Midline EEG Functional Connectivity As
Biomarker for Conscious States in Sleep and
Wakefulness

Anusha A. S. and A. G. Ramakrishnan

Dept. of Electrical Engineering, Indian Institute of Science Bengaluru, India

e-mail: anushas@iisc.ac.in, agr@iisc.ac.in

Abstract—Functional connectivity (FC) between different cor-
tical regions of the brain has long been hypothesized to be
necessary for conscious states in several modeling and empirical
studies. The work presented herein estimates the FC between
two bipolar midline electroencephalogram (EEG) recordings
to evaluate its utility in discriminating consciousness levels
across wakefulness and sleep. Consciousness levels were defined
as Low, Medium, and High depending upon the ability of a
subject to self-report their experiences at a later stage. The
sleep EDF [expanded] dataset available in the Physionet data
repository was used for analyses. FC was estimated using the
debiased estimator of the squared Weighted Phase Lag Index
(dWPLI2) metric. A total of 40 features extracted from the
FC spectra for 10 EEG sub-bands were considered. FC trends
demonstrated the highest alpha synchrony in the ‘Low’ con-
scious state. While the ‘Medium’ conscious state demonstrated
superior phase synchronization in the low-gamma band, the
‘High’ conscious state was characterized by comparatively lower
phase synchronization in all frequency bands. A Multi-Layer
Perceptron (MLP) framework using a combination of 7 features
yielded the highest cross-validation accuracy of 95.15% in
distinguishing these conscious states. The study results provide
a pertinent validation for the hypothesis that midline EEG FC
is a reliable and robust signature of conscious states in sleep
and wakefulness.
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I. INTRODUCTION

Identifying reliable and objective neural signatures for
different states of the consciousness continuum [1] poses a
crucial medical, scientific and ethical challenge for modern
neuroscience. Although the significance of cortico-cortical
functional connectivity (FC) in different conscious states has
been explored by several empirical and theoretical studies
[2]-[4], the utility of the property as a biomarker remains
highly debated owing to (i) the range of FC measurement
involved [5], [6], (ii) the frequency bands involved in the
FC estimation, with heterogeneous proposals ranging from
comparatively faster bands like theta, alpha and gamma [7] to
slow (0.5-4 Hz) [8], or ultra-slow (< 0.01 Hz) band rhythms
[9], and (iii) the lack of uniformity in the general value of FC
when comparing different conscious and unconscious states.

This study aims to explore the utility of midline electroen-
cephalogram (EEG) based FC as a biomarker to distinctly
identify conscious states in sleep and wakefulness. A pre-
requisite for such an investigation is a clear definition for
a conscious state. A conscious state in this study is defined

as a state during which experiences result in episodic mem-
ory formation, thereby making them memorizable and self-
reportable at a later stage [10]. Following this definition,
wakefulness and sleep may be interpreted as states of varying
levels of consciousness that fluidly run into each other.

The work presented here identifies three levels of con-
sciousness across wakefulness and sleep and attempts to dis-
tinguish them by incorporating EEG-based FC measures into
machine learning frameworks. The Sleep-EDF [expanded]
dataset available for public access in the Physionet data
repository was used for analyses [11], [12]. The debiased es-
timator of the squared Weighted Phase Lag Index (dAWPLI2)
[13] was used as a metric of functional connectivity (FC)
between two midline bipolar EEG recordings viz., Fpz-Cz
and Pz-Oz. Boruta based feature selection was performed to
identify an appropriate feature subset [14], which was further
used to develop a Multilayer Perceptron (MLP) framework
[15] for discriminating conscious states during wakefulness
and sleep.

Section II describes the details of the methodology used
in the study. The study results are discussed in Section III
and conclusions are presented in Section IV.

II. METHODOLOGY
A. Dataset Description

Whole-night sleep EEG recordings of 32 age and gender-
matched subjects [16 females, and 16 males, Age: 55.7 +/-
20.3 years (mean+/-SD)] obtained from the publicly available
Physionet Sleep-EDF [expanded] database, were used for
the analyses. All subjects were healthy Caucasians who had
participated in the Sleep Cassette study and had no sleep-
related disorders. A detailed description of this benchmark
dataset provided by the PhysioNet organizer can be found in
[11], [12].

B. Data Pre-processing and Labelling

For each subject, the dataset provides polysomnography
(PSG) signals of about 20 hours, recorded during two subse-
quent day-night periods at the subjects’ homes. Two bipolar
EEG recordings obtained from Fpz-Cz and Pz-Oz electrode
locations are used for analyses in this study. Both signals
were filtered between 0.1 and 47 Hz, individually inspected,
and periods with artifacts were removed. The cleaned EEG
data were partitioned into 30s epochs so as to conform to



the guidelines of the American Academy of Sleep Medicine
(AASM) [16]. The hypnogram of each subject was used to
annotate the epochs.

The dataset uses 8 labels for annotations viz., Wake (W),
Stage 1, Stage 2, Stage 3, Stage 4 (corresponding to the range
from light sleep to deep sleep), Rapid Eye Movement (REM)
sleep (R), Movement (M), and Stage ? for any non-scored
segment. Based on the chosen definition of consciousness,
wake epochs were labeled as ‘High’, Stage 3 and 4 epochs
(deep sleep) were labeled as ‘Low’, and REM epochs were
labeled as ‘Medium’. Furthermore, all Stage 2 epochs oc-
curring in the first 90-minute sleep cycle were labeled as
‘High’, while those belonging to the last 90-minute sleep
cycle were labeled as ‘Medium’. This differential labeling of
stage 2 sleep was based on the literature which suggests that
self-reported stage 2 experiences from the first or second 90-
minute cycle of sleep are markedly different from those in
later cycles, and especially from those occurring at the end of
a sleep period in the morning [17]. The circadian peak, which
occurs at the end of the sleep cycle in the early morning
is known to stimulate better recall of experiences during
stage 2 sleep with a greater predominance of attributes such
as character interactions, emotional contents, and vividness,
much like REM sleep [18]. Studies have also shown that self-
reported experiences in stage 2 sleep at the beginning of the
sleep cycle are more ‘thought like’, and similar to the wake
stage [19], while those towards the last 90-minute sleep cycle
are more ‘dream like’, and similar to REM experiences [20].
Table I gives the number of epochs with different levels of
consciousness labeled as mentioned above.

TABLE I
SUMMARY OF EPOCHS LABELED WITH DIFFERENT LEVELS OF
CONSCIOUSNESS.
# Epochs
Low Medium High
Female 1760 4160 31083
Male 1166 3927 30717
Combined 2926 8087 61800

C. Functional Connectivity Estimation

The functional connectivity between the two bipolar EEG
signals was computed using the debiased estimator of the
squared Weighted Phase Lag Index (dWPLI2). The metric
proposed by Vinck et al. [13] is a measure of phase synchro-
nization that is based solely on the imaginary component of
the cross-spectrum of two time series and is not spuriously
affected by the volume conduction artifacts. Mathematically,
dWPLI2 can be expressed as:
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where Im{X} denotes the imaginary component of the
cross-spectrum of the complex-valued random-variable X
and N denotes the number of trials.

In comparison to the previous phase synchronization mea-
sures based on the imaginary component of the cross-
spectrum, the dWPLI2 metric is known to have increased

dWPLI2 = (1)

sensitivity to detect true interactions (even when the interact-
ing sources are spatially close) [13], [21], [22] and increased
robustness to noise [23], [24]. Furthermore, the metric also
debiases connectivity based on the number of epochs thereby
preventing any sample size bias from being introduced by a
direct estimator [13]. This debiasing can cause the dWPLI2
to be negative and, therefore its value, ranges from —1 to 1.

D. Feature Extraction

FC estimations were done in 10 specific EEG bands, and
four descriptive statistical features viz., Average FC value,
Maximum FC value, Peak frequency (frequency correspond-
ing to maximum FC value), and FC spectrum density (FCSD)
were extracted from each band. Thus, a total of 40 features
were estimated for each epoch. Table II summarizes the
feature set.

E. Feature Selection and Classification

Feature selection is an important pre-processing step in the
machine learning pipeline which helps to identify a subset of
the most pertinent features and enhance predictive modeling
[25]. Boruta, an “all-relevant” feature selection algorithm was
used in this study, to identify a subset of relevant features.
Unlike the popular feature selector algorithms, Boruta yields
a set of all appropriate features from the feature set instead
of selecting only the non-redundant ones. The algorithm
identifies a feature as being relevant if there is a subset
of attributes in the dataset among which the feature is not
redundant when used for prediction [14].

The Boruta-selected features were further ranked by com-
puting a score for each feature independently according to
the Fisher criterion [26]. The identification of conscious
states during sleep and wakefulness was formulated as a
3-level classification problem. As can be seen from Table
I, the longer duration of the wakefulness phase in the data
collection protocol has resulted in a class imbalance. Such an
imbalance may bias the classification algorithms for always
predicting the majority class thereby giving high accuracy but
a low generalization. Therefore an imbalance correction using
Synthetic Minority Over-sampling Technique (SMOTE) [27]
was performed.

A Multilayer Perceptron (MLP) model - one of the pro-
ficient methods of classification from the artificial neural
network (ANN) domain - was chosen as the classifier [15].
In order to identify the minimal-optimal feature subset, the
ranked features were fed as input to the MLP model, starting
from the first feature (with the highest Fisher score) and
subsequently adding other features, one at a time, in the
decreasing order of Fisher score. The 10-fold cross-validation
accuracy was chosen as the performance index.

III. RESULTS AND DISCUSSIONS

As mentioned in section II.D, the dWPLI2 metric was
computed for every epoch in the ‘Low’, ‘Medium’, and
‘High’ conscious states. Fig. 1 illustrates the grand average
of the dWPLI2 spectra for three conscious states across 32
subjects in the 0.5 - 45 Hz range.



TABLE I
LIST OF ALL FEATURES CONSIDERED FOR ANALYSIS

Low Delta- Theta- Alpha- Beta- Low
EEG Band Delta Delta Theta Theta Alpha Alpha Beta Beta Gamma | Gamma
Frequency range (Hz) 0.5-4 1-2.5 2-5 4-8 4-10 8-12 8-20 12-30 16-40 30-45
Feature Feature ID
Average FC FO1 F02 FO3 Fo4 FO5 F06 FO7 FO8 F09 F10
Maximum FC F11 F12 F13 F14 F15 Fl16 F17 F18 F19 F20
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Fig. 1. dWPLI2 spectra of Low, Medium, and High conscious states, Fé ]
averaged across 32 subjects. k1 ]
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As can be seen, the ‘High’ conscious state is characterized [? —
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by comparatively lower phase synchronization in all fre- 1 Reject 0 Confirm h

quency bands. This is in line with the existing literature which
suggests that EEG in the head midline is desynchronized
during conscious wakefulness, as different regions of the
brain are involved in different functions [28]. While the
‘Low’ conscious state exhibited the highest alpha synchrony,
the ‘Medium’ conscious state illustrated superior phase syn-
chronization in the low-gamma band. The episodic memory
formation during the ‘Medium’ conscious state which enables
self-reporting of experiences at a later stage can be attributed
to the low-gamma band synchronization, which provides for
the optimal temporal relationship between two signals to
produce long-term synaptic changes that have been theorized
to underlie episodic memory formation [29].

A total of 40 features were extracted from the dWPLI2
spectra, as explained in Section IL.D. Further, an “all-
relevant” feature subset was identified using Boruta. Boruta
identified 24 of these features to be relevant. Fig. 2 summa-
rizes the results.

As one can see, all FC-based features from the delta, delta-
theta, and theta bands were rejected by Boruta, indicating that
they are weakly relevant to the classification problem under
consideration. Fisher score was computed for the selected
features and they were ranked based on their scores, as shown
in Fig. 3.

Ranked features were further used as input to construct
MLP classifier models using sigmoid functions, and trained
with standard backpropagation algorithm. The number of
hidden layers, learning rate, and momentum rate for the
backpropagation algorithm was carefully chosen for every
input feature set, to achieve the best prediction. Fig. 4 shows
the cross-validation accuracies achieved as a function of

Boruta Decision

Fig. 2. Feature selection using Boruta. 1 indicate features confirmed as
significant. -1 indicate features rejected by Boruta.
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Fig. 3. Fisher score based ranking of Boruta-selected features.

increasing number of features, included in the decreasing
order of Fisher score.

As one can see, a combination of 7 features yielded
the highest classification accuracy of 95.15%. The model
involved 4 hidden layers. A learning rate of 0.59 and a
momentum rate of 0.48 were chosen for the model. Selected
features corresponded to 5 EEG bands viz., Alpha, Beta,
Low-Gamma, Theta-Alpha, and Alpha-Beta. The predomi-
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Fig. 4. Cross-validation accuracy for the MLP classifier during step-by-step
inclusion of features, in the decreasing order of Fisher Score.

nance of features from comparatively higher frequency bands
is in line with the existing literature which suggests that
episodic memory formation and recall is associated with
synchronized activity in the theta and gamma bands, as well
as desynchronized activity in the alpha and beta bands [30].
It also strengthens the rationale that different conscious states
are associated with different levels of memory formation and
retrieval.

IV. CONCLUSIONS

The work presented here establishes the utility of midline
EEG functional connectivity as a means to identify conscious
states in sleep and wakefulness. Further studies involving
whole-brain and cortico-cortical connectivity across different
brain regions are required to identify if any specific FC
patterns are associated with these states.

The study utilized memory formation and recall levels as-
sociated with conscious wakefulness and sleep stages to dif-
ferentiate the conscious states. As such, this can be envisaged
as the first step towards understanding the role of memory in
the underlying neural mechanisms of consciousness and its
alterations. Extending this line of thought to other conscious
states like anesthesia, meditation, breath-focussed yoga, and
coma is the way forward.
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