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Abstract. We present a novel architecture for classifying imagined words
from electroencephalogram (EEG) captured during speech imagery. The
proposed architecture employs a sliding window with overlap for data
augmentation (DA) and common spatial pattern (CSP) in order to de-
rive the features. The dimensionality of features is reduced using linear
discriminant analysis (LDA). Long short-term memory (LSTM) along
with majority voting is used as the classifier. We call the proposed ar-
chitecture the DCLL (DA-CSP-LDA-LSTM) architecture. On a publicly
available imagined word dataset, the DCLL architecture achieves an ac-
curacy of 85.2% for classifying the imagined words “in” and “cooperate”.
Although this is around 7% less than the best result in the literature on
this dataset, the DCLL architecture is roughly 300 times faster than the
latter, making it a potential candidate for imagined word-based online
BCI systems where the EEG signal needs to be classified in real-time.

Keywords: online BCI, speech imagery, LSTM, CSP, LDA, data aug-
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1 Introduction

A brain–computer interface (BCI) converts the distinct neural activities into
signals which can be used for controlling an external device. BCIs have sev-
eral applications such as in developing devices using which a paralyzed person
can control devices such as a wheelchair and a computer[1]. Different neuroimag-
ing and electrophysiological modalities such as electrocorticogram (ECoG) [2, 3],
electroencephalogram (EEG) [4, 5], intracortical electroencephalography (ICE)
[6–8], magnetoencephalography (MEG) [9, 10], functional magnetic resonance
imaging (fMRI) [11, 12] and functional near-infrared spectroscopy (fNIRS) [13–
15] are used in BCI systems for capturing the neural activities. Currently avail-
able BCI systems using EEG use event-related potential (ERP) [16, 17, 5, 4],
motor imagery [18, 19], or steady state visually evoked potentials (SSVEP) [20–
22] for producing neural activity that needs to be recognized by the system.
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These BCI systems have limited degrees of freedom due to the finite number of
distinguishable prompts available. Also, the prompts used in these systems are
not intuitive leading to difficulties in training a patient to use them. An alter-
native approach is to use imagined words or speech imagery for causing distinct
neural activities that can be recognized by a BCI system. BCI systems using
imagined words have more intuitive prompts and have higher degrees of free-
dom. In addition to all the possible applications of a general BCI system based
on motor imagery, a high-performance BCI system based on speech imagery, in
conjunction with a text to speech (TTS) synthesis system, can be used by those
with speech disabilities to communicate with others [23, 24].

Brain–computer interfaces are broadly classified into 1) online and 2) offline
BCI systems [25]. An online system is one, where the EEG signal from the
subject is analyzed in real-time whereas in an offline system, the processing does
not happen and hence the outputs do not appear in real-time. Offline BCIs
are used mainly in the laboratory environment and usually employ algorithms
that have high computational cost. The fact that the outputs do not occur in
real-time limits the practical use of these systems. Most of the works on speech
imagery based BCI systems employ offline decoding strategies. A few exceptions
are the works by Nguyen et al. [26] and Sereshkeh et al. [27] which employ EEG
and the other works [15, 28, 29] in which fNIRS is used. The work by Nguyen
et al. [26] uses both speech and motor imagery. We propose here a common
spatial pattern - linear discriminant analysis - long short-term memory based
architecture which we call the DCLL (DA-CSP-LDA-LSTM) architecture that
has low computational cost. Hence it is a potential architecture for online BCI
systems employing speech imagery. Lower computational cost is a critical design
factor due to the following reasons:

1. An online BCI system based on EEG needs to process the EEG signal in
real-time.

2. A practical BCI system might need to run on a mobile processing system
which has limited processing power.

3. In case of a mobile BCI system running on batteries, lower computational
cost of the algorithms translates to more running time before battery re-
placement or recharge.

2 Dataset used in the Study

We have tested the proposed DCLL system for deciphering the imagined words
from the freely obtainable ASU speech imagery EEG data. This data was devel-
oped by HORC lab at Arizona State University [30] by recording EEG signal,
sampling at 1000 Hz using a BrainProducts ActiCHamp amplifier and a 64-
electrode EEG cap. The EEG signal had been downsampled later to 256 samples
per second during the preprocessing stage. The low frequency trends and EMG
artifacts were removed using a 5-th order Butterworth bandpass filter having
the lower cut-off at 8 Hz and higher cut-off at 70 Hz. A notch filter was deployed
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to filter the line noise and adaptive filtering [31], to remove the ocular artifacts.
This work focuses on distinguishing the short (“in”) from the long (“cooperate”)
imagined word in the dataset.

3 Data Augmentation

Data augmentation is used in situations where the data available for training
a model is not enough. In data augmentation, more data is generated from the
existing data [32]. Techniques such as overlapping or sliding window [33–36] and
generative adversarial networks (GAN) [37–39] are commonly used for augment-
ing an EEG data. Since the data studied comprises repeated imaginations in
each trial, overlapping or sliding window is an ideal approach for data augmen-
tation (DA). Without DA, one trial of 5 s duration contributes to one training
or test frame. In this work, a window size of 256 samples (1 s) and a stride of 64
samples (0.25 s) are empirically selected, leading to an overlap of 192 samples
(0.75 s). With these parameters, we get 17 analysis frames of length one second
each, resulting in an augmentation factor of 17.

4 Extracting the Features and LSTM Classifier

Figure 1 gives the overall DCLL (DA-CSP-LDA-LSTM) architecture. This ar-
chitecture is similar to the architecture employed in one of our previous works
[40]. Common spatial pattern (CSP) [41, 42] is used to extract the features. CSP
extremizes the objective function given below in order to derive a spatial filter
H:

J(H) =
trace(HTRiH)

trace(HTRjH)
(1)

where T refers to the transpose of the matrix and Rk is the normalized spatial
covariance matrix of class k. Rk is computed as,

Rk =
YkY

T
k

trace(YkYT
k )

(2)

where Yk ∈ RM×N is the class-k EEG signal matrix with M channels and N
time samples per channel.

The filter H, computed separately for each set of training data, is then used
to obtain the spatially filtered data (Zl):

Zl = HYl (3)

The number of spatial filter pairs is empirically chosen as 10. In our earlier
work [43], we found that the accuracy does not improve for higher values of
the filter pairs used. Thus, the dimension of H is 20 × 64, where 64 represents
the EEG channels utilized and the dimension of Yl is 64 × 64. In our previous
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Fig. 1: Architecture of the DCLL method. CSP: common spatial pattern; LDA:
linear discriminant analysis; LSTM: long short-term memory.
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work [43], we had experimented with common spatial pattern with Tikhonov
regularization (TR-CSP) but we did not observe any improvement is accuracy
with TR regularization.

We employ the logarithm of the variance of each of the filtered vectors as a
feature generating a feature vector of length 20. Linear discriminant analysis is
made use of to reduce the dimension of these vectors to one. These values are
provided as sequential input data to a long-short term memory network employed
for classification. Two hundred hidden units are exploited in the classifier, and
the number of epochs does not exceed 20 to avoid overfitting. Adam optimizer
is utilized and the learning rate applied is 0.001.

During testing, the test EEG data is also augmented leading to 17 test frames
corresponding to a single EEG data of 5s duration. Each of these augmented test
frames is input to the LSTM classifier. Finally, majority voting with hard voting
strategy is used to decide the class of the test EEG data based on the outputs
of the fully connected layer for the 17 test frames.

5 Results

Two metrics are used in this work for evaluating the performance of the DCLL ar-
chitecture: 1) classification accuracy and 2) execution time. The evaluation strat-
egy followed for computing these metrics is 10-fold cross-validation. Although
sometimes overlooked, execution time is an important performance metric since
fast execution is required in an online BCI system.

5.1 Classification Accuracy

To identify which frequency band contributes the most to the classifier perfor-
mance, we utilize three distinct EEG bands, namely alpha (8 - 13 Hz), beta (13
-30 Hz) and gamma (30 - 70 Hz); gamma band is restricted to 70 Hz since in
the publicly available version of the ASU dataset, the signal has been bandpass
filtered reducing the available bandwidth to 8 - 70 Hz. Entries from Sl. No. 1
to 7 in Table 1 compare the accuracies (mean ± S.D.) of the proposed DCLL
architecture for different EEG frequency bands and other methods in the liter-
ature for classifying the imagined words “in” and “cooperate”. Sl. No. 8 in the
same Table gives the accuracy of the system proposed by Sereshkeh et al. [27]
for the task of online classification of the imagined prompts “yes” and “no”.
Among the bands, gamma band gives the highest accuracy of 78.2%. However,
the system gives the best performance of 85.2% when the signal is not band-
passs filtered into different frequency bands. These results are inline with the
earlier published results on decoding imagined words from EEG [43, 44]. The
state-of-the-art performance reported in the literature is 92.8% by the transfer
learning architecture [44], which uses magnitude squared coherence and mean
phase coherence as features. However, this method is computationally complex
as explained in the next subsection and cannot be used for real-time decoding
of the imagined words.
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Table 1: Sl. No. 1 to 7 compare the accuracies (mean ± S.D.) of the proposed
DCLL architecture for different EEG frequency bands and other methods in the
literature for the classification of the imagined words “in” and “cooperate”. Sl.
No. 8 gives the accuracy of the system proposed by Sereshkeh et al. [27] for
the task of online classification of the imagined prompts “yes” and “no”. MSC:
magnitude squared coherence, MPC: mean phase coherence.

Sl. No. Method Accuracy (%)

1 DCLL on alpha band 67.3± 6.7

2 DCLL on beta band 74.2± 4.3

3 DCLL on gamma band 78.2± 7.2

4 DCLL on the undivided EEG signal 85.2± 2.7

5 Tangent + relevance vector machine [30] 79.9± 8.2

6 Wavelet + deep neural network [45] 73.5± 8.2

7 MSC + MPC + trasnfer learning [44] 92.8± 1.9

8 Spectral and time-frequency features [27] 69.3± 14.1

Figure 2 compares the subject-wise performance of the proposed method
with other methods for classifying the imagined prompts “in” and “cooper-
ate”. The evaluation strategy employed is 10-fold cross-validation. The perfor-
mance of the proposed DCLL method is higher than the tangent+RVM [30] and
Wavelet+DNN [45] techniques for the subjects S1, S5, S8, and S10 and higher
than that of only [45] for S14. However, the technique MSC+MPC+TL [44]
outperforms DCLL for all the subjects, even though it does not perform in real
time.

5.2 Execution Time

The execution time of DCLL architecture (including data augmentation) and the
architecture that gave the best results in classifying the imagined prompts “in”
and “cooperate” are evaluated using MATLAB® 2021b running on a Windows
11 machine with Intel® Core™ i5-8250U processor and 16 GB DDR4 RAM. On
an average, the DCLL architecture takes only 108.8 ± 33.8 ms for classifying a
single trial of test EEG data of 5s duration. The state-of-the-art method [44] on
the other hand takes 31.5 ± 3.4 s for the same task. Thus the DCLL architec-
ture is around 300 times faster than the state-of-art method. Since the DCLL
architecture takes only a fraction of a second for classifying one second of EEG
data, it has the potential to be used for an online BCI system utilizing speech
imagery. Although the DCLL architecture has lower classification accuracy than
the state-of-the-art method, its performance is superior to all the other methods
in the literature for distinguishing the short from the long words from the ASU
dataset.
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Fig. 2: Performance of the DCLL architecture compared with other work on
the ASU dataset. The participant IDs are represented by the x-axis and the
classification accuracies, by the y-axis. The dashed line indicates the chance level
accuracy. RVM: relevance vector machine; DNN: deep neural network; MSC:
magnitude squred coherence; MPC: mean phase coherence; TL: trasnfer learning.

6 Conclusion

This paper proposes a fresh algorithm for classifying imagined words from the
EEG captured during speech imagery. The proposed DCLL architecture achieves
an accuracy of more than 85% in distinguishing imagined word “in” from “coop-
erate”. Although this is 7% less than the performance of the best method on this
data, the DCLL architecture has much lower computational cost. It is around
300 times faster than the state-of-the-art method and can classify 5s EEG data
in about 100 ms. This addresses a key challenge in designing imagined word and
EEG-based BCI systems that can classify EEG signals in real-time. In our future
work, we intend to work on improving the design of the architecture to improve
its accuracy to be comparable to the best in the literature, while retaining its
speed. This will include improvements in the prepocessing steps to improve the
signal-to-noise ratio of the EEG, dimensionality reduction using methods such
as principal component analysis instead of LDA, replacement of majority voting
classifier with other ensemble classifiers etc. We also intend to make the DCLL
architecture a hierarchical architecture where the initial classification happens
at the phonological level [46, 47]. The present work is based on the data collected
from healthy subjects. The future work also includes testing the architecture on
stroke-affected patients [48].
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