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Abstract—This study proposes an approach to classify the
EEG into meditation and non-meditation segments using a
long short-term memory (LSTM) based deep neural network
(DNN) framework. Inter-subject classification performance is
assessed on EEG recorded from fourteen long-term Rajayoga
meditators. Common spatial pattern is used for feature extrac-
tion, and linear discriminant analysis is used for dimensionality
reduction. The sequence of features thus obtained is fed to
a LSTM based DNN, which employs a fully connected layer
for classification. We have achieved inter-subject classification
accuracies of 79.1%, 86.5%, 91.0%, and 94.1% with the
respective use of the alpha, beta, lower-gamma, and higher-
gamma bands for classification. To the best of our knowledge,
this is the first work to employ deep learning to distinguish
between the brain’s electrical activity during meditation and at
rest.

Index Terms—Rajayoga meditation, LDA, common spatial
pattern, meditative state, resting state, LSTM, deep learning

I. INTRODUCTION

Meditation is considered to be an altered state of con-
sciousness involving cognitive components such as attention
and alertness. Attention is enhanced with increased mental
training and is a prime component of meditation. Various
meditation practices focus on breath, a mantra, an object,
an image, etc. Applications like the brain-computer interface
(BCI) can use this effect of focused attention practice in
meditation. The BCI requires subject attention to perform a
required task and can enhance the efficiency of the same with
the meditation practice [1]. Other meditation methods involve
attaining a blissful state, self-reflection, love and compassion,
open monitoring, or feeling connected to an entity. Studies on
latter concepts have reported the results characterized with
inconsistency and non-replicable patterns across subjects [2],
[3]. Various physiological and psychological responses are
tested to understand the different effects and experiences
associated with meditation [4]. A study conducted to assess
the responses to emotional stimuli using machine learning
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was successful in evaluating the meditation experience [5].
It would be a breakthrough if the experience or depth
of the meditation can be evaluated using continuous EEG
data without any psychophysiological tests. Consequently,
it is important to explore the feasibility of using machine
learning algorithms to compare the states of meditation with
non-meditative states to understand the neural correlations
involved in the process of meditation.

As the first step in this direction, this study attempts
to classify the meditative states against the non-meditative
states using features extracted from the common-spatial pat-
terns (CSP) and long short-term memory (LSTM) classifier.
According to the authors’ knowledge, although many stud-
ies have reported classifying meditative and non-meditative
states within a subject, studies on classification with inter-
subject data are uncommon due to the inter-subject variabil-
ity.

II. DATASET DESCRIPTION

A. Details of the Study Subjects

Fifty-four rajayoga meditators with a mean age of 42±10.1
years and with meditation experience ranging from 4 to
43 years with a mean experience of 18 years are part
of the study. The subjects did not have any neurological
disorders or cardiovascular issues. Written consent has been
obtained from subjects after explaining the experimental
protocol. Consumption of alcohol or cigarette was verified
with the participants, and no participant considered in the
study consumed alcohol or cigarette up to six months before
the recording date. Data was recorded at Brahma Kumaris
headquarters, Mount Abu, India.

B. Protocol used for recording the EEG data utilized

EEG data are recorded with ANT Neuro amplifier and 64-
channel waveguard cap following 10-10 international elec-
trode location system. The acquisition and meditation session
details have been previously reported [6]. EEGO software is



TABLE I
EEG FREQUENCY BANDS INDEPENDENTLY CONSIDERED FOR FEATURE EXTRACTION.

Band name Alpha Beta Lower Gamma Higher Gamma

Frequency range 8 - 13 Hz 13 - 25 Hz 25 - 45 Hz 45 - 64 Hz

used to acquire the data, and all the electrodes are referenced
to the CPz electrode with a sampling frequency of 500 Hz.
Less than 10 kΩ impedance is maintained between the scalp
and the electrode during the recording sessions. The subjects
sat in a comfortable position on a floor mat and we ensured
that there was no contact between the participant’s body and
the ground. EEG data recorded is digitally bandpass filtered
from 0.3-75 Hz offline before preprocessing.

Recording sessions include eyes open and eyes closed
baseline segments before and after the meditation segment
as given in Fig. 1. The duration of baseline segments is
approximately 3 minutes, and the meditation segment is
around 30 minutes. Participants are instructed to practice
rajayoga seed-stage meditation with the eyes-open condition
for the study. An acoustic tone prompts the participant every
5 minutes to note their meditative state mentally, which is
later recorded from the participants.

C. EEG data preprocessing and band-pass filtering

Brain Vision analyzing software is used to preprocess the
EEG data. Data is downsampled to 128 Hz using the spline
interpolation method. Data of 1-minute duration immediately
occurring after every prompt is removed from the meditation
segment to eliminate possible non-meditative state recording.
A notch filter is used to eliminate possible line noise, and
independent component analysis (ICA) is applied to the data
to detect the components related to eye movements. The ICA
components are rejected manually, and EEGLAB [7] add-
on with MATLAB is used to band-pass filter the data into
canonical frequency bands for our experiments. Table I lists
the frequency bands used in the study. In this work, the eyes
open baseline segments before and after meditation, and ap-
proximately 6 minutes of meditation data are only considered
to ensure that the classes are appropriately balanced.

III. FEATURE EXTRACTION AND CLASSIFICATION

Unlike our previous work [8] where common spatial
pattern (CSP) with Tikhonov regularization was used, we did
not apply any regularization in this work. This is because we
did not observe any improvement in the accuracy by using
regularization. In classical CSP without regularization, the
spatial filter W is obtained by extremizing the following
objective function:

J(W) =
tr(WTR2W)

tr(WTR1W)
(1)

where tr(.) denotes the trace of a matrix, T denotes matrix
transpose, matrix Rj denotes the normalized spatial covari-
ance of class j. Rj is obtained by the following relation:

Rj =
XjX

T
j

tr(XjXT
j )

(2)

where Xj ∈ RD×S is a D × S matrix containing the EEG
signal of class j having D channels and S time samples.

After computing the spatial filter W for each set of
training data (Xj), the data is spatially filtered as follows
to obtain the filtered data (Zj):

Zj = WXj (3)

In this work, the number of spatial filter pairs used is 10 since
in our previous work [8], we have shown that improvement
in accuracy with more number of spatial filter pairs plateaus
when it is 10 filter pairs. Hence, in this case, the dimension
of W is 20× 61, where 61 is the number of EEG channels.
Also, the dimension of Xj is 61× 64 where 64 is the epoch
length in samples. We reduced the epoch length from 256
samples in our previous work to 64 samples in the current
work to have enough training samples for the classifier.

The logarithm of variance of each filtered vector is used as
a feature resulting in a feature vector of dimension 20. The
dimension of these vectors is reduced to one by applying
linear discriminant analysis (LDA). These values are fed to
an LSTM as sequence data. The number of hidden units in
the classifier is 200, and the maximum number of epochs is
set at 20 to avoid overfitting. The optimizer used is Adam,
with a learning rate of 0.001. Although the architecture of
the classifier used in this work is similar to the OPTICAL
predictor used in [9], there are differences such as:

1) We use LSTM as a classifier, whereas in [9] LSTM
was used in a regression setting, and a support vector
machine (SVM) was used as the classifier.

2) We do not apply sliding window during feature extrac-
tion.

IV. RESULTS OF OUR STUDY

Figure 3 compares the performance of the proposed work
with our previous results [8]. Unlike most of the other works
in the literature, where the method is tested on an intra-
subject setting, we tested the proposed method on an inter-
subject setting where we do not include any test participant
data in the training data. Use of higher-gamma and alpha
bands results in the highest and lowest accuracy, respectively.
This same trend was observed in our previous work. The
results are also in line with the observation in classifying
EEG recorded during speech imagery, where the alpha and
gamma bands give rise to the least and most discriminatory
features [10], [11].

V. CONCLUSION

A CSP-LDA-LSTM based system for distinguishing med-
itation state from eyes-open baseline is presented in this
paper. Rajayoga meditation data has been used for this
study. We have achieved accuracy values of 79.1 ± 26.8%,
86.5±8.9%, 91.0±13.1%, and 94.1±8.9% using alpha, beta,



Fig. 1. Recording protocol for the EEG used in this study: 3 minutes each of initial baseline segments with eyes open (IEO) and closed (IEC) conditions
followed by 30 minutes of seed stage meditation (M), and 3 minutes each of final baseline segments with eyes open (FEO) and closed (FEC) conditions.

Fig. 2. Architecture of the proposed method. An inter-subject testing strategy is employed, where the classifier is trained on the EEG data of N − 1
subjects and tested on the left out subject in each of the N steps of cross-validation, where N is the total number of subjects. CSP: common spatial
pattern, LDA: linear discriminant analysis, LSTM: long short-term memory.

Fig. 3. Comparison of the performance of the proposed system with our previous work. Different EEG frequency bands are given in the x-axis, whereas
the percentage accuracies are given in the y-axis. Use of the higher gamma band results in the best performance of 94.1% The dashed line denotes chance
level accuracy. Error bars indicate standard deviation.

TABLE II
COMPARISON OF MEAN ACCURACIES REPORTED FOR OTHER SYSTEMS OF MEDITATION IN CLASSIFYING MEDITATIVE FROM THE RESTING STATE

USING EEG. IN A WORK BY LIN AND LEE [12], THE EPOCH LENGTH IS 10S, FIVE TIMES THAT OF THE EPOCH LENGTH USED IN OUR WORK. SVM:
SUPPORT VECTOR MACHINE, LDA: LINEAR DISCRIMINANT ANALYSIS, LSTM: LONG SHORT-TERM MEMORY

Sl. No. Authors System of Meditation Classification Setting Features Classifier Mean Accuracy

1 Tee at al. [13] Theta healing meditation Intra-subject Discrete wavelet transform Logistic regression 96.9%

2 Ahani et al. [14] Mindfulness meditation Intra-subject Stockwell transform SVM 78.0%

3 Lin and Lee [12] Chan meditation Intra-subject Approximate entropy Bagged tree 97.9%

4 Panachakel et al. [8] Rajayoga meditation Intra-subject Common spatial pattern LDA 98.0%

5 Panachakel et al. [8] Rajayoga meditation Inter-subject Common spatial pattern LDA 77.3%

6 Proposed work Rajayoga meditation Inter-subject Common spatial pattern LSTM 94.1%



lower-gamma, and higher-gamma bands, respectively, for
classification. To the best of our knowledge, this is the first
work to employ deep learning to classify the meditative state
from the resting state. The proposed method has achieved an
absolute improvement of more than 15% in accuracy over
the earlier result [8] on the same dataset.
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