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Abstract— This work proposes a method utilizing the fusion
of graph-based and temporal features for sleep stage identi-
fication. EEG epochs are transformed into visibility graphs
from which mean degrees and degree distributions are obtained.
In addition, autoregressive model parameters, Higuchi fractal
dimension, multi-scale entropy, and Hjorth’s parameters are
calculated. All these features extracted from a single EEG
channel (Pz-Oz) are fed to an ensemble classifier called ran-
dom undersampling with boosting technique. Two different
approaches i.e. 10-fold crossvalidation and 50%-holdout are uti-
lized to evaluate the performance of the model. Cross-validation
accuracies of 91.0% and 97.3%, and kappa coefficients of
0.82 and 0.94 are achieved for 6- and 2-state classifications,
respectively, which are higher than those of existing studies.

Clinical relevance— Automatic and reliable sleep stage clas-
sification can reduce the burden of sleep experts in analyzing
overnight sleep data (∼ 8 hours). It can also assist them to find
specific traits of interest such as spindle density, by providing
annotated sleep data (hypnogram), thereby eliminating the need
for tedious and expensive manual scoring. An accurate 2-state
(wake/sleep) classification is also crucial for the patients with
disorders of consciousness, where stimulation during wake state
is considered more effective than that in sleep state.

I. INTRODUCTION

Sleep is the most crucial aspect of a healthy life and lack
of sleep leads to numerous health issues such as depression,
anxiety or even death. Thus, the analysis of sleep patterns
can help in the early detection of neurological disorders
such as dementia, schizophrenia, depression or Parkinson’s
disease [1]. Currently, the gold standard for the evaluation
of sleep is overnight polysomnography (PSG) which records
multiple physiological signals such as electroencephalogram
(EEG), electrooculogram (EOG), electromyogram (EMG)
and respiration. However, this requires the experts to visually
inspect the whole overnight data (∼ 8 hrs) and annotate
them based on the scoring guidelines of Rechtschaffen and
Kales (R&K) [2] or American Academy of Sleep Medicine
(AASM) [3]. R&K defines six sleep stages namely Wake,
four non-rapid eye movement (NREM) stages: S1, S2, S3,
S4 and a rapid eye movement (REM) stage. Manual scoring
is tedious, subjective and expensive. Automated sleep scoring
can reduce the time and cost involved. This has resulted in
an upsurge in the number of research studies involved in
developing a reliable and automatic sleep staging method
that can replace the traditional way of sleep scoring. The
existing sleep stage classification methods have used a wide
variety of features extracted from EEG, EMG or EOG signals
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[4, 5, 6, 7, 8]. Most of these studies have used features
such as spectral edge frequency, bandpower ratios, wavelet
or Wigner-Ville distribution (WVD) to extract both time-
frequency information embedded in the signal. Non-linear
features such as complexity, fractal dimension, detrended
fluctuation analysis, sample entropy, Lyapunov exponent, and
teager energy operator have been used by several studies
to distinguish between different sleep stages. Further, some
studies have also employed neural network and deep learning
techniques such as recurrent neural network (RNN), long
short-term memory (LSTM) network, convolutional neural
network (CNN), transfer learning and attention mechanism
approach to classify multiple sleep stages. In recent years,
graph theory based time series analysis has drawn a huge
attention in neuroscience. Visibility graph (VG), proposed
by Lacasa et. al. [9], has been employed by a few studies to
analyze ECG or EEG signals. Also, a modified VG called
horizontal VG (HVG) is used in some studies for assessing
the chaotic characteristics of EEG. Although a lot of work
has been done in sleep stage identification, 5-state classi-
fication accuracy is still in the range 80%-90% which can
definitely be improved [6, 7, 10, 11, 12]. Most works have
utilized a large set of features or computationally expensive
approaches like deep learning, or multiple signals including
EMG, EOG and multi-channel EEG. Hence, there is a scope
for improvement by working on any of these issues. In
this work, our objective is to provide a single-channel EEG
based efficient sleep scoring method by utilizing limited and
relevant features that can effectively capture EEG signatures
of different sleep stages.

II. MATERIALS AND METHODS

A. Experimental Data
The Expanded Sleep-EDF database is utilized in this study,

which is publicly available on Physionet [13]. The recordings
consist of horizontal EOG, and two EEG channels i.e. Fpz-
Cz and Pz-Oz, sampled at 100 Hz. These are scored on
the basis of 30s epochs according to R&K manual. Hence,
each epoch comprises 3000 samples. We have considered the
EEG recordings of 20 subjects and the corresponding epoch
distributions for different sleep stages are shown in Table 1.

TABLE I
EPOCH DISTRIBUTION OF 20 SUBJECTS FROM EXPANDED SLEEP EDF

DATABASE. S.S.: SLEEP STAGE; N.E.: NUMBER OF EPOCHS.

S.S. W S1 S2 S3 S4 REM Overall
N.E. 36949 1727 8779 1553 1174 4234 54416



Fig. 1. Flowchart of the proposed method

B. Methodology

The flowchart of the proposed method is shown in Fig. 1.
The raw EEG signal is passed through an IIR butterworth
bandpass filter with passband frequencies ranging from 0.5
to 49.5 Hz to remove line noise, DC offset and slow drifts.
We have segmented the EEG signal into 30s epochs as per
the ground truth format. The segments marked with no score
or movement time are discarded. Time-domain and graph-
based features are extracted from the segmented EEG signals.
These features are fed to RUSBoost classifier to perform the
classification of multiple sleep stages. The subsections below
present a detailed description.

1) Features extracted from visibility graph: Visibility
graph (VG) was proposed by Lacasa et. al. [9] to characterize
a time series by a graph. Every node in a VG corresponds
to a data sample and two nodes are connected if visibility
exists between them. In other words, all the samples in
between have values less than the value predicted by a linear
interpolation. Thus, the visibility criterion is defined as.

yc < yb + (ya − yb)
tb − tc
tb − ta

(1)

where (ta, ya) and (tb, yb) are two arbitrary data points
represented as nodes in the graph. These nodes will be visible
and hence connected, if another data point (tc, yc) placed
between them satisfies the above visibility criterion.

For illustration, Fig. 2 shows a time series x(n) =
(0.46, 0.78, 0.39, 0.55, 0.25, 0.65, 0.12, 0.44, 0.29, 0.58),
where each vertical bar represents a data sample. Here,
nodes 2 and 6 are visible and hence connected, since all
the data points between them satisfy the visibility criterion.
The VG corresponding to the time series is also shown
in the figure. The degree of a node is defined as the
number of edges connected to it. For instance, the degree
of node 2 (representing x(2) = 0.78) is 5. We can obtain
a degree sequence for this VG by listing the degrees of
each node as (1, 5, 2, 4, 2, 6, 2, 4, 2, 4) and mean degree
(MD), which is the average of the degree sequence. Another
parameter called degree distribution (DD) refers to the
probability that a node has degree ’k’. This is obtained as
the ratio of the number of nodes with degree ’k’ to the total

Fig. 2. Conversion of a time series into a visibility graph. The top figure
shows an example time series and the connectivity among the individual
samples treated as nodes. Here, each vertical bar represents the value of a
data sample. Nodes 2 and 6 are visible and hence connected, since all the
data points between them satisfy the visibility criterion. The bottom figure
shows VG corresponding to the time series.

number of nodes. Here, we denote DD as P (k). In Fig.
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it is less likely for the nodes to have a higher degree, we
consider the first few values of P (k) based on its ability
to distinguish among different sleep stages. In order to
obtain VG from the EEG signal, each epoch is mapped
into a graph and its mean degree and degree distributions
are computed. The degree distribution P (k) for different
values of k is shown in Fig. 3 for one of the subjects. From
the figure, it is clear that the degrees ranging from 1 to 5
suffice to distinguish between multiple sleep stages. Hence,
we considered MD and P (k) (k from 1 to 5) as the features
derived from VG.

2) Features extracted from temporal characteristics: We
extracted four time-domain features namely auto-regressive
model parameters, Hjorth’s parameters, Higuchi fractal di-
mension and multi-scale entropy from the EEG signal.
These features have been selected in particular because they
have shown good results in classification problems in many
studies, including our previous work [4, 5, 6].



Autoregressive (AR) model: This parametric model repre-
sents a sequence as a linear combination of past observations
weighted by coefficients a1, a2, ....ap where p is the order of
the model. Here, we have used 8th order AR model based
on our previous study [4].

x[n] = −
p∑

i=1

aix[n− i] + e[n] (2)

Higuchi fractal dimension (HFD): Fractal dimension quan-
tifies the geometrical structures of a signal at multiple
scales. Many algorithms exist for estimating it, out of which
Higuchi’s [14] is the most accurate.

Hjorth’s parameters: We have used three Hjorth’s pa-
rameters i.e. activity, mobility and complexity to assess the
statistical properties of the signal in the time domain. All
these parameters are computed by using the variance of the
signal and its first and second order derivatives [15].

Multi-scale entropy (MSE): This measures the complexity
of signals across multiple time scales, which is inherent in
biological signals such as EEG and ECG. We have used the
sample entropy method for calculating MSE.

yτ =
1

τ

kτ∑
i=(k−1)τ+1

xi, 1 ≤ k ≤ N

τ
(3)

The original time series xi (length N ) is converted into
a coarse-grained series yτ by taking the average of all the
samples within each non-overlapping window of length τ
(refer eqn. 3). Thus, the length of this coarse-grained time
series is N/τ whose sample entropy is computed for multiple
scales (varying values of τ ). Sample entropy involves the pa-
rameters r,m and τ , where r is the tolerance of acceptance,
m is the dimension of sequence and τ is the scale factor.
We use the values of m = 2 and r = 0.15 times standard
deviation, as suggested by Liang [6]. We consider the mean
of the MSE values across 3 scales (τ = 1, 2 and 3) since the
performance did not improve beyond the value of τ = 3.

3) Classification: In sleep staging, the epochs very un-
even distribution across different stages, as seen in Table I.
We use the ensemble classifier random undersampling with
boosting technique (RUSBoost) for sleep stage classification,
since it tackles the class-imbalance problem effectively. The
n-class (n ∈ {6, 5, 4, 3, 2}) classification problems consid-
ered in this study are listed in Table II.

TABLE II
DESCRIPTION OF VARIOUS N-CLASS CLASSIFICATION PROBLEMS USING

R&K SCORING.

Classes Classification criteria
6 W Vs REM vs S1 vs S2 vs S3 vs S4
5 W Vs REM vs S1 vs S2 vs (S3+S4)
4 W vs REM vs (S1+S2) vs (S3+S4)
3 W vs REM vs NREM (S1+S2+S3+S4)
2 W vs Sleep (S1+S2+S3+S4+REM)

III. EXPERIMENTAL RESULTS

We experimented with each of the two available EEG
channels (Fpz-Cz and Pz-Oz) and found Pz-Oz to provide

a slightly better performance. Hence, all the results reported
are for channel Pz-Oz. To evaluate the statistical significance
of the features considered, we used Kruskal-Wallis test [16].
All the features have p < 0.001 and hence are statistically
significant. Fig. 4 shows the box plot of the MDs across
multiple sleep stages; MD increases as the subject progresses
from lighter to deep sleep, while REM has the least MD
value. This is due to the less number of transitions to
the REM stage. A similar trend is obtained across all the
subjects. Fig. 5 presents the 5-state hypnogram for a subject
generated by the proposed method and the experts’ score. It
can be observed that most of the epochs (2668 out of 2774
epochs=∼ 96.2%) are correctly classified by the proposed
method, however there are some spurious jumps at the
transitions from one state to another.

Table III shows the confusion matrix between the scores
of the expert and our algorithm for 5-state classification
with 10-fold cross-validation. It also lists the sensitivity and
specificity values for each sleep state. It is evident from the
confusion matrix that most of the epochs of N1 stage are
misclassified as wake or REM stage, which results in a low
sensitivity value (< 40%). The classification accuracy for
different classification problems using both 10-fold cross-
validation and 50% holdout (averaged over 5 different runs;
each run with randomly selected 10 subjects for training and
rest 10 subjects for testing) are presented in Table IV. It
also compares the performance of our work with some of the
existing studies using this dataset. The kappa coefficients (κ)
corresponding to n-state classification (n varying from 6 to 2)
are 0.82, 0,85, 0.86, 0.89, and 0.94, respectively, indicating
an excellent agreement between the scorings provided by our
method and those of experts.

Fig. 3. Log-log plot of degree distribution P(k) across the 6 sleep stages
(W, S1, S2, S3, S4 and REM) for a subject as a function of the value of k.
black: W; red: S1; green: S2; magenta: S3; cyan: S4; blue: REM.

IV. DISCUSSION

We use the novel time-series analysis method called vis-
ibility graph for sleep scoring. The highlight of this work
is that a high cross-validation accuracy (91% − 97%) and
κ value (0.82− 0.94) are achieved for different n−class (n



Fig. 4. Box plot showing the 25th, 50th and 75th percentile of MDs over
the epochs for the different sleep stages (W, S1, S2, S3, S4 and REM) for
a subject. (Outliers shown by ’+’ and range by the black horizontal lines).

TABLE III
CONFUSION MATRIX, SENSITIVITY AND SPECIFICITY FOR 5-STATE

CLASSIFICATION AS PER AASM SCORING (EXP.: EXPERT, ALGO.
:ALGORITHM, SENS.: SENSITIVITY, SPEC: SPECIFICITY)

Exp./Algo. W N1 N2 N3 REM Sens. Spec.
W 36488 198 76 19 168 98.8 98.1
N1 361 639 252 18 457 37.0 42.7
N2 166 340 7087 571 615 80.7 89.7
N3 14 10 222 2479 2 90.9 80.0

REM 170 308 264 13 3479 82.2 73.7

varies from 6 to 2) classification problems by utilizing a
minimal set of features (4 temporal and 2-VG derived) and
a single EEG channel. The results indicate the effectiveness
of our algorithm for reliable sleep stage identification. The
method exploits the knowledge of sleep domain and uses a
finite number of features that distinguish between different
sleep stages. Hence, it is computationally efficient unlike the
deep learning-based methods. A limitation of this study is the
low sensitivity for N1 stage which gets misclassified as REM
or wake state. Our future work will focus on the improvement
of accuracy for N1 sleep stage detection.
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