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ABSTRACT2

Over the past decade, many researchers have come up with different implementations of systems3
for decoding covert or imagined speech from EEG (electroencephalogram). They differ from each4
other in several aspects, from data acquisition to machine learning algorithms, due to which, a5
comparison between different implementations is often difficult. This review article puts together6
all the relevant works published in the last decade on decoding imagined speech from EEG7
into a single framework. Every important aspect of designing such a system, such as selection8
of words to be imagined, number of electrodes to be recorded, temporal and spatial filtering,9
feature extraction and classifier are reviewed. This helps a researcher to compare the relative10
merits and demerits of the different approaches and choose the one that is most optimal. Speech11
being the most natural form of communication which human beings acquire even without formal12
education, imagined speech is an ideal choice of prompt for evoking brain activity patterns for a13
BCI (brain-computer interface) system, although the research on developing real-time (online)14
speech imagery based BCI systems is still in its infancy. Covert speech based BCI can help15
people with disabilities to improve their quality of life. It can also be used for covert communication16
in environments that do not support vocal communication. This paper also discusses some future17
directions, which will aid the deployment of speech imagery based BCI for practical applications,18
rather than only for laboratory experiments.19
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1 INTRODUCTION
We, as human beings, keep talking within us most of the times. We rehearse over and over again how to21
manage a particular difficult situation, what to talk to a prospective customer, how to answer certain critical22
questions in an interview, and so on. This speech, unlike the overt speech in a conversation with another23
person, is imagined and hence, there is no movement of the articulators. Thus, imagined speech is a very24
common, daily phenomenon with every human being. Even when someone’s muscles are paralyzed and25
one is not able to move one’s articulators, one can still imagine speaking or actively think.26
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Imagined speech, active thought or covert speech is defined as the voluntary imagination of speaking27
something without actually moving any of the articulators. The interest in decoding imagined speech dates28
back to the days of Hans Berger, the German neurologist who recorded the first human EEG in the year29
1928. It is said that Hans Berger developed EEG as a tool for synthetic telepathy, which involves imagined30
speech (Keiper, 2006; Kaplan, 2011). In the year 1967, Dewan attempted transmitting letters as Morse code31
using EEG (Dewan, 1967). Speech being the natural form of communication for human beings, researchers32
across the globe are trying to develop BCI (brain-computer interface) systems based on speech imagery33
instead of motor imagery.34

A BCI system translates the distinct electrical activities of the brain into commands for obtaining35
different desired results from an external device. BCI systems can aid patients who have lost the36
control over their voluntary muscles in their day-to-day activities, from controlling the lighting in37
a room to using a personal computer (Abdulkader et al., 2015). BCI systems make use of different38
electrophysiological and neuroimaging modalities like electroencephalogram (EEG), electrocorticogram39
(ECoG), fMRI (functional magnetic resonance imaging), fNIRS (functional near-infrared spectroscopy),40
and intracortical electroencephalography (ICE) for capturing the electrical activity of the brain. Refer41
(Hiremath et al., 2015) for a review on BCI systems using ECoG and ICE. Currently available BCI systems42
using EEG depend on motor imagery (Kevric and Subasi, 2017; Onose et al., 2012), event-related potential43
(ERP) (Fouad et al., 2020; Sellers et al., 2006; Xu et al., 2018b; Mugler et al., 2010) or steady state44
visually evoked potentials (SSVEP) (Ojha and Mukul, 2020; Müller-Putz et al., 2005; Han et al., 2018) for45
generating consistent and reliable brain signals that can be accurately identified by the system. P300-speller46
based BCI system (Guy et al. (2018); Guan et al. (2004); Lu et al. (2019); Arvaneh et al. (2019); Al-47
Nuaimi et al. (2020)) is a quite successful BCI system. Nevertheless, some of these BCI systems are either48
constrained by the limited number of distinct prompts possible and/or by the difficulty in training someone49
to use these systems. Using imagined speech for evoking the brain activity pattern has several advantages50
such as provision for larger number of prompts (which in turn leads to higher degrees of freedom) than what51
is possible with motor imagery. In addition to all the possible applications of a general BCI system based52
on motor imagery, a high-performance BCI system based on speech imagery, in conjunction with a text to53
speech (TTS) system, can be used by those with speech disabilities to communicate with others. It can also54
be used for covert communication in environments such as war fields, where overt vocal communication is55
difficult (Allison et al., 2007; Bogue, 2010).56

This paper reviews the recent literature in the field of decoding imagined speech from EEG, mainly from57
the point of view of the considerations behind the choice of various parameters in designing and developing58
an effective system. EEG based systems have the following advantages compared to systems based on59
neuroimaging techniques such as fMRI, fNIRS, and ECoG due to the following reasons:60

• EEG is cheaper and non-invasive (Zanzotto and Croce, 2010; Illman et al., 2020; Kayagil et al., 2007;61
Tait et al., 2020).62

• EEG has good temporal resolution although ECoG has higher temporal resolution (Hecht and Stout,63
2015; Yi et al., 2013; Ghafoor et al., 2019). However, studies have shown that volume conduction and64
increased distance between the cortical sources and electrodes limit the temporal resolution of EEG65
(Law et al., 1993; Burle et al., 2015).66

• One issue with using EEG is that the setup time is very high, especially for high density EEG systems.67
This problem can be alleviated by identifying the EEG channels that significantly influence the68
performance of the system and creating custom EEG electrode caps with only these electrodes. The69
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Table 1. Comparison of various modalities for decoding imagined speech
Method Temporal Resolution Spatial Resolution Type Portability

EEG 0.06 ms 1,2 25 mm2 (Yamazaki et al., 2013) Non-invasive Portable
MEG 0.1 ms 3 1 mm (Singh, 2014) Non-invasive Non-portable
ECoG 0.02 ms 4 4 mm (Muller et al., 2016) Invasive Portable
fMRI 500 ms (Yoo et al., 2018) 0.7 mm (Kashyap et al., 2018) Non-invasive Non-portable
fNIRS 100 ms (Metzger et al., 2017) 100 mm (Lu et al., 2010) Non-invasive Portable
ICE 3 ms (Ayodele et al., 2020) 0.05 mm (Ayodele et al., 2020) Invasive Portable

setup and preparation times can also be reduced by using dry electrodes instead of gel based electrodes70
(Sellers et al., 2009; Grozea et al., 2011; Guger et al., 2012).71

Nevertheless, the following factors limit the application of EEG based BCI systems:72

• EEG has lower signal-to-noise ratio (SNR) than the other modalities. It is almost always corrupted by73
artifacts such as muscular artifacts (Liu, 2019; Eberle et al., 2012).74

• EEG has limited spectral and spatial resolution (Lakshmi et al., 2014; Peled et al., 2001).75

• Recording EEG for longer duration is challenging since the conductive gel or the saline solution applied76
for reducing the electrode impedance dries up over time, thus increasing the electrode impedance77
(Guger et al., 2012; Xu et al., 2018a).78

• A trained personnel is required for placing the EEG electrode cap.79

Table 1 compares various electrophysiological and neuroimaging techniques used for decoding imagined80
speech from EEG.81
1.1 Inclusion/Exclusion Criteria82

The primary source for the papers analyzed in this work was PubMed. Papers were selected for screening83
if their titles or abstracts included “imagined speech”, “covert speech”, “silent speech”, “speech imagery”84
or “inner speech”. These keywords are wide enough to include all the works on imagined speech indexed in85
PubMed. This returned 504 results which were further screened for relevance. We discarded the papers that86
did not deal with decoding imagined speech, such as the papers on the manifestation of imagined speech in87
those suffering from various neurological disorders such as schizophrenia (for eg. Livet and Salomé (2020),88
Mitropoulos (2020)), global aphasia (GA) (for eg. Sierpowska et al. (2020)) and autism (for eg. Petrolini89
et al. (2020), Mitsuhashi et al. (2018)). It also included five review papers which are:90

1. The review paper by Bocquelet et al. (2016) discusses the considerations in designing an imagined91
speech based BCI. Unlike our work, which focuses on EEG based speech BCI, the work by Bocquelet92
et al. is a review on the choice of brain region, decoding strategies in general, etc., with no particular93
reference to any data acquisition system such as fMRI, EEG, or ECoG.94

2. The focused review article by Herff and Schultz (2016) compares the efficiency of different brain95
imaging techniques which can be used for decoding imagined speech from neural signals. This is96

1 https://www.ant-neuro.com/products/eego mylab/specs
2 The actual temporal and spatial resolution may be lower due to volume conduction effects (Burle et al., 2015).
3 https://www.compumedics.com.au/wp-content/uploads/2016/11/AH425-02-Orion-LifeSpan-MEG-brochure-JUNE-2019.pdf
4 https://www.gtec.at/product/gusbamp-research/
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significantly different from our paper, which reviews in-depth the methodological considerations in97
designing a system for decoding imagined speech from EEG.98

3. The review articles by Martin et al. (2018), Rabbani et al. (2019) and Miller et al. (2020) deal99
exclusively with ECoG and no other modalities.100

After this initial screening, we were left with 48 papers that deal with decoding imagined speech. The101
distribution of the modalities used for decoding imagined speech in these papers is given in Fig. 1. These102
modalities include EEG, ECoG (Herff et al., 2015, 2016), fMRI (Yoo et al., 2004; Abe et al., 2011), fNIRS103
(Herff et al., 2012; Kamavuako et al., 2018; Sereshkeh et al., 2018), MEG (Dash et al., 2020; Destoky104
et al., 2019), ICE (Brumberg et al., 2011; Kennedy et al., 2017; Wilson et al., 2020) etc. Clearly, EEG is105
the most popular modality used for decoding imagined speech with 18 articles using it for capturing the106
neural changes during imagined speech. Among these 18 articles, the article by Imani et al. (2017) was not107
included since in the experimental protocol described in the article, the participants were not imagining108
articulating the prompts. In addition to the 17 papers indexed in PubMed, we selected 111 more relevant109
papers from other sources including IEEE Xplore and arXiv. A flowchart detailing the database searches,110
the number of abstracts screened and the full texts retrieved is shown in Fig. 2. In addition to the 28 articles111
selected, several other articles were used as secondary sources for this paper. For instance, the section on112
the frequency band to be targeted for decoding imagined speech is based on articles on decoding imagined113
speech using ECoG.114

Figure 1. Distribution of the modalities used in the literature on decoding imagined speech. “Others”
include functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS),
intracortical electroencephalography (ICE) etc.

To the best of the knowledge of the authors, there is no review paper that focuses exclusively on EEG115
based systems for decoding imagined speech. The various factors involved in the development of such116
a system are shown in Fig. 3 and discussed in detail in this paper in the same order. For the sake of117
completeness, we have also included a section on the neural correlates of imagined speech (Section 1.2)118
and the types of BCI systems (Section 1.3).119

Specifically, the following are discussed in this paper:120

• Neural correlates of imagined speech.121
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Figure 2. Flowchart detailing the database searches, the number of abstracts screened, the criteria applied
for screening the papers, and the full texts retrieved. The number of records in each stage is given within
parenthesis.
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Figure 3. Various steps involved in the development of a system for decoding imagined speech from EEG.
This paper is organized in the same order as above.

• Different categories of BCI systems.122

• Methodological considerations that should be taken into account during data acquisition including the123
choice of prompts and stimulus delivery.124

• Common preprocessing steps followed.125

• Common feature extraction techniques and classification algorithms.126

• Considerations in designing a speech imagery based online BCI system.127
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• Future directions in the field of BCI systems based on speech imagery neuro-paradigm.128

1.2 Neural Correlates of Imagined Speech and Relationship with Articulated Speech129

The prominent model for neural representation of articulated speech is the two-streams hypothesis130
(Rauschecker and Scott, 2009; Hickok and Poeppel, 2007). According to this, human beings have two131
distinct auditory pathways: ventral stream and the dorsal stream, both passing through the primary auditory132
cortex. In the ventral stream, phonemes are processed in the left superior temporal gyrus (STG) whereas133
words are processed in the left anterior STG (DeWitt and Rauschecker, 2012). Further, these region respond134
preferentially to speech than to semantically matched environmental sounds (Thierry et al., 2003). In the135
dorsal stream, auditory sensory representations are mapped onto articulatory motor representations. The136
information flows from primary auditory cortex into the pSTG and posterior superior temporal sulcus137
(STS). From there, it flows to left Sylvian parietal temporal (Spt). Further, the information moves to138
articulatory network 1 consisting of posterior inferior frontal gyrus (pIFG) and Brodmann area 44 (BA44)139
and articulatory network 2 consisting of primary motor cortex (M1) and ventral Brodmann area 6 (vBA6).140

The relationship between the neural correlates of imagined speech and articulated speech is still a matter141
of debate. Two of the early hypotheses of neural correlates of imagined speech are due to Watson (Watson,142
1913), who argued that the neural correlates are similar and Vygotsky (Vygotsky, 1986), who argued143
that they are completely different. A large number of studies reported in the literature to verify these144
hypotheses are based on the speech production model proposed by Levelt (Levelt, 1993). The model splits145
articulated speech production into several phases such as 1) lemma retrieval and selection, 2) phonological146
code retrieval, 3) syllabification, 4) phonetic encoding and 5) articulation. The results of the studies based147
on Levelt’s model are contradictory. Several studies (Palmer et al., 2001; Rosen et al., 2000; Shuster148
and Lemieux, 2005; Bookheimer et al., 1995) have shown that there is more activation in the motor and149
premotor areas (both lying in the frontal lobe) during articulated speech whereas some other studies (Huang150
et al., 2002; Basho et al., 2007) have shown that there is more activation in the frontal lobe during imagined151
speech. Thus, both Vygotsky’s and Watson’s hypotheses are not completely true.152

Tracing a midline between Vygotsky’s and Watson’s hypotheses, Oppenheim and Dell (Oppenheim153
and Dell, 2008) proposed the surface-impoverished hypothesis. According to this hypothesis, imagined154
and articulated speech differ at the phonological level but have similar neural activation in the lexical155
level. This hypothesis is contradicted by several studies which show that the phonological and lexical156
features in both imagined and articulated speech are similar (Abramson and Goldinger, 1997; Brocklehurst157
and Corley, 2011; Corley et al., 2011). The current understanding is that Vygotsky hypothesis and the158
surface-impoverished hypothesis are partly true. A very recent study (Stephan et al., 2020) based on159
simultaneous application of both EEG and fNIRS has shown that imagined and articulated speech do differ160
at the phonological level (surface-impoverished hypothesis).161

Based on MEG studies, Tian and Poppel (Tian and Poeppel, 2013) proposed a dual stream prediction162
model (DSPM) for imagined speech. This model is linked to the two-streams hypothesis. In DSPM too,163
two streams of information flow are present, the ventral stream and the dorsal stream. During speech164
imagery, articularotry planning occurs in premotor cortex. Since motor movements are not intended during165
speech imagery, the information flow is terminated at M1 (Tian and Poeppel, 2012). Nevertheless, a motor166
efference copy is sent to inferior parietal cortex for somatosensory estimation (Whitford et al., 2017).167
The perceptual efference copy generated at the inferior parietal cortex is sent to pSTG (posterior superior168
temporal gyrus) and STS (superior temporal sulcus). The idea of efference copy in speech imagery was169
proposed as a result of magnetoencephalography studies by Tian and Poeppel (Tian and Poeppel, 2010). In170
the MEG recordings, an activation in the auditory cortex was observed immediately after speech imagery.171
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Figure 4. Simplified representation of dual stream prediction model (DSPM) for imagined speech. The
dorsal stream is in yellow boxes, whereas the ventral stream is in blue boxes. The red circle represents
the truncation of information at primary motor cortex in the case of speech imagery. pSTG: posterior
superior temporal gyrus and STS: superior temporal sulcus. The primary auditory cortex lies in the superior
temporal gyrus and extends into Heschl’s gyri. Though Heschl’s gyri is involved in speech perception, the
region is not activated during speech imagery.

Since there is no overt auditory feedback during speech imagery, the observed activation in the auditory172
cortex was explained using the possible existence of an internal forwarding model deploying efferent copies173
in the auditory cortex. According to Tian and Poeppel, the neural signal generated during articulation174
preparation is used to predict the anticipated auditory signal in speech imagery, via a time-locked auditory175
efferent copy, which causes the observed activity in the auditory cortex. In the ventral stream, auditory176
representation is sent to pSTG and STS. Along with this auditory representation, the ventral stream also177
retrives episodic memory and semantic from middle temporal lobe (MTL) and posterior middle temporal178
gyrus (pMTG) respectively. A pictorial representation of this model is given in Fig. 4. The primary auditory179
cortex contains regions such as pSTG and Heschl’s gyri (transverse temporal gyri). Lu et al. (2021) have180
shown that although Heschl’s gyri is involved in speech perception, the region is not activated during181
speech imagery.182

Results of many neuroimaging, behavioural and electrophysiological studies such as (Lu et al., 2021;183
Tian et al., 2016, 2018; Whitford et al., 2017) also support the presence of efference copies in imagined184
speech. Functional MRI studies by Tian et al. (2016) revealed greater activation in the frontal-parietal185
sensorimotor regions, including sensorimotor cortex, subcentral (BA 43), middle frontal cortex (BA 46)186
and parietal operculum (PO) during speech imagery. This observed activation is similar to the activation187
pattern corresponding to articulation preparation (Price, 2012; Brendel et al., 2010). Thus the brain activity188
pattern corresponding to speech imagery is due to articulation preparation including motor planning and189
the activation of the auditory cortex due to efference copies.190

1.3 Types of BCI Systems191

1.3.1 Online vs Offline BCI Systems192

In offline BCI systems, such as the systems described in (Park et al., 2012; Khan and Hong, 2017;193
Edelman et al., 2015; Tayeb et al., 2019) the EEG data acquired from the participant is not processed in194
real-time; rather it is processed at a later stage. This approach is useful only in a research environment but195
gives the researchers the freedom to use computationally expensive algorithms for processing the EEG196
data. On the other hand, in an online BCI system, such as the systems described in (Lal et al., 2005; Bin197
et al., 2009; Hazrati and Erfanian, 2010; Gui et al., 2015; Mondini et al., 2016; Wu, 2016; Khan and Hong,198
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2017), the EEG data is processed in real-time giving real-time BCI outputs. This places an upper limit on199
the computational complexity of the algorithms used but has significant practical application; rather, a BCI200
system is practically useful only if it can be translated to an online system. Most of the works on decoding201
imagined speech employ offline strategies except for the work by Sereshkeh et al. (2017b) in which EEG is202
used and the others which make use of functional near-infrared spectroscopy (fNIRS) (Sereshkeh et al.,203
2018; Naseer et al., 2014; Gallegos-Ayala et al., 2014). The systems described in (Sereshkeh et al., 2017b;204
Naseer et al., 2014; Gallegos-Ayala et al., 2014) have two degrees of freedom, whereas the system described205
in Sereshkeh et al. (2018) has three degrees of freedom.206
1.3.2 Exogenous vs Endogenous BCI Systems207

In an exogenous (exo: outside or external, genous: producing) BCI system, external stimulus is used for208
generating distinct neural activation such event-related potentials (ERP) such as P300 and evoked potentials209
such as steady state visually evoked potentials (SSVEP). On the other hand, in an endogenous (endo: inside210
or internal, genous: producing) BCI system, the neural activation is not because of any external stimuli.211
In an endogenous BCI, motor imagery, speech imagery etc. can be used for eliciting the required neural212
activation. Graz BCI (Müller-Putz et al., 2016) is an endogenous BCI system whereas Unicorn speller213
(Al-Nuaimi et al., 2020) is an exogenous BCI system.214
1.3.3 Synchronous vs asynchronous BCI Systems215

In a synchronous BCI, the EEG capture for analysis is synchronized with a cue. That is, in case of speech216
imagery based BCI system, the time window for imagination is predefined and any EEG captured outside217
this window is discarded. In an asynchronous BCI, the capture of neural activity is not linked to any cues.218
Though asynchronous BCI is a more natural mode of interaction, the BCI system will be more complex219
since it has to decide whether the ellictted neural activity is because of an intentional mental activity from220
the subject or because of an unintentional mental activity.221

2 DATA ACQUISITION
2.1 Type of EEG Acquisition System222

Most of the researchers, including Zhao and Rudzicz (2015), Nguyen et al. (2017), Min et al. (2016),223
Koizumi et al. (2018) and Sereshkeh et al. (2017a) have used a 64-electrode EEG system with a sampling224
rate of 1 KHz for acquiring the EEG data corresponding to imagined speech. In the case of the work225
reported by Deng et al. (2010) and Brigham and Kumar (2010), 128-electrode EEG data has been recorded226
at a sampling rate of 1 KHz. Wang et al. (2013) and Garcı́a et al. (2012) have used lesser number of EEG227
channels. Wang et al. have used two different electrode configurations: a 30-electrode system covering the228
entire head and a 15-electrode system covering only the Broca’s and Wernicke’s areas. The signal sampling229
rate is 250 Hz in both the cases. Jahangiri et al. have used a 20-electrode EEG system with a sampling rate230
of 500 Hz in (Jahangiri et al., 2018) and a 64-electrode EEG system with a sampling rate of 2048 Hz in231
(Jahangiri et al., 2019; Jahangiri and Sepulveda, 2019). Watanabe et al. (2020) have used a 32-electrode232
EEG system with a sampling rate of 1 KHz. A 64-electrode EEG system has been used in (Zhang et al.,233
2020) with a sampling rate of 500 Hz.234

Though most of the researchers have made use of high-density EEG systems, the approach of Wang et al.235
in using only the channels covering the Broca’s and Wernicke’s areas has the following advantages:236

1. Studies based on common spatial patterns (CSP) and event-related spectral perturbation (ERSP),237
reported in (Wang et al., 2014), (Nguyen et al., 2017) and (Zhao and Rudzicz, 2015), have shown that238
the most significant EEG channels for classifying speech imagery are the ones covering the Broca’s239
and Wernicke’s areas.240
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Figure 5. Graph showing the number of electrodes used for data acquisition in various works on decoding
imagined speech from EEG. X and Y-axes represent the number of electrodes and articles, respectively.

2. When a brain-computer interface (BCI) system is deployed for practical applications, it is better to have241
as minimum a number of EEG channels as possible. This is because EEG systems with less number of242
channels are cheaper and can be more easily setup and maintained than high-density systems.243

However, the extent of involvement of Broca’s and Wernicke’s areas in language processing is still a point244
of contention (Tremblay and Dick, 2016; Binder, 2015). Modern neuroimaging studies have shown that in245
addition to Broca’s and Wernicke’s areas, other areas in the temporal lobe are also involved in language246
processing (Poeppel et al., 2008; Newman et al., 2010). Hence, though using only the EEG channels247
covering the Broca’s and Wernicke’s areas has certain practical advantages, there is a trade-off in terms of248
the information captured (Srinivasan et al., 1998). Also, when independent component analysis (see Sec.249
3.4) is used, higher the number of channels, better is the decomposition, although there is a ceiling in the250
quality of decomposition when the number of channels reaches 64 (Klug and Gramann, 2020).251

With respect to commercial grade and research grade EEG acquisition devices, more than 20% of the252
studies reviewed in this article make use of commercial grade devices, characterized by low EEG density253
and/or low sampling rate. Though there can be a detrimental effect in the quality of the EEG signal acquired,254
commercial grade systems are closer to a practical BCI system in terms of cost of the device. Additionally,255
devices such as ENOBIO (Ruffini et al., 2007) and Emotiv (Duvinage et al., 2012) used by Jahangiri et al.256
(2018) and Garcı́a et al. (2012) respectively offer a setup time of less than 5 minutes.257

The configurations of the EEG systems used in the articles analyzed in this work are given in Figs. 5 and258
6. Clearly, 64-electrode EEG system with the sampling rate of 1 KHz is the most popular configuration of259
the EEG systems used for data acquisition.260

A comparison of the types of EEG systems, sampling rate, decoding strategy and the maximum number261
of degrees of freedom of various studies reviews in this work is given in Table 2.262

2.2 Mode of Stimulus Delivery263

Three methods have been primarily followed by researchers to cue the participant as to what the prompt264
is and when to start imagining speaking the prompt. These are 1) auditory (Brigham and Kumar, 2010; Min265
et al., 2016; Koizumi et al., 2018; Deng et al., 2010); 2) visual (Sereshkeh et al., 2017a; Wang et al., 2014;266
Koizumi et al., 2018; Jahangiri et al., 2018); and 3) a combination of auditory and visual cues (Zhao and267
Rudzicz, 2015; Nguyen et al., 2017; Coretto et al., 2017; Watanabe et al., 2020). Although somatosensory268
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Figure 6. Graph showing the sampling rates used for data acquisition by the various works in the literature
on decoding imagined speech from EEG. X-axis gives the sampling rates and Y-axis gives the number of
articles using each specific sampling frequency.

cues have been used for motor imagery (Panachakel et al., 2020b), no such work has been reported for269
speech imagery.270

Since both Broca’s and Wernicke’s areas are involved in imagined speech (Hesslow, 2002), it is difficult271
to remove the signature of the auditory cue from the EEG signal recorded during speech imagery. It has272
been shown that visual cues elicit responses in the occipital lobe (Nguyen et al., 2017). Since the occipital273
lobe is involved neither in production nor comprehension of speech, discarding the EEG channels over the274
occipital lobe eliminates the interference of the visual cue on the EEG recorded during imagined speech.275
Hence, the use of visual cues obviates the preprocessing steps for removing auditory cues. Although studies276
(Ikeda et al., 2012) have shown that the excitation of the primary motor cortex is higher when auditory and277
visual cues are used, the practical benefit of such a system, especially in the field of rehabilitation is limited.278
This is also true for the use of somatosensory stimuli in motor imagery as in (Panachakel et al., 2020b).279

2.3 Repeated Imagination During a Trial280

In most of the works, the participant is supposed to imagine speaking the prompt only once. However, in281
a few works such as (Nguyen et al., 2017; Deng et al., 2010; Brigham and Kumar, 2010; Koizumi et al.,282
2018), the participants are asked to imagine speaking the prompt multiple times in the same trial. In all283
these works, auditory clicks are provided during each trial to make the participants have a sense of rhythm284
at which the prompt should be imagined. Nguyen et al. have used this periodicity in imagination to identify285
the channels that have the most information corresponding to the cortical activity of speech imagery. They286
have computed the autocorrelation functions of all the EEG channels and applied discrete Fourier transform287
(DFT) on the computed autocorrelation functions. The channels were graded based on the proximity of the288
highest peak of the frequency spectrum to the frequency at which the auditory cues were provided. It was289
observed that the channels covering Broca’s area, Wernicke’s area and motor cortex had the highest peaks290
in the frequency spectrum closer to the frequency of the auditory cues. Hence, multiple imagination can be291
used to check the quality of the acquired data, as carried out by Nguyen et al.292
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Table 2. Comparison of the types of EEG systems, sampling rate, decoding strategy and maximum number
of degrees of freedom of various studies reviewed in this work.
Sl.

No.

Type of

EEG System
Sampling Rate Resampled Frequency Decoding Strategy

Maximum Number of

Degrees of Freedom Reported

1 Jahangiri et al. (2019) Research 2 KHz 256 Hz Offline 4

2 Wang et al. (2013) Research 250 Hz N/A Offline 2

3 Jahangiri et al. (2018) Commercial 500 Hz 256 Hz Offline 4

4 Tøttrup et al. (2019) Commercial 500 Hz N/A Offline
6

(including two motor imagery)

5 Saha et al. (2019b) Research 1 KHz N/A Offline 2

6 Koizumi et al. (2018) Research 1 KHz N/A Offline
12

(including six visual imagery)

7 Sereshkeh et al. (2017a) Research 1 KHz N/A Offline 2

8 Deng et al. (2010) Research 1 KHz N/A Offline 6

9 Zhang et al. (2020) Research 500 Hz N/A Offline 4

10 Cooney et al. (2020) Commercial 1 KHz N/A Offline 6

11 Chengaiyan et al. (2020) Commercial 256 Hz N/A Offline 5

12 Brigham and Kumar (2010) Research 1 KHz N/A Offline 2

13 Cooney et al. (2018) Research 1 KHz N/A Offline 11

14 Pawar and Dhage (2020) Research 1 KHz N/A Offline 4

15 Nguyen et al. (2017) Research 1 KHz 256 Hz Offline 3

16 Sereshkeh et al. (2017b) Research 1 KHz N/A Online 2

17 Watanabe et al. (2020) Research 1 KHz N/A Offline 3

18 Jahangiri and Sepulveda (2017) Research 2 KHz 256 Hz Offline 4

19 Jahangiri and Sepulveda (2019) Research 2 KHz 256 Hz Offline 4

20 Garcı́a et al. (2012) Commercial 128 Hz N/A Offline 5

21 Min et al. (2016) Research 1 KHz 250 Hz Offline 2

22 Saha and Fels (2019) Research 1 KHz 256 Hz Offline 3

23 Saha et al. (2019a) Research 1 KHz N/A Offline 2

24 Panachakel et al. (2020a) Research 1 KHz 256 Hz Offline 2

25 Panachakel et al. (2019) Research 1 KHz N/A Offline 11

26 Garcı́a-Salinas et al. (2019) Commercial 128 Hz N/A Offline 5

27 Cooney et al. (2019) Commercial 1 KHz 128 Hz Offline 5

28 Balaji et al. (2017) Research 250 Hz N/A Offline 4

Unlike the approach by Nguyen et al. and Brigham et al., Deng et al.’s approach required the participants293
to imagine the prompts in three different rhythms. They have shown that in addition to the imagined prompt,294
the rhythm at which the prompt is imagined can also be decoded from the recorded EEG signal.295

In our own experiments reported in (Panachakel et al., 2020b), we have observed that the EEG signatures296
become more prominent across multiple imaginations in the same trial but deteriorate across multiple trials297
in the same recording session.298

Figure 7 shows the typical experimental setup setup followed by most of the researchers.299
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Figure 7. A typical experimental setup used for recording EEG during speech imagery. The subject wears
an EEG electrode cap. A monitor cues the subject on the prompt that must be imagined speaking. An
optional chin rest prevents artifacts due to unintentional head movements. Figure adapted with permission
from Prof. Supratim Ray, Centre for Neuroscience, Indian Institute of Science, Bangalore

2.4 Choice of Prompts300

2.4.1 Syllables Only301

Min et al. (2016) have used the vowel sounds /a/, /e/, /i/, /o/ and /u/ as the prompts. These sounds302
are acoustically stationary, emotionally neutral and easy to imagine uttering. Nevertheless, it is shown303
in (Nguyen et al., 2017) that prompts with higher complexity (more number of syllables) yield higher304
classification results in decoding imagined speech (more details about (Nguyen et al., 2017) are given in305
the following sections). They have also shown that distinct prompts with different levels of complexity306
(such as one monosyllabic word and one quadrisyllabic word) yield further improvement in the accuracy.307
The dataset developed by Brigham and Kumar (2010) has only two prompts /ba/ and /ku/. The reason for308
the choice of these prompts is the difference in their phonological categories:309

1. /ku/ has a back vowel, whereas /ba/ has a front vowel310

2. /ba/ has a bilabial stop, whereas /ku/ has a gutteral stop.311

Deng et al. (2010) also used the syllabic prompts /ba/ and /ku/. Contrary to the approach by Brigham et312
al., the participants in Deng et al.’s work were instructed to imagine the prompts in three different rhythms313
in different trials. The cue for rhythm was given using auditory clicks. They have shown that it is possible314
to decode the rhythm from the imagined EEG, even when the algorithm failed to decode the imagined315
syllable.316

In the works by Jahangiri et al. (2019, 2018); Jahangiri and Sepulveda (2019), four syllables, namely /ba/,317
/fo/, /le/ and /ry/ were chosen as the prompts. These syllables were chosen since they were phonetically318
dissimilar. It is shown by Cummings et al. (2016) that phonetically dissimilar prompts create distinct neural319
activities. In (Jahangiri and Sepulveda, 2019), the prompt to be imagined is cued using auditory cues320
whereas in (Jahangiri et al., 2019) and (Jahangiri et al., 2018), visual cues are used. In (Jahangiri et al., 2018)321
the participants are cued by showing arrows in four different directions, where each direction corresponds322
to a specific phonemic structure the subject needs to imagine. For example, left arrow corresponds to the323
prompt /le/ whereas right arrow corresponds to the prompt /ry/. In (Jahangiri et al., 2019), the prompt to be324
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imagined is cued using the game “whack-a-mole”. The subject needs to imagine the location of the hole325
from where the mole appeared in the game and the recorded EEG is used for decoding the imagined word.326

In (Watanabe et al., 2020), three prompts are used, all formed using the syllable /ba/. Each prompt327
consisted of three /ba/ and two /ba:/, uniform duration of 1800 ms and uniform pitch height of 200 Hz.328
2.4.2 Words Only329

In the protocol followed by Sereshkeh et al. (2017a), the participants were to imagine the response (yes/no)330
to several perceptual, non-emotive binary questions like “Is the word in uppercase letters? WORD”. These331
two English words were chosen due to the following reasons:332

1. Their relevance in BCI applications for patients who cannot communicate in any other way.333

2. /y/ and /n/ differ in the place and manner of articulation. Zhao and Rudzicz (2015) have shown that334
these differences in the place and manner of articulation are captured by the EEG signals.335

3. The vowels /e/ and /o/ originate in different areas of the tongue and hence might have differentiable336
EEG signatures (Mugler et al., 2014).337

In the work by Balaji et al. (Balaji et al., 2017), bilingual prompts were used. Specifically, “yes” and338
“no” in English and “Haan” and “Na” in Hindi (meaning “yes” and “no” respectively) were used. Similar339
to (Sereshkeh et al., 2017a), the experimental protocol required the participants to imagine the response340
to several binary questions, either in English or Hindi. They have reported an accuracy of 85.2% when341
decision was decoded from the recorded EEG and an accuracy of 92.18% when the language was decoded,342
clearly indicating that bilingual prompts have higher potential for being suitable prompts for imagined343
speech.344

In the work by Garcı́a et al. (2012), five Spanish words were used as the prompts. The words were345
“arriba”, “abajo”, “izquierda”, “derecha,” and “seleccionar”. The equivalent English words are “up”,346
“down”, “left”, “right” and “select”, respectively. In the work by Koizumi et al. (2018) six Japanese words347
(“ue”, “shita”, “hidari”, “migi”, “mae” and “ushiro”) were used as the prompts, meaning “up”, “‘down”,348
“left”, “right”, “forward”, and “backward”, in English. These words were chosen because the words349
correspond to instructions a user might use for controlling a computer cursor or a wheelchair. In a very350
recent work by Pawar and Dhage (Pawar and Dhage, 2020), a similar set of prompts was used. Pawar and351
Dhage used the prompts “left”, “right”, “up” and “down”. This choice of prompts is not only motivated352
by the usefulness of these prompts in practical applications but also because of their diverse manner and353
places of articulation.354

In (Chengaiyan et al., 2020), 50 consonant-vowel-consonant words were used as the prompts. All the355
five vowels were considered and for each vowel, 10 words were used. One of the aims of the study was to356
classify vowels and these words were chosen since each word has only one vowel. This choice of prompts357
extends the study by several other authors in classifying vowels using imagined speech EEG.358
2.4.3 Both Words and Syllables359

The two prominent datasets having both syllable and word prompts are the datasets developed by Zhao360
and Rudzicz (2015) (Zhao and Rudzicz, 2015) and Coretto et al. (2017). The dataset by Zhao and Rudzicz361
(2015) consists of seven monosyllabic propmts, namely /iy/, /uw/, /piy/, /tiy/, /diy/, /m/, /n/ and four words362
“pat”, “pot”, “knew” and “gnaw”. Here, “pat” & “pot” and “knew” & “gnaw” are phonetically-similar pairs.363
These prompts were chosen to have the same number of nasals, plosives, and vowels, as well as voiced and364
unvoiced phonemes.365
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Table 3. Five common prompts used in decoding imagined speech and their significance. Prompts which
are not common in the literature are not tabulated here.

Sl. No. Prompt Significance

1 /ba/, /fo/, /le/ and /ry/ Differences in place and manner of articulation.

2 ”up”, “down”, “left” and “right” Useful in controlling a computer mouse.

3 “yes” and “no”
Differences in place and manner of articulation,

useful in responding to binary questions.

4 /a/, /e/, /i/, /o/ and /u/
Acoustic stationarity,

differences in place and manner of articulation.

5 “in” and “cooperate” Difference in complexity.

Similar to the dataset by Garcı́a et al. (2012), the dataset by Coretto et al. also consisted of six Spanish366
words which are “arriba”, “abajo”, “derecha”, “izquierda”, “adelante” and “atr‘as”. The equivalent English367
words are “up”, “down”, “right”, “left”, “forward” and “backward”, respectively. In addition to these six368
prompts, the vowels /a/, /e/, /i/, /o/ and /u/ were also used as prompts.369

Nguyen et al. (2017) collected imagined speech data using four different types of prompts, namely short370
words, long words, short-long words and vowels. The three vowels used as prompts were /a/, /i/ and /u/.371
The shorts words used were “in”, “up” and “out”, all of which are monosyllabic. The long words used were372
“independent” and “cooperate”, both having four syllables with none of the four syllables common between373
them. Nguyen et al. (2017) performed one more experiment in which the prompts were “in” (monosyllabic)374
and “cooperate” (quadrisyllabic). The aim of the experiment was to find out whether the difference in the375
length of the prompt had any effect on the decoding of imagined speech. As mentioned in Sec. 2.4.1, the376
authors have reported an improvement in accuracy when prompts of different lengths are used.377
2.4.4 Lexical Tones378

In some languages (known as tonal languages), pitch is used to differentiate lexical or grammatical379
meaning (Myers, 2004). One such tonal language is Mandarin where the minimal tone set consists of five380
tones. Out of these five lexical tones, four tones (flat, rising, falling-rising and falling) are used with the381
syllable /ba/ in (Zhang et al., 2020). This is the only work in decoding imagined speech where lexial tones382
are used as prompts.383

Five commonly used prompts and their significance are given in Table 3. We have only listed the common384
prompts used in multiple articles. Prompts which are not used in multiple articles are not listed.385

3 PREPROCESSING
3.1 Resampling386

Prior to preprocessing, some researchers employ a downsampler to resample the EEG data to a lower387
sampling rate. This is carried out in order to reduce the computational complexity involved in processing388
the data. Depending on how the features are extracted, this can also help ameliorate the problems associated389
with high dimensional feature vectors commonly referred to as the “curse of dimentionality”. Nguyen390
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et al. (2017), Brigham and Kumar (2010), and Min et al. (2016) resampled the data from 1 KHz to 256 Hz391
during preprocessing making the data more manageable.392
3.2 Temporal Filtering393

In the task of classification of motor imagery, researchers mostly agree on the frequency band to be394
targeted for the best performance but in the case of imagined speech, this consensus is absent. Quite often,395
the frequency band is decided based on the type of the artifacts present in the recorded signal and how they396
are removed. Most of the works consider the frequency band from 8 to 20 Hz. In addition to this band,397
frequency band from 2 to 50 Hz is also used in several works. In all the articles reviewed in this work, only398
seven works use the frequency band above 80 Hz and out of these seven, only five works ( (Jahangiri et al.,399
2018, 2019; Koizumi et al., 2018; Jahangiri and Sepulveda, 2019; Pawar and Dhage, 2020)) use frequency400
band from 80 to 100 Hz.401

Jahangiri et al. have used the entire frequency range up to 128 Hz except for the narrow band from 49.2402
to 50.8 Hz to remove the line noise whereas Koizumi et al. (2018) have used the frequency range from 1 to403
120 Hz and have reported a higher classification accuracy when features extracted from the high gamma404
band (60 - 120 Hz) are used. Pawar and Dhage (2020) have used the frequency range from 0.5 to 128405
Hz. Jahangiri et al. have supported the use of this band based on the high gamma activity observed in406
electrocorticography (ECoG) data recorded during imagined speech tasks (Llorens et al., 2011; Greenlee407
et al., 2011) and have reported higher activity in the band 70 to 128 Hz during imagination of the prompts.408

However, there are also studies in the literature (Muthukumaraswamy, 2013; Whitham et al., 2007)409
which have shown that the high gamma activity observed in EEG signals may be due to muscular artifacts.410
Moreover, it has been shown by Whitham et al. (2008) that imagination induces muscular artifacts in411
the EEG recorded from normal subjects. Thus, more focused studies are required as shown by Boytsova412
et al. (2016) to understand the reliability of high-gamma band activity observed in EEG, where muscular413
activities are suppressed using muscle relaxants. In fact, Koizumi et al. (2018) themselves have speculated414
in their work that the higher accuracy with the use of high gamma band might be due to EMG artifacts. It415
may be noted that the contention is only on the high-gamma activity observed in EEG and not in ECoG. A416
graphical comparison of the frequency bands used in the various works in the literature is given in Fig. 8.417
The reduced use of gamma band compared to the lower frequency bands is probably on account of the418
uncertainty of the gamma band in EEG. The other important factor is that the EEG power spectrum follows419
a 1/ f power law, which means that the power in the gamma band reduces with increasing frequency, thus420
decreasing the signal-to-noise ratio. From the work by Synigal et al. (2020), it is clear that it is the envelope421
of the EEG gamma power, and not the EEG itself that is well correlated with the speech signal. Thus, this422
indicates that the gamma band may have issues of low signal-to-noise ratio.423

Section 4.4 compares the performance of the systems proposed by Koizumi et al. (2018) and Pawar and424
Dhage (2020) based on Cohen’s kappa value.425
3.3 Spatial Filtering426

Most works do not employ any spatial filtering in the preprocessing. The only exceptions are the works427
by Zhao and Rudzicz (2015) and Cooney et al. (2018), who used a narrow Laplacian filter. A Laplacian428
filter uses finite difference to approximate the second derivative. In the case of a highly localized Laplacian429
filter, the mean of the activities of the four nearest channels is subtracted from the central channel (refer430
(McFarland et al., 1997) for more details on Laplacian filters used in EEG processing). Spatial filtering is431
generally avoided in the preprocessing since Laplacian filter is a high pass filter, which may reduce the432
amount of useful information in the signal (Saha et al., 2019b).433

This is a provisional file, not the final typeset article 16



Jerrin et al.

Figure 8. Comparison of the popularity of frequency bands used in works on decoding imagined speech
from EEG. Darker shades of black represent more popular frequency bands. Common EEG frequency
bands are given in different colours.

3.4 Channel/Epoch Rejection434

EEG signals are almost always corrupted by electrical potentials generated by ocular and facial muscles.435
Since the amplitude of EEG is very small (in the order of µV ) compared to the EMG generated by the436
muscles (in the order of mV ), it is important to remove these artifacts from the EEG signal. It is difficult437
to remove these artifacts and methods based on heuristics are often combined with signal processing438
algorithms such as BSS (blind source separation) and employed for this purpose. ICA (independent439
component analysis) is the most common BSS algorithm used for preprocessing EEG and hence it is440
discussed in some detail in this section.441

Let X be a matrix containing the set of M samples each of N observed signals (individual EEG channels442
in our case). In other words each of the N signals {x1(t),x2(t), . . . ,xN(t)} is arranged as one of the columns443
of X and each column has M samples of the corresponding channel. Thus the dimension of X is M×N.444
To put into the perspective of EEG signal processing, suppose EEG signal is acquired using a 64-channel445
EEG system with common average referencing at the sampling rate of 1024 Hz for a duration of 10s, then446
the dimension of X used for storing this EEG will be 10240×64. These N observed signals are generated447
from a set of K source vectors (where K ≤ N) as given below:448

X = SA (1)

where S is a M×K matrix containing the source signals that generated the observed signals in X and A449
is called the mixing matrix of dimension K×N. This linear model is consistent with the physics of EEG450
(Parra et al., 2005). Specifically, the i-th column of X is obtained as451

Xi = Sai (2)
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where ai denotes the ith column of A. Our goal is to find the unmixing matrix, W = A−1 so that we can452
obtain the sources which generated the observed signals. One motivation for finding the sources is for453
denoising or removing noise from the observed signal. Noise is a relative term used to refer to any signal454
that is undesirable in the given context. For instance, if we are trying to decode imagined speech from EEG,455
information about eye blinks is not useful and electrical activity generated by the extraocular muscles is456
considered as a noise signal although in the context of a BCI system that relies on eye blinks, this signal457
carries information. ICA is the most commonly used method for removing these artifacts (Jiang et al.,458
2019). ICA essentially tries to identify the source of the eye blink and this source is suppressed to remove459
eye blink artefacts from the recorded EEG signal. Once we find out W , the unmixing or demixing matrix,460
the sources can be obtained from the observed signals by using the following relation:461

S = XW (3)

Clearly, it is impossible to find a unique W using only X and hence we employ some measures that462
the sources should satisfy. The measure or cost is selected in such a way that the sources are statistically463
independent of each other. This intuitively makes sense, since the sources responsible for generating the464
EEG signals corresponding to imagined speech are independent of the extraocular muscles that generate465
the electrical activity corresponding to eye blinks.466

Since finding W is a difficult inverse problem, iterative algorithms are used for finding W such that a467
particular cost such as kurtosis, negentropy, mutual information, or log likelihood is extremized (Touretzky468
et al., 1996; Bell and Sejnowski, 1995; Hyvärinen and Oja, 1997; Comon, 1994; Girolami and Fyfe, 1996).469
Unwanted sources can be identified by visual inspection or automatically (Delorme et al., 2001; Joyce et al.,470
2004; Bian et al., 2006; Li et al., 2006; Zhou and Gotman, 2009) and denoised EEG can be reconstructed.471
The performance of various ICA algorithms in removing artifacts from EEG are compared in (Frølich472
and Dowding, 2018) and several BSS algorithm including 20 ICA algorithms are given in (Delorme et al.,473
2007). Methodological considerations in using ICA can be found in (Klug and Gramann, 2020). High-pass474
filtering with a cut-off frequency in the range of 1-2 Hz is an important preprocessing step in using ICA475
(Winkler et al., 2015).476

Brigham and Kumar (2010) employed both heuristics and ICA for removing artifacts. EEG electrodes near477
eyes, temple and neck were removed since they were more prone to artifacts. Also, all epochs having the478
absolute values of signal components above 30µV were removed since they are mostly due to EMG artifacts.479
After this, ICA was applied on the preprocessed signal to obtain the independent components. Hurst480
exponent (Vorobyov and Cichocki, 2002) was then used to identify unwanted components. Independent481
components having Hurst exponent values in the range of 0.56−0.69 were discarded.482

Sereshkeh et al. (2017a,b) used ICA and ADJUST algorithm for removing artifacts. ADJUST (Automatic483
EEG artifact detection based on the joint use of spatial and temporal features) (Mognon et al., 2011) is a484
fully automatic algorithm based on spatial and temporal features for identifying and removing independent485
components with artifacts. The algorithm automatically tunes its parameters to the data for computing486
artifact-specific spatial and temporal features required for classifying the independent components.487

Deng et al. (2010) and Jahangiri et al. (2019, 2018); Jahangiri and Sepulveda (2019) have used SOBI488
(second-order blind identification) for artifact removal. SOBI has the advantage of being one of the fastest489
ICA algorithms (Sahonero and Calderon, 2017), although it may still be difficult to use it for real-time490
applications.491

This is a provisional file, not the final typeset article 18



Jerrin et al.

Nguyen et al. (2017) used an adaptive filtering based algorithm for removing artifacts (He et al., 2004).492
Unlike the ICA-based approaches, the adaptive filtering based approach can be used for real-time processing493
of multichannel EEG signal, due to its lower computational cost.494
3.5 Selection of a Subset of Channels for Analysis495

As described in Sec. 2.1, the number of EEG channels acquired varies among the different works496
published in the literature. There are studies that make use of only 15 channels and there are others that use497
as high as 128 EEG channels. Similar to downsampling the acquired EEG signal in time domain prior to498
processing, a few researchers have also downsampled the signal in spatial domain; that is, only a subset of499
the acquired EEG channels are used for further processing. This section discusses the various approaches500
in selecting a subset of EEG channels.501

Garcı́a et al. (2012) manually selected only four out of the 14 EEG channels, which were F7, FC5, T7502
and P7, based on their proximity to Geschwind-Wernicke’s model areas (Geschwind, 1972). It may be503
noted that researchers have shown that Geschwind-Wernicke’s model is not an accurate representation504
of language processing in human brain (Tremblay and Dick, 2016; Binder, 2015; Pillay et al., 2014), as505
already mentioned in Sec. 2.1.506

In the work by Myers (2004), 64-channel EEG was recorded but from these 64-channels, only channels507
involved in Broca’s, Wernicke’s, and sensorimotor areas (i.e., FC3, F5, CP3, P5, C3, and C4) were used for508
optimal time range and frequency band of the EEG signal that should be used for feature extraction and509
classification.510

Similar to Garcı́a et al. (2012), EEG channels are manually chosen in Panachakel et al. (2019). Specifically,511
the following 11 EEG channels are chosen based on the significance of the cortical region they cover in512
language processing (Marslen-Wilson and Tyler, 2007; Alderson-Day et al., 2015):513

1. ‘C4’: postcentral gyrus514

2. ‘FC3’: premotor cortex515

3. ‘FC1’: premotor cortex516

4. ‘F5’: inferior frontal gyrus, Broca’s area517

5. ‘C3’: postcentral gyrus518

6. ‘F7’: Broca’s area519

7. ‘FT7’: inferior temporal gyrus520

8. ‘CZ’: postcentral gyrus521

9. ‘P3’: superior parietal lobule522

10. ‘T7’: middle temporal gyrus, secondary auditory cortex523

11. ‘C5’: Wernicke’s area, primary auditory cortex524

This choice of channels was also supported by the common spatial patterns (CSP) analysis on the525
imagined speech versus rest state EEG data given in (Nguyen et al., 2017). CSP is a linear transformation526
that maximises the variance of the EEG signals from one class while minimising the variance of the signals527
from another class (Sharon et al., 2019). Mathematically, CSP extremizes the following objective function:528

J(w) =
wT X1XT

1 w
wT X2XT

2 w
=

wTC1w
wTC2w

(4)
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where T denotes matrix transpose, matrix Xi contains the EEG signals of class i, with data samples as529
columns and channels as rows, w is the spatial filter and Ci is the spatial covariance matrix of class i.530
The EEG signals are usually band-pass filtered into a frequency band of interest whose variance between531
classes is extremized by the spatial patterns. The spatial filters can be seen as EEG source distribution532
vector (Wang et al., 2006). The channels corresponding to higher coefficients in the spatial filters may be533
the channels more correlated with the sources corresponding to the classes (Wang et al., 2006).534

In (Panachakel et al., 2020a), CSP was employed for determining the number of EEG channels to be535
considered. Nine EEG channels corresponding to the largest coefficients in w were chosen for feature536
extraction. It is also shown in (Panachakel et al., 2020a) that nine was the optimal number of channels537
for the specific machine learning model presented in the paper since considering more or less than nine538
channels deteriorated the performance of the system. This approach has the advantage of adaptively539
learning the optimal channels to be considered which may change across different recording sessions based540
on the placement of EEG electrodes and different participants.541

4 FEATURE EXTRACTION AND CLASSIFICATION
Most of the initial works on decoding imagined speech from EEG relied on features separately extracted542
from individual channels rather than simultaneously extracting the features from multichannel EEG data.543
Simultaneously extracting features from multichannel EEG helps in capturing the information transfer544
between multiple cortical regions and is resilient to slight changes in the placement of EEG electrodes545
across multiple subjects or across multiple recording sessions. Both statistical and wavelet domain features546
are popularly used for decoding imagined speech from EEG.547

4.1 Feature Extraction from Individual Channels548

Statistical features such as mean, median, variance, skewness, and kurtosis and their first and second549
derivatives were extracted in (Zhao and Rudzicz, 2015). This resulted in a feature vector of dimension550
1,197 per channel, which were initially concatenated together. Since there were 55 channels excluding551
the reference and EOG channels, this resulted in a feature vector of dimension 65,835. To reduce the552
dimension of the feature vector, feature selection was performed based on the Pearson correlations with the553
given classes for each task independently. This resulted in a feature vector of dimension less than 100. The554
authors tried support vector machines (SVMs) with either radial basis function (RBF) or quadratic kernel555
and deep belief networks (DBNs) and SVM with RBF kernel gave better performance.556

Min et al. (2016) used a subset of the features used in (Zhao and Rudzicz, 2015). Specifically, a trial was557
divided into 30 windows and for each window, mean, variance, standard deviation, and skewness were558
calculated. To reduce the dimension of the feature vector, sparse regression model based on Lasso was used559
for feature selection (Tibshirani, 1996) and ELM (extreme learning machine), ELM-L (extreme learning560
machine with linear function), ELM-R (extreme learning machine with radial basis function), SVM-R561
(support vector machine with radial basis function), and LDA (linear discriminant analysis) were used for562
classification. In the study, ELMs performed better than SVM and LDA.563

Sereshkeh et al. (2017a), Garcı́a et al. (2012), Pawar and Dhage (2020), Jahangiri et al. (2019, 2018);564
Jahangiri and Sepulveda (2019) and Panachakel et al. (2020a) used wavelet transform for extracting features.565
Specifically, Garcı́a et al. (2012) used Daubechies 2 (db2) wavelets, Jahangiri et al. (2019, 2018); Jahangiri566
and Sepulveda (2019) have used Gabor wavelets and Sereshkeh et al. (2017a), Pawar and Dhage (2020) and567
Panachakel et al. (2020a) used db4 wavelets as the mother wavelets. Use of wavelet transform is supported568
by its ability to localise information in both frequency and time domains (Subasi, 2005). Garcı́a et al. (2012)569
performed six levels of wavelet decomposition and used detail coefficients D2-D6 and approximation570
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coefficient A6 as the features. The choice of the coefficients was based on the sampling rate (256 Hz) and571
the frequency of interest (4 to 25 Hz). Sereshkeh et al. (2017a) performed 4 levels of wavelet decomposition572
using db4 wavelets. Instead of using the coefficients as such, as in the case of (Garcı́a et al., 2012), the573
standard deviation and root mean square of the approximation coefficients were used as features. Similar574
to Sereshkeh et al. (2017a), Panachakel et al. (2020a) also used 4 levels of wavelet decomposition using575
db4 wavelets but used root-mean-square (RMS), variance and entropy of each approximation coefficient576
as features. Garcı́a et al. (2012) used SVM, random forest (RF) and naı̈ve Bayes (NB) as the classifiers577
whereas Sereshkeh et al. (2017a) used regularized neural networks. Garcı́a et al. (2012) reported higher578
accuracy with RF as the classifier. Panachakel et al. (2020a) used a deep neural network with three hidden579
layers as the classifier.580

In another work by Panachakel et al. (2019), a combination of time and wavelet domain features was581
employed. Corresponding to each trial, EEG signal of 3-second duration was decomposed into 7 levels582
using db4 wavelet and five statistical features, namely, root mean square, variance, kurtosis, skewness and583
fifth order moment were extracted from the last three detail coefficients and from the last approximation584
coefficient. The same five statistical features were extracted from the 3-second time domain EEG signal585
and these features were concatenated with the features extracted from the wavelet coefficients to obtain the586
final feature vector. Similar to (Panachakel et al., 2020a), a deep neural network with two hidden layers587
was used as the classifier.588

Similar to Keirn and Aunon (1990), Brigham and Kumar (2010) have used the coefficients of a sixth589
order autoregressive (AR) model as the features with 3-nearest neighbour classifier. The model coefficients590
were computed using the Burg method (Mac Kay, 1987). Order six was chosen since they observed that591
AR model of order six gave the best classification accuracy in their experiments.592

In (Cooney et al., 2018), Cooney et al. experimented with three sets of features; the first set consisted of593
statistical measures such as mean, median, and standard deviation; the second set consisted of measures594
such as Hurst exponent and fractal dimension computed using (Psorakis et al., 2010); and the third set595
consisted of 13 Mel-frequency cepstral coefficients (MFCCs), a feature widely used in the domain of596
speech processing (Muda et al., 2010). PCA was used to reduce the dimension of the feature vector. SVM597
and decision tree were used as classifiers. The best accuracy is reported with MFCC as the feature vector598
and SVM as the classifier.599

Though Hilbert–Huang transformation (HHT) (Huang et al., 1998; Huang, 2014) is a popular tool for600
feature extraction in classifying emotion from EEG (Uzun et al., 2012; Vanitha and Krishnan, 2017;601
Phadikar et al., 2019; Chen et al., 2020), the only work that makes use of HHT for classifying imagined602
speech is the work by Deng et al. (2010). Hilbert spectrum was extracted from the four primary SOBI603
(second-order blind identification) components and multiclass linear discriminant analysis (LDA) was used604
as the classifier.605

Koizumi et al. (2018) extracted band powers from each channel. Band powers of 12 uniform frequency606
bands of 10 Hz from 0 - 120 Hz were computed from power spectral density (PSD) estimated using Welch607
periodogram method (Welch, 1967). Powers of all the bands were added to result in a feature vector whose608
each element corresponded to a specific EEG channel. SVM with quadratic polynomial kernel function609
was used for classification. In the work by Myers (2004), CSP was used as the feature extraction tool and610
autoregressive SVM was used as the classifier.611

In (Chengaiyan et al., 2020), brain connectivity features such as coherence (Thatcher et al., 2004), partial612
directed coherence (PDC) (Sameshima and Baccalá, 1999), direct transfer function (DTF) (Kaminski and613
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Blinowska, 1991) and transfer entropy (Schreiber, 2000) were computed for each band of the EEG signal.614
The EEG frequency bands considered were delta, theta, alpha, beta and gamma. Two separate classifiers615
were built, one using recurrent neural networks (RNN) and the other, deep belief network (DBN). They616
reported a higher classification accuracy with DBN than with RNN.617

4.2 Simultaneous Feature Extraction from Multiple Channels618

4.2.1 Using Channel Cross-covariance (CCV) Matrices619

In (Nguyen et al., 2017), two distinct sets of features were employed, based on the tangent vectors620
of channel cross-covariance (CCV) matrices in Riemannian manifold. Using CCV matrix is preferred621
over the raw EEG signal because CCV matrices better capture the statistical relationship between the622
channels. Use of Riemannian manifold is motivated by the fact that since covariance matrix is symmetric623
positive definite (SPD), it lies in Riemannian manifold (Nguyen and Artemiadis, 2018). For a matrix in624
Riemannian manifold, the Euclidean distance is not an accurate descriptor; rather, the distance between the625
tangent vectors is. Also, tangent vectors are computationally more efficient than other metrics such as KL626
divergence (Nguyen and Artemiadis, 2018). Two approaches are presented in the paper for obtaining the627
covariance matrix; the first approach makes use of the raw EEG signal in the temporal domain whereas the628
second approach makes use of both the raw EEG and the wavelet coefficients of each channel extracted629
using the Morlet wavelet. Multi class RVM (mRVM) (Psorakis et al., 2010; Damoulas and Girolami, 2008)630
was used as the classifier. mRVMs are preferred over other conventional classifiers such as SVMs because631
mRVMs are inherently multiclass whereas SVMs are binary classifiers which are extended for multiclass632
using approaches like one-vs-all. Also, mRVMs can give the probability value of the prediction to be633
correct whereas raw SVMs can give only the predictions based on the position of the test vector with634
reference to the hyperplane. Nyugen et al. have reported higher accuracy when temporal and wavelet635
domain features are combined for the classification task.636

In (Saha et al., 2019b; Saha and Fels, 2019), Saha et al. have used CCV matrices as the representation of637
the neural activity during speech imagery, similar to Nyugen’s apporach in (Nguyen et al., 2017). In both638
works, the deep networks consist of different levels which are trained hierarchically. In (Saha and Fels,639
2019), the first level consists of six-layered 1D-convolutional networks stacking two convolutional and two640
fully connected hidden layers and a six-layered recurrent neural network. The output of the 5th layer of the641
two previous networks are concatenated and fed to two deep autoencoders (DAE) and the latent vector642
representation of DAE is fed to a fully connected network for final classification. In (Saha et al., 2019b),643
instead of the 1D-convolutional networks in layer 1, a four-layered 2D CNN stacking two convolutional644
and two fully connected hidden layers is used and instead of the fully connected network in the last layer,645
extreme gradient boosting (XGBoost) (Chen et al., 2015) is used for the final classification.646

4.2.2 Without using channel cross-covariance (CCV) matrices647

In a very recent work by Cooney et al. (2020), imagined speech is classified using three different CNN648
architectures that take the temporal domain EEG signals as the input. The aim of the work was to study649
the influence of hyperparameter optimization in decoding imagined speech. The three CNN architectures650
used are: 1) shallow ConvNet (Schirrmeister et al., 2017), 2) deep ConvNet (Schirrmeister et al., 2017) and651
3) EEGNet (Lawhern et al., 2018). The hyperparameters considered in the study are activation function,652
learning rate, number of training epochs and the loss function. Four each of activation functions, namely653
squaring nonlinearity (Schirrmeister et al., 2017), exponential linear units (ELU) (Clevert et al., 2015),654
rectified linear unit (ReLU) (Agarap, 2018) and leaky ReLU (Maas et al., 2013), learning rate (0.001,655
0.01, 0.1 and 1.0), number of training epochs (20, 40, 60 and 80) and two loss functions, namely negative656
log-likelihood (NLL) and cross-entropy (CE) were evaluated. They reported that leaky ReLU resulted in657

This is a provisional file, not the final typeset article 22



Jerrin et al.

the best accuracy among all the four activation functions compared in the case of ConvNet whereas ELU658
performed better in the case of EEGNet. Also, smaller learning rates (0.001–0.1) were ideal for ConvNet659
whereas EEGNet performed best with a learning rate of 1. With respect to the number of training epochs,660
20 epochs were sufficient for EEGNet whereas higher number of epochs were necessary for ConvNet. Both661
NLL and CE performed equally well and there was no statistically significant difference in the performance662
of the network between the two loss functions.663

4.3 Transfer Learning Approaches664

Transfer learning (TL) is used in (Garcı́a-Salinas et al., 2019; Cooney et al., 2019) for improving the665
performance of the classifier. TL is a machine learning approach in which the performance of a classifier666
in the target domain is improved by incorporating the knowledge learnt from a different domain (Garcı́a-667
Salinas et al., 2019; Pan and Yang, 2009; He and Wu, 2017). Specifically in (Garcı́a-Salinas et al., 2019),668
feature representation transfer is used for representing a new imagined word using the codewords learnt669
using a set of four other imagined words. The codewords were generated using k-means clustering similar670
to the approach discussed in (Plinge et al., 2014; Lazebnik and Raginsky, 2008). These codewords were671
represented using histograms and a Naive Bayes classifier was used for classification. The accuracy of the672
classifier trained using all the five imagined words was comparable to the accuracy obtained by applying673
TL. This method is essentially an intra-subject transfer learning in which the knowledge is transferred for674
classifying a word which was not in the initial set of prompts. In (Cooney et al., 2019), two TL paradigms675
are proposed which aim at inter-subject transfer learning. Specifically, TL is applied for improving the676
performance of the classifier on a new subject (target subject) using the knowledge learnt from a set of677
different subjects (source subjects). Similar to (Garcı́a-Salinas et al., 2019), the two TL paradigms come678
under the class of multi-task transfer learning (Evgeniou and Pontil, 2004). A deep CNN architecture,679
similar to the one proposed in (Schirrmeister et al., 2017), is used in this work. Initially, the network is680
trained using the data from a selected set of subjects. These subjects are chosen based on the Pearson681
correlation coefficient of the subject’s data with the target subject’s data. This training is common for both682
the TL paradigms. In the first TL paradigm, a part of the target’s data is used for fine-tuning the first two683
layers of the network which correspond to the input temporal and spatial convolution layers. In the second684
TL paradigm, the two layers prior to the output layer are fine-tuned using the data from the target subject.685
An improvement in accuracy over the non-TL approach is reported for both the TL paradigms.686

4.4 Comparison of Performance of Different Approaches687

It is difficult to compare the accuracies reported in different papers due the differences in the data688
acquisition protocol including the differences in the number of EEG channels, number and nature of689
imagined speech prompts. Even for the works using the same dataset, a true comparison is impossible since690
the evaluation strategy (number of folds in cross-validation, classification of individual subjects versus691
pooling the data from the entire set of subjects for classification, using a subset of the available prompts in692
the dataset) varies across these studies. Nevertheless, a comparison of the accuracies reported in several693
works reviewed in this manuscript are given in Table 4. Also, works that deal with classifying phonological694
categories, rather than actual imagined prompts are included in the tabular column. Fig. 9 shows the695
frequency of use of various machine learning techniques for decoding imagined speech. Only around 32%696
of the works reviewed in this work make use of deep learning techniques whereas the remaining make use697
of traditional machine learning techniques.698
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Figure 9. Comparison of popular machine learning algorithms used for decoding imagined speech from
EEG. The x-axis gives the number of articles using each algorithm.
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Below, we analyze the performance of the systems based on the types of prompts used, namely:699

1. Directional prompts700

2. Polar prompts701

3. Vowel prompts702

Since the number of classes under these prompts are different, we used Cohen’s kappa (κ) value as the703
metric for comparing the systems. Cohen’s kappa value is defined as:704

κ :=
pcl− pch

100− pch
(5)

where pcl and pch are the system and chance level accuracies, respectively, both in percentage.705

The value of κ theoretically lies in the range [−1,1]. Values closer to −1 indicate that the system is706
performing badly, whereas a value closer to 1 indicates that the system is very good. A value of 0 indicates707
that the classifier is only as good as random guess whereas a value less than 0 indicates that the performance708
of the classifier is inferior to random guess.709
4.4.1 Directional prompts710

Directional prompts include words that can be used for controlling devices such as wheelchairs and user711
interfaces like computer pointing devices. Five studies reviewed in this article makes use of directional712
prompts. In both (Garcı́a et al., 2012; Garcı́a-Salinas et al., 2019), five Spanish words, “arriba”, “abajo”,713
“izquierda”, “derecha” and “seleccionar” are used as the prompts. These words mean up, down, left,‘right714
and select, respectively. The prompts used in (Pawar and Dhage, 2020) are “left”, “right”, “up” and “down”.715
In (Koizumi et al., 2018), six Japanese words “ue”, “shita”, “hidari”, “migi” and “mae” are used as the716
prompts. They mean up, down, left, right, forward and backward, respectively. Similar to Garcı́a et al.717
(2012) and Garcı́a-Salinas et al. (2019), Cooney et al. (2020) have also used Spanish words. The six718
Spanish words used by Cooney et al. (2020) are “arriba”, “abajo”, “derecha”, “izquierda”, “adelante”719
and “atrás” which mean up, down, left, right, backward and forward. (Garcı́a et al., 2012; Garcı́a-Salinas720
et al., 2019) made use of the same dataset acquired using -channel Emotiv EPOC commercial grade EEG721
acquisition system sampled at 128 Hz. The EEG data for Pawar and Dhage (2020) is acquired using722
64-channel Neuroscan synamps 2 research grade EEG acquisition system sampled at 1000 Hz. Koizumi723
et al. (2018) used a 65-channel EEG-1200, Nihon Kohden Corporation research grade EEG acquisition724
system sampled at 1000 Hz whereas Cooney et al. (2020) used the dataset acquired using 18-channel725
Grass 8-18-36 commercial grade EEG acquisition system sampled at 1024 Hz. The κ values of these726
systems are given in Table 5 (sl. no. 1 - 5). Clearly, Koizumi et al. (2018) has the best performance in727
terms of κ value and Cooney et al. (2020) has the worst performance. This cannot be attributed to the728
system type (commercial grade/research grade) because Garcı́a-Salinas et al. (2019), who also made use of729
a commercial grade system like Cooney et al. (2020), have obtained much better performance than Cooney730
et al. (2020). Also, the data sampling rate may not have affected the accuracy. One key difference between731
Koizumi et al. (2018) and other works is the use of gamma band. Since both Pawar and Dhage (2020) and732
Koizumi et al. (2018) have used the gamma band, the higher performance of Koizumi et al. (2018) cannot733
be attributed to the use of gamma band alone.734
4.4.2 Polar Prompts735

Polar prompts are the responses to binary questions or polar questions. Three studies reviewed in this736
article have made use of answers to binary questions as the prompts. As described in Section 2.4.2, the737
participants were cued using binary questions. Both Sereshkeh et al. (2017a) and Sereshkeh et al. (2017b)738
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used a 64-channel BrainAmp research grade EEG acquisition system with a sampling rate of 1 KHz for739
acquiring the EEG data. On the other hand, Balaji et al. (2017) used a 32-channel research grade (Electrical740
Geodesics, Inc.) EEG acquisition system with a sampling rate of 250 Hz. Unlike (Sereshkeh et al., 2017a)741
and (Sereshkeh et al., 2017b), in (Balaji et al., 2017) the binary questions were posed in two languages,742
namely Hindi and English. Also, (Sereshkeh et al., 2017b) is the only work that uses an online strategy for743
decoding imagined speech from EEG.744

The following conclusions can be made from the results presented in Balaji et al. (2017):745

• Though all the participants were native Hindi speakers who learned English only as their second746
language, the classification accuracy is better when the binary questions are posed in English rather747
than in Hindi. This is contrary to what one might expect.748

• When the responses to all the questions (both Hindi and English) are pooled together and used for749
classification, only rarely does the classifier make a cross-language prediction error. This might be750
because of the distinct language-specific sites present in the brain of bilinguals (Lucas et al., 2004).751

Based on Cohen’s κ values given in Table 5 (sl. no. 6 - 8), the system proposed by Balaji et al. (2017)752
performs better than those proposed by Sereshkeh et al. (2017a) and Sereshkeh et al. (2017b). This cannot753
be considered as the consequence of the classifier used since the classifiers used by Sereshkeh et al. (2017a)754
and Balaji et al. (2017) are very similar.755

Further studies are required to explain these counter-intuitive observations, much in the line of various756
studies reported in the literature on the neural differences between bilinguals and monolinguals (Marian757
and Shook, 2012; Hammer, 2017; Gangopadhyay et al., 2018).758

4.4.3 Vowel Prompts759

Four studies reviewed in this study have used vowel imagery in their paradigm. Min et al. (2016) and760
Cooney et al. (2020) have used the entire set of vowels as their prompts whereas Nguyen et al. (2017) and761
Saha and Fels (2019) have used only three vowels: /a/, /i/ and /u/. Min et al. (2016) have used a 64-channel,762
research grade Electrical Geodesics, Inc. EEG acquisition system whereas Nguyen et al. (2017) have used763
a 64-channel, research grade BrainProducts ActiCHamp EEG acquisition system, both sampled at 1000764
Hz. Both Min et al. (2016) and Nguyen et al. (2017) have downsampled the acquired data, to 250 Hz and765
256 Hz, respectively. Saha and Fels (2019) have used the EEG dataset created by Nguyen et al. (2017). On766
the other hand, Cooney et al. (2020) have used an 18-channel, commercial grade EEG amplifier (Grass767
8-18-36) for acquiring the data at 1024 Hz. This was later downsampled to 128 Hz.768

Based on Cohen’s κ values given in Table 5 (sl. no. 9 - 10), the system proposed by Saha and Fels (2019)769
performs better than those proposed by Min et al. (2016), Nguyen et al. (2017) and Cooney et al. (2020).770
Since Nguyen et al. (2017) and Saha and Fels (2019) have used the same EEG dataset, the improvement can771
be attributed to the superior classification technique used by Saha and Fels (2019). Nguyen et al. (2017),772
Saha and Fels (2019) and Cooney et al. (2020) have also tested their approach on the EEG data acquired773
when the participants were imagining articulating short words (Cooney et al. (2020): “arriba”, “abajo”,774
“derecha”, “izquierda”, “adelante” and “atrás”; Nguyen et al. (2017) and Saha and Fels (2019): “in”, “out”775
and “up”). For both Nguyen et al. (2017) and Saha and Fels (2019), there is a marginal improvement in the776
κ values when short words are used instead of vowels whereas for Cooney et al. (2020), there is a marginal777
reduction. Therefore we cannot concretely claim any advantage for short words over vowels when used as778
prompts for imagined speech.779
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5 CONSIDERATIONS IN DESIGNING A SPEECH IMAGERY BASED ONLINE BCI
SYSTEM

A speech imagery based BCI system essentially comes under the category of an endogenous BCI system780
where speech imagery is used for generating the neural activation, although cues might be used for781
generating the speech imagery(Nguyen et al., 2017). Deploying an EEG based endogenous BCI system for782
practical applications is far more difficult that using an EEG based exogenous system due to the following783
reasons:784

1. Evoked potentials and event-related potentials used in an exogenous system have higher signal-to-noise785
ratio.786

2. More number of EEG channels are required in an endogenous BCI system than an exogenous BCI787
system. Considering the longer preparation time required in a wet EEG electrode system and the788
difficulties in cleaning the scalp area after EEG acquisition, the requirement of more number of789
channels leads to the use of dry electrodes. Although recent studies have shown comparable signal790
qualities in wet and dry electrodes (Hinrichs et al., 2020; Lopez-Gordo et al., 2014), EEG recorded791
using dry electrodes are more prone to artifacts (Leach et al., 2020).792

In addition, there are more challenges when the system needs to be online, which are enumerated below:793

1. Most of the systems reviewed in this article are synchronous BCI systems which provide a less794
natural mode of communication than an asynchronous BCI system. The EEG signal generated for a795
synchronous BCI is less corrupted by artifacts since the subject could avoid eye blinks, eye movements796
etc. during the period when the actual EEG to be analyzed is captured. In an asynchronous BCI system,797
the system needs to mitigate the effects of these artifacts leading to a more complex architecture of the798
system. Also, the effect of attention towards the prompts is not well understood. That is, the observed799
neural activation might be because of the cues rather than due to the imagination. It is worth noting that800
the “no vs rest” system proposed in (Sereshkeh et al., 2017b) can be made to work in an asynchronous801
mode.802

2. The upper bound on the computational complexity of the algorithms used in the system may limit the803
efficiency of the system in removing artifacts, extracting features with high discriminability etc. This804
makes the design of a system with high accuracy more difficult. For instance, many formulations of805
the popular tool for artifact removal has high computational cost and requires high amounts of data for806
convergence. This problem can be addressed by using algorithms that detect and remove artifacts in807
real-time such as ADJUST (Automatic EEG artifact detection based on the joint use of spatial and808
temporal features) (Mognon et al., 2011) used by Nguyen et al. (2017), or other algorithms like online809
recursive ICA algorithm (ORICA) (Hsu et al., 2015) and hybrid ICA-ANC (independent component810
analysis-adaptive noise cancellation) (Jafarifarmand et al., 2017).811

3. In the case of a system with only two degrees of freedom, repeated imagination of the prompt may not812
lead to any undesirable BCI outputs but this is not the case for a system with higher number of degrees813
of freedom.814

6 CONCLUSION AND FUTURE DIRECTIONS
In spite of focused research spanning over a decade, we still do not have a system that can decode imagined815
speech from EEG with sufficient accuracy for a practical system. The algorithms that offer reasonable816
accuracy either have a very limited set of vocabulary or perform poorly for unseen subjects (whose data817
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has not been seen by the system during its training phase). Based on the review of recent works in the818
literature, the following recommendations are made:819

• Type of EEG acquisition system: Most of the works in the literature are based on the data acquired820
using EEG systems with 64 channels. Though there is an improvement in the accuracy when high-821
density EEG system is used, considering the practical difficulties in deploying a BCI system with822
high-density EEG system, it may not be feasible to have such a BCI for any practical purposes. Also,823
the efficiency of ICA algorithm plateaus near 64 channels and hence having more than 64 EEG824
channels may not help in artifact removal also. As noted in Section 2, there is a trade-off between the825
accuracy of the system and the ease with which the system can be deployed. Also, as noted in Section826
3.1, most of the works downsample the acquired EEG data to 256 Hz and hence it is not required to827
have EEG acquisition systems of high sampling rates.828

• Preferred mode of stimulus delivery: Though auditory cues have commonly been used in the829
literature, we recommend that it is best avoided since it is difficult to remove the signature of the830
auditory cue from the EEG signal recorded during speech imagery. We recommend the use of visual831
cues since the occipital lobe is not involved in speech production or comprehension and hence the832
neural signals elicited in the occipital lobe can easily be removed. Out of the 28 papers reviewed833
in this article, only one of the article deals with online decoding of imagined speech. Though many834
works use auditory cues, it needs to be investigated what exactly is giving rise to the neural response,835
whether it is the auditory cues or the imagination of the cued prompts. As mentioned in Section 1.2,836
many regions in the auditory cortex are activated during speech imagery due to efference copies. A837
system trained on the distinct neural activities due to cues or the attention towards it may not be of any838
practical significance.839

• Repeated imagination of prompts: It is observed that repeated imagination improves the840
discriminability of the neural signals elicited during speech imagery. Also, recordings with repeated841
imagination can be used to identify the set of EEG channels most informative for our purpose.842
Nevertheless, it is difficult to have a practical online BCI system that works on repeated imagination,843
especially when the number of degrees of freedom are high. Hence, although repeated imagination844
of prompts has benefits in a laboratory setting, it is difficult to extend these systems for practical845
application.846

• Choice of prompts: It has been shown in the literature that a set of prompts with different lengths and847
complexity yields better classification accuracy. It has also been shown that bilingual prompts improve848
the classification performance. In an ideal situation, speech imagery has the possibility of having many849
prompts and hence many degrees of freedom. However this aspect becomes relevant only when the850
systems achieve a level of performance adequate for deployment in a real life, online BCI system.851

• Preprocessing: The most common preprocessing step in the literature is temporal filtering. Most of852
the researchers have band-pass filtered the EEG signal in the range 2 to 50 Hz. In addition, a notch853
filter is used by most of the researchers to remove the powerline hum. If ICA is used, a high pass filter854
with a cut-off frequency in the range 1 to 2 Hz is highly recommended. If gamma band is also included855
in feature extraction, algorithms for removing EMG artifacts should be used. As noted by Saha et al.856
(2019b), it is better to avoid spatial filtering in the preprocessing pipeline. Most of the popular ICA857
algorithms currently available are not suited for real-time applications and hence other algorithms like858
those used by Nguyen et al. (2017) should be used.859

• Features and classifiers used: Most of the works that make use of traditional machine learning860
techniques such as ANN, ELM and SVM extract features from each channel independently. In the861
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case of works that use deep-learning techniques, features are usually extracted from channel cross-862
covariance (CCV) matrices. Use of CCV matrices is preferred since they better capture the information863
transfer between different brain regions. Although researchers in other fields such as speech recognition864
and computer vision have almost completely moved to deep-learning, researchers working on decoding865
imagined speech from EEG still make use of conventional machine learning techniques primarily due866
to the limitation in the amount of data available for training the classifiers.867

The following research directions have been identified:868

1. Identifying a better set of prompts which have highly discriminable EEG signatures. Identifying this869
set requires the efforts of neurobiologists and linguists. For example, one could experiment with a set870
of words, each of which contains phonemes as distinct from other words as possible, in terms of place871
and manner of articulation. Further, the effect of the language of the imagined prompt on the signatures872
of the EEG has not been explored much except in the work by Balaji et al. (2017). For instance, in873
the case of bilingual subjects, we could possibly use words from different languages and see if it874
improves the signal-to-noise ratio of the obtained responses. Also, more work needs to be carried out875
on employing prompts of different rhythms and tones. Although prompts have phonetic and/or lexical876
difference, prompts with varying length, bilingual prompts etc. have been used by several researchers,877
it is not well understood which characteristic of the prompt is causing the distinct neural activities.878
Further studies are required to understand the effect of these differences.879

2. Although EEG has very high temporal resolution compared to imaging techniques such as fMRI, EEG880
is highly corrupted by noise. Developing proper signal processing algorithms to improve the SNR of881
EEG recorded during speech imagery can help in improving the accuracy of systems for decoding882
imagined speech. The relative advantages of non-auditory cues also need to be clearly established.883

3. There is high variability between the EEG signals acquired from different participants. Even in the case884
of EEG signal acquired from the same participant, there is high inter-trial variability (Garcı́a-Salinas885
et al., 2019). Techniques to normalize the EEG acquired from different subjects and also from different886
trials of the same subject can help in reducing the calibration time of the system. This improves the887
ease with which the system can be deployed for practical applications. This is similar to the work by888
Sharon et al. (2019) where subject adaptation is used for improving the accuracy in motor imagery.889

4. Identifying better features and better machine learning algorithms can help reduce the data requirement890
during the training and calibration phases. This will also result in better classification accuracy,891
improving the practical significance of the system. Also. algorithms used to classify motor imagery892
may not be suitable for speech imagery since the laterality present in motor imagery (for eg. left hand893
imagery and right hand imagery, which have contralateral brain activation) is not there in speech894
imagery. Thus further research in the field of feature extraction techniques is necessary.895

5. The effect of sampling rate and frequency band has not been studied yet in the case of speech imagery.896
Information on the ideal sampling rate and frequency band can help in designing better BCI systems.897

6. Almost all of the current studies are based on healthy subjects. Further studies are required to understand898
how well these systems perform on patients with brain damage.899

To help budding researchers to kick-start their research in decoding imagined speech from EEG, the900
details of the three most popular publicly available datasets having EEG acquired during imagined speech901
are listed in TABLE 6.902
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