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Abstract—Understanding neural correlates of consciousness
and its alterations poses a grand challenge for modern neu-
roscience. Even though recent years of research have shown
many conceptual and empirical advances, the evolution of a
system that can track anesthesia-induced loss of consciousness
is hindered by the lack of reliable markers. The work presented
herein estimates the functional connectivity (FC) between 21
scalp electroencephalogram (EEG) recordings to evaluate its
utility in characterizing changes in brain networks during
propofol sedation. The sedation dataset in the University of
Cambridge data repository was used for analyses. FC was
estimated using the debiased estimator of the squared Weighted
Phase Lag Index (dWPLI2). Spectral FC networks before,
during, and after sedation was considered for 5 EEG sub-bands.
Results demonstrated significantly higher alpha band FC during
baseline, mild and moderate sedation, and recovery stages. A
striking association between frontal brain activity and propofol-
sedation was also noticed. Furthermore, inhibition of frontal
to parietal and frontal to occipital connections were observed
as characteristic features of propofol-induced alterations in
consciousness. A random subspace ensemble framework using
logistic model tree as the base classifier, and 18 functional
connections as features, yielded a cross-validation accuracy of
98.75% in discriminating baseline, mild and moderate sedation,
and recovery stages. These findings validate that EEG-based FC
can reliably distinguish altered conscious states associated with
anaesthesia.
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I. INTRODUCTION

Identifying robust and objective signatures for conscious-
ness and its alterations induced either naturally as in sleep,
or meditation, and externally as in disorders of consciousness
(DoC) or drug-induced sedation, is a challenge for modern
neuroscience. Although several standardized questionnaires
like the Coma Recovery Scale (CRS-R) [1], and Richmond
Agitation-Sedation Scale (RASS) [2] exist, and are even
considered as gold standards for identifying altered states
of consciousness associated with DoC or sedation, adminis-
tering them requires knowledge and expertise of clinicians.
Moreover, these questionnaires are heavily based on changes
in behavioral responses and lack any evidence of a subject’s
conscious content, thus making them rather subjective and
prone to diagnostic errors [3].

The study reported herein investigates surface electroen-
cephalography (EEG) based functional connectivity (FC) as
an objective marker for the reversible altered conscious states
induced by propofol, an anaesthetic drug commonly used
in clinical medicine [4]. Even though EEG is relatively
economic, easy to measure from the scalp, and has long

been known to implicate anaesthetic-induced changes in brain
dynamics [5], EEG-based assessment of depth of anaesthesia
in an individual is still not widely used in clinical settings.
This is despite the fact that intraoperative awareness during
anaesthesia continues to result in pain and prolonged and
unwanted outcomes, including post-traumatic stress disorder
or depression in patients [6]. The absence of a reliable
‘depth of anaesthesia’ monitor in an operating room can
be partly attributed to the lack of robust EEG markers
which can reliably track the loss and re-establishment of
consciousness [7], [8]. This study attempts to incorporate
EEG-based FC measures into machine learning algorithms to
establish a classification scheme that can distinctly identify
altered conscious states during anaesthesia.

The sedation dataset available for public access in the
University of Cambridge data repository [9] was used for
analyses. The debiased estimator of the squared Weighted
Phase Lag Index (dWPLI2) [10] was used as a metric of FC
between 21 EEG electrode sites, covering the whole brain.
FC between all possible pairs of electrodes was computed
and used as features for the proposed classification scheme.
Boruta based feature selection was performed to identify an
appropriate feature subset [11], which was further used to de-
velop a random subspace ensemble classifier framework [12]
for discriminating altered conscious states during anaesthesia.

II. METHODOLOGY

A. Dataset Description
The propofol sedation database available for public access

in the University of Cambridge Data Repository [9] was used
for analyses presented in this paper. The dataset comprises
EEG recorded in 20 healthy participants [11 females, and
9 males, Age: 30.9 +/- 11.0 years (mean+/-SD)], who were
given the sedative propofol. For each participant, there are 4
datasets each with approximately 7 minutes of EEG at rest,
recorded at baseline, during mild sedation (propofol concen-
tration measured in blood plasma is 0.6 μg/ml), moderate
sedation (propofol concentration measured in blood plasma
is 1.2 μg/ml), and finally at recovery.

B. Data Pre-processing and Labelling
EEG data sampled at 250Hz from 21 channels over the

scalp surface as per 10-20 system (Fig. 1) were used for
analysis. Time series data were filtered between 0.5-45Hz,
segmented into 10-second epochs, cleaned and preprocessed
to remove artifacts, and referenced to the average of all
channels.



Fig. 1. EEG electrode placement covering all lobes

The generated epochs were further labeled as baseline
(BL), mild, moderate (MOD), and recovery (REC) based on
the data collection phase. TABLE I illustrates a summary of
generated epochs.

TABLE I
SUMMARY OF EPOCHS GENERATED

Label BL MILD MOD REC

# Epochs 755 780 751 796
Total: 3082

C. Functional Connectivity Estimation

FC between all possible pairs of EEG electrodes was
computed using the dWPLI2 metric, resulting in a feature
vector of dimension 210 for each epoch. The metric proposed
by Vinck et al. [10] is a measure of phase synchronization
that is based solely on the imaginary component of the cross-
spectrum of two time series. Mathematically, dWPLI2 can be
expressed as:

dWPLI2 =

∑N
j=1

∑
k 6=j Im{Xj}Im{Xk}∑N

j=1

∑
k 6=j |Im{Xj}Im{Xk}|

(1)

where Im{X} denotes the imaginary component of the
cross-spectrum of the complex-valued random-variable X
and N denotes the number of trials.

In comparison to the previous phase synchronization mea-
sures, the dWPLI2 metric is known to have increased sen-
sitivity to detect true interactions (even when the interacting
sources are spatially close) and increased robustness to noise
[13], [14]. Furthermore, the metric also debiases connectivity
based on the number of epochs, thereby preventing any
sample size bias from being introduced by a direct estimator
[10]. This debiasing can cause the dWPLI2 to be negative
and, therefore, its value ranges from −1 to 1.

D. Feature Selection and Classification

The FC metric was computed separately for 5 specific EEG
bands viz., Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-12
Hz), Beta (12-30 Hz), and Low Gamma (30-45 Hz).

This was followed by feature selection, which is an im-
portant pre-processing step in the machine learning pipeline
to identify a subset of the most pertinent features. Boruta,
an “all-relevant” feature selection algorithm [11] was used in
this study. It yields a set of all appropriate features from the

feature set instead of selecting only the non-redundant ones.
Boruta-based feature selection was done separately for each
EEG band to identify all appropriate functional connections
in each band.

The identification of conscious states during anaesthesia
was formulated as a 4-level classification problem with BL,
MILD, MOD, and REC as target classes. A random subspace
ensemble (RSE) learning framework [12] was used for classi-
fication. RSE has recently gained more attention in functional
magnetic resonance imaging (fMRI) based classification of
brain images and was found to be more effective than some
of the most widely used classifier ensembles such as Bagging,
AdaBoost, Random Forest, and Rotation Forest [15].

In RSE, the training data is modified such that random
subspaces of feature space are chosen and classifiers are
built for each subspace. The results of these classifiers with
different accuracy scores are further aggregated by utilizing
a majority voting. Thus, RSE benefits from the aggregated
decision of such classifiers and provides better predictive
results than a single classifier built on the original training
set in the entire feature space [16]. Four parameters viz., base
classifier, number of iterations, seed and subspace size were
tuned carefully during the implementation of RSE so as to
achieve the best performance. Eight classifiers viz., Naive
Bayes, REP Tree, Random Tree, Multilayer Perceptron, k-
NN, SVM, Random Forest, and Logistic Model Tree were
applied to identify the best base classifier. The 10-fold cross-
validation accuracy was chosen as the performance index.

III. RESULTS AND DISCUSSIONS

The whole-brain functional connectivity in 5 EEG bands
viz., delta, theta, alpha, beta, and low-gamma during baseline,
mild and moderate sedation, and recovery stages were as-
sessed to investigate the impact of propofol on the oscillatory
neural interactions. The assessment was done by averaging
FC values of all 210 connections across multiple epochs for
each band during specific stages. Results are summarized in
Fig.2.

A pairwise comparison of means was performed using the
Bonferroni’s method to determine if the differences are statis-
tically significant. As can be seen from Fig.2, the alpha band
FC is significantly higher during baseline, mild and moderate
sedation, and recovery stages. It may also be noted that
the connectivity in the alpha band decreases as the sedation
level increases from mild to moderate, although the decrease
is not statistically significant. Nevertheless, the alpha band
connectivity increases significantly as subjects proceed to
the recovery stage from the moderate sedation stage, indi-
cating that alpha connectivity is indeed compromised during
sedation. This warrants a more detailed investigation of the
connectivity in the alpha band. Fig. 3 is an illustration of the
average alpha band connectivity map of 20 subjects during
four stages of the sedation study.



Fig. 2. Summary of whole-brain connectivity changes during different
experimental phases. Significant differences after multiple comparisons using
Bonferroni’s method are presented.

Fig. 3. Alpha band whole-brain connectivity maps during different experi-
mental phases, averaged across 20 subjects.

The map demonstrates that the loss of consciousness
during moderate sedation is accompanied by a decrease
in corticocortical connectivity from frontal to parietal and
occipital regions of the brain. This, in turn, contributes to
the overall reduction in whole-brain connectivity. However,
it may be noted that these connections are more or less
preserved during mild sedation. These findings converge with
the existing literature that highlights the reduction in the
efficiency of cortical networks during propofol sedation [7],
[17]. A similar disintegration in the alpha connectivity has
also been reported with other anaesthetic agents like ketamine
and sevoflurane [18], [19].

Further, Boruta based feature selection was performed
separately for each specific EEG band to identify the “all-
relevant” feature subset, that can effectively distinguish the
target classes. Results are summarized in TABLE II.

TABLE II
CONNECTIONS CONFIRMED AS SIGNIFICANT BY BORUTA

EEG Band # Connections Significant Connections
Delta 4 Fz-F7, Fpz-C4, Fp1-T4, F4-Cz
Theta 3 Fz-C4, Fz-Cz, Fpz-F8
Alpha 7 Fp2-C4, Fpz-P3, Fpz-O2, Fpz-C4,

F3-F4, T4-T5, F8-C4
Beta 3 Fpz-Fz, Fp1-Fz, Fp1-F3

Low Gamma 1 Fp2-F4

It may be noted that 17 out of 18 connections identified
as significant, involve electrodes in the frontal lobe of the
brain. Also, a total of 7 connections belong in the frontal
region. These may be indicative of an association between
frontal brain activity and propofol-induced unconsciousness.
In this context, it is worth noting that wave-like patterns in the
frontal EEG are known to provide an estimation of intraoper-
ative anaesthetic depth during sevoflurane surgical anaesthe-
sia [20]. Two connections along the anterior-posterior axis of
the brain viz., Fpz-P3, Fpz-O2 were identified as significant
in the alpha band. This is in line with previous evidence
highlighting the inhibition of frontal to parietal and frontal
to occipital connections as neurophysiologic correlates of
general anaesthesia [21] and disruption of frontal-parietal
communication as a common feature of anaesthesia-induced
alterations in consciousness [22].

The Boruta-selected connections were further used as
features to develop RSE frameworks for classification. The
performance measures of classification models developed
using features from specific EEG bands as well as their
concatenation are summarized in TABLE III.

It may be noted that the highest cross-validation accuracy
of 98.75% was achieved while using all 18 features spread
across 5 EEG sub-bands. Logistic Model Tree was used as
the base classifier for the model. The maximum number
of iterations was set at 10, seed at 1, and the subspace
size at 0.51 to achieve this performance. This accuracy is
higher than some of the recent works reporting the use of
EEG-based spectral analysis and machine learning techniques
to estimate the depth of anesthesia. Mirsadeghi et al. [23]
studied 25 subjects and developed a machine learning method
to distinguish awake and anesthetized patients using EEG
features like power in different bands (delta, theta, alpha,
beta, and gamma), total power, spindle score, and entropy.
They reported an accuracy of 88.4%. Similarly, Shalbaf et al.
[24] used multiple EEG features to classify four states viz.,
awake, light, general, and deep anesthesia, during sevoflu-
rane sedation. The model yielded an accuracy of 92.91%
and demonstrated generalizability on propofol and volatile
anesthesia patients with 93% accuracy.

Classification accuracy of the reported order, yielded by
the proposed model, is indeed an indication of the utility of
functional connections across the human brain as characteris-
tic signatures and potentially reliable correlates of conscious
states associated with propofol sedation. The fact that the
proposed classification framework utilizes only 18 functional
connections involving 14 EEG channels has entailed advan-
tages in a clinical setting. The reduced number of electrodes
can make the system less cumbersome. Moreover, as a
majority of these electrodes are in the frontal lobe, it allows



TABLE III
PERFORMANCE MEASURES OF DIFFERENT CLASSIFICATION MODELS

EEG Band: Delta EEG Band: Theta
Class Accuracy (%) TP Rate FP Rate ROC Area PRC Area Accuracy (%) TP Rate FP Rate ROC Area PRC Area
BL

52.50

0.60 0.15 0.78 0.60

42.50

1.00 0.47 0.77 0.42
MILD 0.35 0.03 0.87 0.70 0.00 0.00 0.57 0.28
MOD 0.70 0.27 0.79 0.59 0.70 0.30 0.70 0.38
REC 0.45 0.18 0.73 0.53 0.00 0.00 0.50 0.25

EEG Band: Alpha EEG Band: Beta
BL

43.75

0.00 0.00 0.52 0.26

43.75

0.75 0.32 0.78 0.54
MILD 0.00 0.00 0.55 0.27 0.10 0.08 0.58 0.31
MOD 0.85 0.28 0.78 0.46 0.75 0.25 0.82 0.60
REC 0.90 0.47 0.72 0.38 0.15 0.10 0.58 0.32

EEG Band: Low Gamma EEG Band: 0.5-45 Hz
BL

42.50

0.60 0.18 0.73 0.43

98.75

1.00 0.02 1.00 1.00
MILD 0.45 0.23 0.62 0.33 1.00 0.00 1.00 1.00
MOD 0.65 0.35 0.70 0.36 0.95 0.00 1.00 1.00
REC 0.00 0.00 0.59 0.30 1.00 0.00 1.00 1.00

Accuracy: Proportion of unseen instances that are correctly classified during the 10-fold cross-validation; True Positive rate (TP Rate): Proportion of positive instances that are
correctly classified as positive; False Positive rate (FP Rate): Proportion of negative instances that are erroneously classified as positive; ROC area: Area under the Receiver
Operating Characteristics (ROC) curve; PRC area: Area under the Precision/Recall (PRC) plot.

for rapid placement of electrodes below the hairline. Results
also highlight that a learning model developed using only
alpha band features can distinguish the moderate sedation
and recovery phases reliably. This is of utmost significance
in the context that the sedation safety standards put forth by
the Association of Anaesthetists of Great Britain and Ireland
(AAGBI) [25] has identified the transition from sedation to
recovery as a period of high risk to the patient and has
recommended continued monitoring until full recovery.

IV. CONCLUSIONS

The work presented here attempts to identify differences if
any, in the FC at different levels of consciousness associated
with propofol sedation: from the overall connectivity strength
in each state to the numbers of connections of particular brain
areas, and disruptions of specific functional correlations. This
is envisaged as a precursor to further studies that will help
in understanding the neuronal basis of consciousness and its
alterations, thereby enabling the discovery of objective and
accurate markers for them.
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