the 
classifier thereby leading to an increase in the final 
classification accuracy at the third level from  85%  to 
94%.  

 
 
1. Introduction 
 

In online handwriting recognition a machine is made 
to recognize the writing as a user writes on a pressure 
sensitive screen with a stylus. The stylus captures 
information about the position of the pen tip as a 
sequence of points in time. This spatio-temporal 
information of the character being traced is the only 
input available to the online recognition system. Online 
handwriting recognition can be easily extended to 
customize an individual’s writing.  Extensive research 
in the past two decades has led to the development of 
online handwritten script recognition systems for 
languages like English [1], Chinese [2] and Japanese 
[3]. However not much attention has been given to 
develop similar systems appropriate to Indian 
languages. Symbols requiring several key strokes to 
define a character are a common feature of Indian 
languages. This attribute can be well utilized for online 
handwriting recognition in the Indian scenario. 

 

      In this paper we attempt to evolve an online 
recognition system for Tamil characters. Tamil is a 
popular South Indian language spoken by a significant 
population in countries such as Singapore, Malaysia and 
Sri Lanka besides India. There are totally 247 letters 
(consonants, vowels and consonant vowel 
combinations) in the Tamil alphabet. Each letter is 
represented either as a separate symbol or as a 
combination of discrete symbols, which we refer to as 
‘characters’ in this work. Only 156 distinct symbols or 
‘characters’ are needed to recognize all the 247 letters in 
the Tamil alphabet. Samples of each of these characters 
constitute a separate class. So far as the work on online 
handwriting recognition for Tamil is concerned, Aparna 
et al. [4] have used string matching schemes. 
Dimensionality reduction techniques like Principal 
Component Analysis have also been employed for 
online character recognition. 

We propose a new hierarchical approach to classify 
Tamil characters based on the prior knowledge of the 
rules for writing the language. The structure at the start 
of each character is used for building the first level of 
the classifier while the number of strokes of the 
preprocessed character is employed to perform the 
grouping at the second level. This hierarchical 
classification strategy reduces the search space for 
classifying a given test character at each succeeding 
level. 
      The outline of this paper is as follows: Section 2 
highlights the preprocessing steps performed on the raw 
character. The proposed hierarchical classification 
technique is outlined in Section 3. Section 4 discusses 
two different methods to detect the structure at the start 
of a Tamil character for grouping characters at the first 
level of the classifier. Section 5 illustrates the 
performance of the above methods and its overall effect 
on the final classification accuracy. Section 6 
summarizes the proposed approach   and possible 
avenues for further  research. 
 
2. Preprocessing  
 

 Prior to recognition, the input data is smoothed to 
reduce noise. Dehooking algorithms [5] are applied to 



remove hooks if any that may appear at the beginning 
and end of the character. The character is then 
resampled to obtain a constant number of points 
uniformly sampled in space following which it is 
normalized by centering and rescaling.  
      We adopt a stroke concatenation technique based on 
a distance criterion. We define two strokes to be in 
proximity [4] of each other if the distance between a 
pair of points of the respective strokes is less than a pre 
defined threshold. Let N denote the number of strokes in 
the raw character. We briefly outline our stroke 
concatenation strategy below: 
 

1.        For a character with N=1 goto Step 4. 
2.     If N=2, concatenate the strokes if they are the    

proximity of each other. Goto Step 4. 
3.     If (N>2) 

 (a)         Concatenate the first N-1 strokes if stroke i 
is in the proximity of stroke i+1 for all i ∈  
{1, 2… N-2}; otherwise goto Step (c).     

        (b)       Concatenate the (N-1) th stroke with the Nth   
stroke if they are in the proximity of each 
other. Goto step 4.  

 (c)    If the length of the last 2 strokes are 
negligible compared to the total length of the 
character, do not concatenate the character; 
otherwise reject the character. 

   4.         End 
 

           If the character at the end of the stroke concatenation 
algorithm has 2 strokes, we assume the last stroke to be 
that of the vowel modifier. This type of stroke 
concatenation regards certain consonant vowel 
combination characters (such as ©, À, è) as being made 
up of a single stroke provided the proximity criterion is 
satisfied between all consecutive strokes in the 
character. Pure vowels D  and  @  satisfy the ‘If’ 
condition in Step 3 (c) and so are regarded as characters 
with 3 strokes. 
 
3. Proposed Hierarchical Classification  

 
Let (xi, yi) denote the pen coordinate at location i of 

the preprocessed character P. Before outlining our 
hierarchical classification technique, a few definitions 
need to be put in perspective: 
• A point (xi+1, yi+1) is said to be an ‘ascender’ with 

respect to its previous point (xi, yi) if we have 
yi+1>yi. Likewise we define (xi+1, yi+1) to be a 
‘descender’ with respect to (xi, yi) if   we have 
yi+1<yi. 

• A point (xi, yi) is said to be a ‘critical point' (CP) if 
any one of the two conditions (i) and (ii) are 
satisfied.     (i)  yi > yi+1  and yi > yi-1 

                     (ii) yi < yi+1  and yi < yi-1. 

The aforementioned definitions hold good 
irrespective of the relation between xi and xi+1.

A careful examination of the Tamil characters 
reveals that the locus traced by the stylus around the 
starting point of a character is either a line, semi loop or 
a loop. We make use of this important structural 
observation to classify the 156 characters into two 
groups at the first level – Group 1 comprising of 
characters such as M, N, T for which the locus is a line  
and Group 2 comprising of characters for which the 
locus is either a semi loop or a loop like A, X, Þ. 
Characters under Group 1 can be further subdivided 
depending on whether the second sample (x2, y2) is an 
ascender or descender with respect to the first sample 
(x1, y1). For simplicity, we assign a variable B1 to take 
one of the 3 values for a given preprocessed character P. 
    

B1 = 0 
 

 
     = 1 

 
 

    =  2 

      if P is assigned to Group 1 
 and (x2, y2) is an ascender  
 with respect to (x1, y1). 
      if P is assigned to Group 1 
and (x2, y2) is a descender           (1) 
with respect to (x1, y1).    
     if P is assigned to Group 2   
                                                             

       The number of strokes of the preprocessed 
character P (identified by counting the number of pen 
down and pen up events) is considered for grouping at 
the second level and a variable B2 is assigned as below            

 
 B2 =  0      
      =  1 
      =  2 

 
if P has 1 stroke. 
if  P has 2 strokes.                  (2)     
if  P has 3 strokes                            

       Table 1 shows the grouping of Tamil characters for 
valid combinations of B1 and B2 .Given a test character, 
it is assigned to one of the groups in Table 1 for final 
classification at the third level. 
 
4. Structural Recognition of Tamil 
characters 
 
       In this section, we explore two different methods to 
detect whether the Tamil character starts with a semi 
loop, loop or a line and thereby to accordingly assign a 
value to B1. In effect, we are building the first level of 
the classifier. The first method outlined in Section 4.1 
groups the characters on the basis of the quantized slope 
information which we refer to it as the ‘Chain code 
method’ in this work. The other method discussed in 
Section 4.2 uses the pen motion dynamics as features 
and so is named as ‘Dynamics of Pen Motion method’ 
for sake of simplicity. 
 
 



Table 1. Grouping of  the 156 Tamil characters 
 

B2   B1 

 

 

0 0 L  M  N   R  S  W \  b  ¢  
¹ Ï Ð Ñ  Õ Ö Ú  ß  á  â   

ã  ç è ì ñ  ô 

 
0 1 P T  U V Z ¥ © « ¼ À Â Ó × Ø 

Ù Ý å é ê ë ï 

 

0 2 A  B   C  E G  H  I J  K O 

Q X Y [ ]  ^ `  _  a  − ®  

³ Ä Å  Ê  Ò Ô Û Ü Þ à ä 

æ í î ð æ ù# ú û# 

 
1 0 ¡ £  § ¨ ¬ ± · ¸  º  ¾ ¿ Ã È 

Î  b÷ bø d e f j k o t z  

 

1 1 ª ¯ Á Æ h l m n r c 

 
1 2 F ¤ ¦ ° ² µ ´ ¶ » ½ Ç 

É Ì Ë Í ^÷ `÷ _÷ a÷ ^ø 

`ø _ø aø g i p q s u v 

x w y  J[ 

 

2 0 D 

2 2 @ 

 
4.1    Chain code method 
 
Let Np be the number of points in the preprocessed 
character P. 

 
 1        Quantize the slope angle of the segment between     

 two consecutive points of P into 8 levels [1]. Let Q 
denotes the set of quantized slope values for a given 
P. Then we have: 

 
Q= {qi} 

 
where i = 1,2,3,….., Np
          qi ∈ {0,1,2,…..,7}     (3)

     
2 Examine a subset S of quantized slope values   in 

Q and calculate the frequency of each quantized 
level or direction code in this subset. Subset S is 
formed with first Th% (Th being a user defined 
threshold) of the number of samples in  P (Np). 

3   If the absolute difference between any consecutive    
quantized slope values in S is greater than a 
threshold T1, goto Step 6. 

4   If (x2, y2) is an ascender with respect to (x1, y1) 
and the frequency of any one of the direction codes 
in S is more than Th1 % (Th1 being an empirically 
defined threshold), set B1 =0. Go to Step 7. 

5   If (x2, y2) is a descender with respect to (x1, y1) 
and the frequency of one of the direction codes in S 
is more than Th1 %, set B1 =1. Go to Step 7. 

6   Set B1 =2. 
7   End 
     
     We found that this technique is very sensitive to the 
length   of the character and may sometimes fail to correctly 
group a character having a longer trajectory. To illustrate 
this point, consider the characters P and ï shown in Figure 
1.  We see that the character ï has a longer length than P. 
However the number of preprocessed points in these 2 
characters Np is the same. Accordingly, there is larger 
spacing between successive points in ï than in P. By 
considering a subset S of set Q, there is high probability that 
the character ï could get misclassified in Group 2 when  
the condition in Step 3 of the algorithm is satisfied by  any 2 
consecutive quantized slope values in S.  

To overcome this problem, we propose the ‘Dynamics of 
Pen Motion method’ in Section 4.2 that performs grouping 
of characters at the first level while being robust to 
variations in the length of the character. This algorithm 
extensively makes use of the pen motion dynamics 
including critical points as its features and does not rely on 
any thresholds. 

Figure 1. Character P is longer than ï. ï 
has a higher chance of getting into Group 2 
instead of Group 1 if any 2 consecutive 
quantized slope values in S are greater than 
a threshold T1.  

 
4.2   Dynamics of Pen Motion method 
 
       Let Np denote the number of sample points in the 
preprocessed character P and CPi be the ith encountered 
critical point as the loci of the pen is traced. Let the 
location of CPi in P be ind(i). Thus we may write:   
CPi= (xind (i), yind (i) ). 

 
1.   Find the first 2 encountered critical points CP1 and 

CP2.  If P has only one critical point, its last sample 
point is taken as CP2. 

2.   Compare the x coordinate values of CP1 and CP2 
and assign the minimum value and its 



corresponding pen position in P to xmin and indmin 
respectively. 

3.   If the second sample (x2, y2) of P is an ascender 
with respect to the first sample (x1, y1), perform 
steps 4 to 6. Otherwise perform steps 8 and 9.  

   Steps 4 to  6 assign P to either one of the following 
                (i) Group 1 and sets B1 =0 

  (ii) Group 2 and sets B1 =2    
4.   Consider the segment from the first sample point 

to the location of the first critical point ind(1). In 
this segment, search for a location loc (1<= loc < 
ind(1)) whose x coordinate xloc is greater than xind(1). 
If  loc , set B≠ ∅ 1 =2 and goto step 10; else goto 
Step 5. 

5.   Starting from indmin, move along the trajectory to 
find that position gre whose x coordinate value xgre 
is just greater than the x coordinate value of CP1, 
xind(1).  If xgre = , set B∅ 1 =0 and goto Step 10; 
otherwise goto Step 6. 

6.   Compare the y coordinate value at gre, ygre with 
yind(1), the y coordinate value of CP1. If ygre>yind(1) 
set B1 =2; else set B1 =0. 

7.     Goto step 10. 
   Steps 8  and 9 assign P to either one of the following 

(i)   Group 1 and sets B1 =1 
(ii)  Group 2 and sets B1 =2 

8.      Starting from indmin, move along the trajectory to 
find that position gre whose x coordinate value xgre 
is just greater than the x coordinate value of the 
first sample x1. 

9.     Compare the y coordinate value at gre, ygre with y1, 
the y coordinate value of first sample. If ygre > y1, 
set B1 =2; otherwise set   B1 =1. 

10.     End 
 
   To illustrate this method, consider the preprocessed 
character U shown in Figure 2.  
•   U has 2 critical points CP1 = (0.012, 0.109) and 

CP2 = (0.895, 0.817). 
• The minimum x coordinate value (xmin) by 

comparing 0.012 and 0.895 is 0.012 and its location 
(indmin) in  U is   27. 

• The second sample (x2, y2) = (0.101, 0.933) is a 
descender with respect to the first sample (x1, y1) = 
(0.101, 0.961) since 0.961 > 0.933. So from step 3 
of the algorithm, we branch to step 8. 

•    We have x1 = 0.101. The value of x just greater 
than x1 (xgre) is 0.111 and its position gre in the 
character  U is 31. 

• We have ygre = 0.133. Since ygre < y1, we assign the 
character U to Group 1 and set B1=1 (by Step 9).  

• Stop. 
  Similarly for the character  A  shown in Figure 3, (x2, 
y2) is an ascender to (x1, y1) since y2 > y1. In step 4 of 

the algorithm, we have loc =∅ ; so we branch to Step 5 
and find the location gre at which xgre > xind(1).  Since 
ygre > yind(1), we conclude from step 6, that A belongs to 
Group 2 and accordingly assign B1 =2. 

   Unlike the Chain code method, this method does 
not require any predefined threshold and is therefore 
robust to the variations in the length of the character. 

 
       Figure 2. Character U is assigned to 

Group 1 with B1=1 since ygre<y1. 
 

 
              Figure 3. Character A is assigned to 
              Group 2 with B1= 2 since ygre> yind(1). 
  
5. Experimental Results and Discussion 

 
The data base of Tamil characters was collected 

from 15 native Tamil writers using a custom application 
running on a tablet PC. Each writer was made to input 
10 samples of each of the 156 distinct characters. To 
avoid the problem of segmentation of the characters, 
users were asked to write each character in a bounding 
box. Samples of each of the 156 characters form a 
distinct class. In this section, we present our results for 
the writer dependent scenario. The characters are 
resampled to 90 points. 

  Given a preprocessed test character, depending on 
the values B1 and B2, it is matched against the groups in 
Table 1. To finally recognize this character from the 
subset of characters in the matched group, k Nearest 



Neighbor algorithm is used. The distance from the 
centroid to each pen coordinate of the character is used 
as the feature for classification. Euclidean distance is 
employed as a measure of similarity for the k- NN 
classifier. 
      In the first experiment, we design the hierarchical 
classifier by incorporating the Chain code method to 
group characters at the first level. For implementing the 
Chain code method, we set the thresholds: Th= 10, 
T1=3 and Th1=80. We have used 6 training templates 
per class.  Table 2 (a) shows the average classification 
accuracy across the 15 writers at each level of the 
hierarchical classifier. The possible factors for the lower 
grouping accuracy of 91.2% at the first level are:  
1.     A character gets wrongly grouped when the 

difference between consecutive slope values in the 
predefined subset S exceeds the threshold T1.  

2.       A character is assigned to an incorrect group if 
there is no unique directional code in S whose 
frequency is greater than the threshold Th1 % of the 
total number of quantized slope values in S. This 
scenario occurs when the structure at the start of the 
character is a steep rising or falling curve but nearly 
approaching a line.  

      The number of strokes in the preprocessed character 
P is used for grouping characters at the second level and 
there is no deviation in the grouping accuracy at this 
level compared to the first. The k -NN classifier is used 
at the final level with two different values of k (k =1 and 
k =5). 

In the second experiment, we build the same 
hierarchical structure but employ the Dynamics of Pen 
Motion method for the first level of the classifier. This 
method is automated and does not require any pre 
defined parameters. By using the prior knowledge of the 
writing rules of a character, this method gives greater 
grouping accuracy (above 99%) at the first level thereby 
improving the final recognition accuracy. This is 
suggested by the results in Table 2 (b). Any 
misgrouping at the first level can be attributed to 
unconventional handwriting that produces non-standard 
structures at the start of the preprocessed character.  
   Some of the confusion pairs and triplets are listed 

below (J, K) (G, H) (L, N, R) ([, û, ]) (Ý, Ø, ê).    
Most of the ambiguity arises because these characters 
look visually similar and a simple k Nearest Neighbor 
may not be powerful enough to track minor variations 
that distinguish these characters. 
  
6. Conclusions 
          
     We have proposed a novel hierarchical scheme for 
online Tamil characters by utilizing the a-priori 
structural information at the start of each character and 
the number of strokes involved. We adopted two 

methods for building the first level of the classifier –
‘Chain code’ method and ‘Dynamics of pen motion’ 
method and established the superiority of the latter 
method. In conclusion, a hierarchical structure 
employing the pen motion dynamics to construct the 
first level classifier drastically improves the final 
classification accuracy. Further potential areas of 
research are to develop a grouping strategy based on 
number of loops and cusps in the character and extend 
the idea of this work to other Indian languages. 
 
Table 2 (a). Average classification accuracy 
across 15 writers with Chain code method 
employed at first level. 
 
 1st level  2 nd level 3 rd level 
 
  k=1

 
91.2 %

 
91.2 % 

 
82.3 %

 
   k=5 

 
91.2 % 

 
91.2 % 

 
86.4  % 

 
Table 2 (b). Average classification accuracy 
across 15 writers with Dynamics of pen motion 
method employed at first level. 
 
 1st level  2 nd level 3 rd level 
 
  k =1

 
99.2%

 
99.2% 

 
92.2 %

 
   k =5 

 
99.2% 

 
99.2% 

 
95.3 % 
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