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Abstract—Objective classification of the meditative state of
the brain from its resting state was attempted using electroen-
cephalogram (EEG). The binary classification was performed
both under intra-subject and inter-subject settings. The medita-
tion practice used is Rajayoga meditation, which is probably the
only meditation practice where the practitioners meditate with
their eyes open. To our knowledge, this is the first attempt at such
an EEG-based classification of altered conscious state during
Rajayoga meditation. Baseline EEG was recorded both before
and after the meditation session, separately with eyes closed
and open. Common spatial pattern with Tikhonov regularization
(TR-CSP) is used for feature extraction and linear discriminant
analysis (LDA) is used as the classifier. We have achieved an
accuracy of 97.9% for intra-subject classification and 74.0% for
inter-subject classification. The classification accuracy improves
with the increase in the number of filter pairs used; however,
the improvement plateaus for all the subjects after about eight
pairs of filters. Regularization by penalizing higher values of
the elements in the filter vector deteriorates the accuracy and in
most cases, the best classification occurs with no regularization.

Index Terms—Rajayoga meditation, LDA, common spatial
pattern, meditative state, resting state

I. INTRODUCTION

Meditation is a process believed to enhance awareness
about self and the environment around us, and thus is expected
to take the brain to a higher conscious state. In the past
three decades, meditation research has been acknowledged
majorly due to the state and trait changes observed in the
electrophysiological indices of meditation practitioners [1].
Meditation or contemplative practices are part of most of the
Eastern civilizations and it is considered that early meditation
practices originated from the ancient Indian subcontinent [2].
There are many different and distinct practices which are
grouped under the domain of meditation such as mindfulness,
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Vipasana, Zen, Sahajayoga, and Rajayoga. Practice variables
include point of focus, initiation of practice, posture, and the
most suitable time to practice [3].

The motivation for the present work is to objectively and
automatically identify and classify the meditative state from
the resting state using EEG data. Previous studies using power
spectrum and entropy have revealed the increase of high fre-
quency component during meditation [4]. However, practice
variables make a great difference in the brain states achieved
during different meditative practices. One of the challenges
in meditation research is to characterize how the meditative
practices which involve the cognitive or affective functions of
the human brain differ from relaxation practices which focus
on somatic structures [5]. Identifying the electrophysiological
implications of meditation may help in identifying the brain
processes involved as well as mechanism which allows to
improve one’s well being and proved to be a potential comple-
mentary therapy for PTSD [6], schizoaffective disorders [7],
chronic depressive disorders [8] and developmental disorders
such as ADHD [9] and autism [10].

The contributions of this work are:
1) This is the first study to distinguish between the brain’s

conscious states during Rajayoga meditation and rest.
2) This is the maiden work to analyze the contributions

of different frequencies, regularization parameter and
the number of filter pairs of TR-CSP in classifying the
meditative from the resting state of the brain using EEG.

II. DATASET DESCRIPTION

A. Details of the Study Subjects

EEG data was collected from fifty four meditators at
Brahma Kumaris headquarters, Mount Abu, India. The Ra-
jayoga meditators (age 42 ± 10.1 years) had practice ranging
from 4 to 43 years with mean experience of 18 years. The sub-
jects did not have any history of dysfunction of the nervous,978-1-6654-4175-9/21/$31.00 © 2021 IEEE



cardiac or pulmonary system. Experimental procedure was
explained to the subjects and written information consent was
obtained before recording. It was confirmed that the subjects
did not consume any therapeutics, alcohol or cigarette for a
period of six months before the recording. More details about
the dataset can be found in [11].

B. Experimental Protocol

EEG data was recorded with 64-channel waveguard cap
following the 10-10 international electrode placement system.
ANT Neuro amplifier and EEGO software were used for
data acquisition. The signals were recorded at a sampling
frequency of 500 Hz. EEG signals were later digitally filtered
from 0.3-75 Hz. All the channels recorded were referenced to
CPz and the impedance of all the channels were maintained
at less than 10 kΩ. The subjects chose to meditate sitting on
a floor mat and it was ensured that the body of the meditator
was not in contact with the ground during the recording
session.

Initial baselines were recorded with eyes open (IEO) and
eyes closed (IEC) conditions for approximately 3 minutes
each, when the subjects were asked to relax without meditat-
ing. IEC was followed by the Rajayoga seed state meditation
(M) with eyes open condition wherein the subjects claimed to
shift their awareness to the peaceful nature of their soul. The
meditation duration was 30 minutes. During the meditation,
the participants were prompted with an acoustic tone around
4 to 5 times to mentally note the observations. Final baselines
were again recorded with eyes open (FEO) and eyes closed
(FEC) conditions for 3 minutes each as shown in Fig. 1.

C. EEG data preprocessing and band-pass filtering

Data was preprocessed using Brain Vision analyzer version
2.1.2. Using spline interpolation, data was downsampled to
128 Hz and one minute EEG data was eliminated from the
meditation segment after each prompt to exclude the possible
non-meditation epochs. Independent component analysis was
used to remove artifacts related to eye movements and manual
component rejection was adopted to remove other artifacts.
EEG time series was band-pass filtered using EEGLAB to
obtain the frequency bands listed in Table I. EEG data in
each frequency band was segmented into 2-second epochs
consisting of 256 samples each. These band-limited epochs
were used for the proposed classification task.

TABLE I
FREQUENCY BANDS CONSIDERED FOR CLASSIFICATION.

Sl. No. Band name Frequency range

1 Alpha 8 - 13 Hz
2 Beta 13 - 25 Hz
3 Lower Gamma 25 - 45 Hz
4 Higher Gamma 45 - 64 Hz

III. FEATURE EXTRACTION AND CLASSIFICATION

Features were extracted for classification using common
spatial pattern with Tikhonov regularization (TR-CSP) [12].
CSP is widely used for classifying motor imagery [13], speech
imagery [14] etc. In TR-CSP, the following objective function
is extremized:

J(w) =
wTXiX

T
i w

wTXjXT
j w

=
wTCiw

wTCjw + αwTw
(1)

where T denotes matrix transpose, matrix Xj contains the
EEG signals of class j, with data samples as columns and
channels as rows, w is the spatial filter vector, Cj is the
spatial covariance matrix of class j and r is the regularization
parameter.

In this work, we have experimented with different values of
the number of pairs of spatial filter vector (each pair has both
the vectors minimizing and maximising the objective function
in Eq. 1), different values of the regularisation parameter α
and four different EEG frequency bands (alpha, beta, lower
gamma and higher gamma) defined in Table I. The number
of pairs of spatial filter vectors is linearly varied from two
to 10 in steps of 1 whereas α is varied in logarithmic
scale from 10−1 to 10−10. In addition to these, we have
also experimented by setting α to zero which leads to the
classical formulation of CSP. For extracting the features, the
EEG signals are projected onto the selected spatial vectors
(determined by the number of pairs of spatial filters chosen)
and logarithm of the variance of the projected signal is
calculated. The dimension of the feature vector is 2Nb where
Nb is the number of filter pairs chosen. Linear discriminant
analysis (LDA) is used for classification. Since the number of
epochs of meditation is more than the number of epochs of
IEO (ref. Fig. 1), the number of epochs of meditation chosen
is such that the chance accuracy is 50%.

IV. RESULTS OF OUR STUDY

We have tested the efficiency of the proposed method for
classifying the baseline epochs from the Rajayoga meditation
epochs under two different settings:

1) Intra-subject setting where training and test data are
taken from the same subject. The evaluation strategy is
10-fold cross validation.

2) Inter-subject setting where the classifier is trained on
the data of N − 1 subjects and is tested on the left
out subject in each of the N steps of cross-validation,
where N is the total number of subjects. This is more
challenging than intra-subject since the classifier has
not seen the data of the test subject during the training
phase.

The intra-subject classification results for various values of
the number of pairs of spatial filter vectors, regularisation
parameter α and EEG frequency bands alpha and higher
gamma are given in Tables II and III. The performance of
the classifier in the intra-subject setting is evaluated using
10-fold crossvalidation. Table IV compares our results with



Fig. 1. Experiment protocol: 3 minutes each of initial baseline segments with eyes open (IEO) and closed (IEC) conditions followed by approximately 30
minutes of seed stage meditation (M), 3 minutes each of final baseline segments with eyes open (FEO) and closed (FEC) conditions.

the mean intra-subject accuracies reported for other systems
of meditation for the binary classification of meditative state
from the resting state using EEG. Lin and Lee [15] have tested
their method on different epoch lengths varying from 1s to
60s. Since the epoch length in this work is 2s, the accuracy
reported in Table IV for Lin and Lee is for 10s, the smallest
epoch length greater than or equal to the epoch length used
in this work among the epoch lengths used by Lin and Lee.

The inter-subject classification results for different values
of the number of pairs of spatial filter vectors, regularisation
parameter α and EEG frequency bands alpha and higher
gamma are given in Tables V and VI. The performance of
the classifier in the inter-subject setting is evaluated using
leave-one-out cross-validation (LOOCV). Comparisons of the
performance of the system in intra-subject and inter-subject
settings for various EEG frequency bands are given in Fig. 2.

V. DISCUSSION

A. Effect of classification setting

The performance of the proposed system has been tested
under two settings: 1) intra-subject setting where the training
and test data are from the data of the same subject; 2) inter-
subject setting where the data of the test participant is unseen
by the classifier during training. Due to the variations in the
EEG captured from different subjects even for the same task,
it is well-known that there can be differences in the classifier
performance where intra-subject classification gives higher
accuracies than inter-subject classification [18]. The same
trend is seen in our work also. In the case of intra-subject
classification using higher gamma band, the accuracy is
97.9± 0.1% whereas for inter-subject classification using the
same band, the accuracy drops to 77.3±0.8%. This disparity
could be addressed by using subject-to-subject adaptation
[13], [19]. Since the data available has only one session per
participant, it is not possible to conclude as to whether the
reduction in performance is due to subject variability alone
or due to both subject and session variabilities.

Meditation is known to produce both temporary (state) [20],
[21] and permanent (trait) changes [22] in the practitioners
[23], based on the regularity and years of practice. Meditation
is known to produce both temporary (state) and permanent
(trait) changes in the practitioners [23], based on the regularity
and years of practice. Thus, when we are comparing the
differences between the resting and meditative states, the
levels of trait changes in the EEG characteristics could be

significantly different between the different subjects being
studied. This is why it is really difficult to obtain very
high classification accuracies in the inter-subject experiments.
However, it is possible that there are features that we do
not yet know, which can clearly classify the transient state
changes during the meditative duration, irrespective of the
traits acquired by the individuals due to their prior, prolonged
practice. To come out with such new, effective features is
an important challenge in meditation research. That we are
able to obtain a reasonably good inter-subject classification
accuracy of 77% using the same features and classification
methodology is encouraging. Thus, there is promise that with
the right kind of feature-classifier combination, we may be
able to solve the problem of identifying transient state changes
occurring during the process of meditation in any individual
with no or prolonged experience in meditation.

B. Effect of EEG frequency bands

For both intra-subject and inter-subject settings, the per-
formance is higher for high frequency bands than for low
frequency bands. This is inline with the studies on classifica-
tion of mental states during speech imagery [24]–[26]. More
focused studies are required to ascertain the reason for this
observation.

C. Effect of regularisation

Regularized CSP including TR-CSP has better performance
than classical CSP in classifying motor imagery [27]. How-
ever, we did not observe an improvement in the accuracy by
using regularisation. Tikhonov regularization penalizes higher
values for the elements in the spatial vector. This penalty
might be the cause for the decrease in performance for higher
regularization parameters.

D. Effect of the number of filter pairs used

Consistently, across subjects and frequency bands, we see
an improvement in the accuracy for more number of filter
pairs. Increased number of filter pairs might be contributing
more discriminative information to the classifier but the
improvement plateaus for higher values. This is in contrast
to the observation by Panachakel et al. in [28] where they
have reported a decrease in the performance of a deep neural
network trained for classifying imagined speech when the
number of filter pairs exceeds nine.



TABLE II
ACCURACIES (IN %) ACROSS ALL PARTICIPANTS IN CLASSIFYING MEDITATION V/S REST STATE USING ALPHA BAND EEG DATA GIVEN AS mean± SD.

THE CLASSIFICATION STRATEGY IS INTRA-SUBJECT USING 10-FOLD CROSS VALIDATION. EACH ROW CORRESPONDS TO A DIFFERENT VALUE OF THE
REGULARIZATION PARAMETER OF COMMON SPATIAL PATTERN (CSP) WITH TIKHONOV REGULARIZATION (α). EACH COLUMN CORRESPONDS TO A

DIFFERENT VALUE OF THE NUMBER OF CSP FILTER PAIRS USED FOR CLASSIFICATION. THE CLASSIFIER USED IS LDA.

Number of Filter Pairs
α 2 3 4 5 6 7 8 9 10

10−01 72.5± 12.2 74.7± 12.7 77.4± 13.5 78.3± 13.3 78.9± 13.2 79.2± 12.8 79.6± 12.8 80.5± 12.5 81.4± 12.0

10−02 72.5± 13.6 82.2± 12.4 83.1± 12.5 84.2± 11.7 84.0± 12.7 84.6± 12.0 84.9± 12.3 84.8± 12.4 84.8± 12.1

10−03 72.5± 10.8 88.9± 9.4 88.8± 9.5 89.2± 8.6 89.5± 8.3 89.8± 7.7 90.0± 7.5 90.1± 7.4 90.1± 7.0

10−04 72.5± 6.0 92.3± 5.9 92.6± 5.6 92.8± 5.0 92.7± 5.1 92.8± 5.0 93.0± 4.7 92.9± 4.7 92.9± 4.4

10−05 72.5± 4.5 93.3± 4.7 93.4± 4.3 93.6± 3.0 93.4± 3.5 93.4± 3.8 93.5± 3.5 93.6± 3.1 93.6± 3.2

10−06 72.5± 4.1 93.4± 4.3 93.5± 3.7 93.5± 3.7 93.6± 3.6 93.5± 3.6 93.5± 3.8 93.5± 3.5 93.4± 3.9

10−07 72.5± 4.3 93.3± 4.3 93.5± 4.2 93.5± 4.0 93.5± 4.1 93.5± 3.9 93.5± 3.8 93.5± 3.8 93.5± 2.8

10−08 72.5± 4.0 93.4± 4.6 93.3± 5.1 93.5± 3.6 93.6± 3.2 93.5± 3.8 93.5± 3.9 93.4± 3.9 93.5± 3.1

10−09 72.5± 4.5 93.4± 4.2 93.5± 4.1 93.5± 3.7 93.5± 4.0 93.4± 3.9 93.5± 3.7 93.6± 3.4 93.6± 3.3

10−10 72.5± 4.2 93.4± 3.9 93.4± 4.1 93.6± 3.1 93.5± 4.0 93.5± 3.6 93.4± 4.1 93.6± 3.3 93.6± 3.2

10−∞ 72.5± 4.4 93.4± 3.9 93.5± 3.5 93.5± 3.3 93.5± 3.8 93.5± 4.0 93.4± 4.1 93.5± 3.7 93.5± 3.4

TABLE III
ACCURACIES (IN %) ACROSS ALL PARTICIPANTS IN CLASSIFYING MEDITATION V/S REST STATE USING HIGHER GAMMA BAND OF EEG DATA GIVEN AS
mean± SD. THE CLASSIFICATION STRATEGY IS INTRA-SUBJECT USING 10-FOLD CROSS VALIDATION. EACH ROW CORRESPONDS TO A DIFFERENT

VALUE OF THE REGULARIZATION PARAMETER OF COMMON SPATIAL PATTERN (CSP) WITH TIKHONOV REGULARIZATION (α). EACH COLUMN
CORRESPONDS TO A DIFFERENT VALUE OF THE NUMBER OF CSP FILTER PAIRS USED FOR CLASSIFICATION. THE CLASSIFIER USED IS LDA.

Number of Filter Pairs
α 2 3 4 5 6 7 8 9 10

10−01 92.9± 8.7 94.0± 7.8 94.9± 6.0 95.3± 5.5 95.5± 5.4 95.6± 5.8 95.3± 6.1 95.6± 5.3 95.6± 5.0

10−02 96.2± 4.0 96.3± 4.0 96.6± 3.8 96.9± 2.9 96.8± 3.1 97.0± 3.2 97.1± 2.3 96.9± 2.5 96.8± 2.9

10−03 96.7± 3.9 97.0± 3.1 97.2± 2.5 97.3± 2.6 97.4± 2.1 97.3± 2.2 97.4± 2.1 97.6± 1.5 97.4± 1.8

10−04 97.0± 3.3 97.4± 2.3 97.5± 1.6 97.6± 1.3 97.6± 1.3 97.8± 0.8 97.8± 1.0 97.8± 0.7 97.7± 0.9

10−05 97.2± 3.0 97.5± 1.9 97.6± 1.5 97.7± 1.3 97.8± 1.0 97.7± 1.2 97.8± 1.2 97.7± 1.0 97.8± 0.7

10−06 97.1± 3.1 97.4± 2.3 97.7± 1.4 97.7± 1.2 97.7± 1.3 97.7± 1.3 97.8± 1.0 97.7± 1.1 97.8± 0.8

10−07 97.1± 3.3 97.4± 2.2 97.5± 1.5 97.6± 1.6 97.7± 0.9 97.7± 1.4 97.7± 1.2 97.8± 0.8 97.8± 0.9

10−08 97.1± 3.2 97.4± 2.0 97.5± 1.7 97.7± 1.3 97.7± 1.0 97.8± 0.9 97.9± 0.5 97.8± 0.8 97.9± 0.7

10−09 97.1± 3.2 97.3± 2.7 97.6± 1.7 97.6± 1.4 97.7± 1.2 97.8± 0.9 97.8± 0.9 97.8± 0.8 97.9± 0.6

10−10 97.1± 3.1 97.4± 2.4 97.6± 1.5 97.8± 1.2 97.7± 1.0 97.7± 1.1 97.7± 1.2 97.8± 1.1 97.8± 1.0

10−∞ 97.5± 6.3 97.7± 2.0 97.7± 1.6 97.7± 2.1 97.7± 1.5 97.8± 0.9 97.8± 0.7 97.8± 0.4 97.8± 1.0

TABLE IV
COMPARISON OF MEAN INTRA-SUBJECT ACCURACIES REPORTED FOR OTHER SYSTEMS OF MEDITATION FOR THE BINARY CLASSIFICATION OF

MEDITATIVE STATE FROM THE RESTING STATE USING EEG. IN THE WORK BY LIN AND LEE [15], THE EPOCH LENGTH IS 10S, FIVE TIMES THAT OF THE
EPOCH LENGTH USED IN OUR WORK. SVM: SUPPORT VECTOR MACHINE, LDA: LINEAR DISCRIMINANT ANALYSIS

Sl. No. Authors System of Meditation Features Classifier Mean Accuracy

1 Tee at al. [16] Theta healing meditation Discrete wavelet transform Logistic regression 96.9%
2 Ahani et al. [17] Mindfulness meditation Stockwell transform SVM 78.0%
3 Lin and Lee [15] Chan meditation Approximate entropy Bagged tree 97.9%

4 Proposed work Rajayoga meditation Common spatial pattern LDA 97.9%



TABLE V
ACCURACIES (IN %) ACROSS ALL PARTICIPANTS IN CLASSIFYING MEDITATION V/S REST STATE USING ALPHA BAND EEG DATA GIVEN AS mean± SD.
THE CLASSIFICATION STRATEGY IS INTER-SUBJECT USING LEAVE-ONE-OUT CROSS-VALIDATION. EACH ROW CORRESPONDS TO A DIFFERENT VALUE OF
THE REGULARIZATION PARAMETER OF COMMON SPATIAL PATTERN (CSP) WITH TIKHONOV REGULARIZATION (α). EACH COLUMN CORRESPONDS TO A

DIFFERENT VALUE OF THE NUMBER OF CSP FILTER PAIRS USED FOR CLASSIFICATION. THE CLASSIFIER USED IS LDA.

Number of Filter Pairs
α 2 3 4 5 6 7 8 9 10

10−01 55.6± 1.8 56.0± 1.7 57.1± 2.0 57.9± 1.8 58.4± 1.7 57.9± 1.9 58.1± 1.9 58.7± 2.0 59.4± 1.6

10−02 57.2± 1.7 57.8± 1.6 59.1± 1.6 59.5± 2.0 59.6± 1.5 59.9± 1.8 59.5± 1.9 60.0± 1.9 60.0± 1.9

10−03 60.9± 1.6 61.6± 1.6 62.1± 1.5 62.2± 1.7 61.6± 1.6 62.0± 2.2 62.9± 1.9 62.7± 1.7 62.9± 1.8

10−04 62.7± 1.7 63.1± 1.6 63.3± 1.6 64.2± 1.7 64.4± 1.9 64.7± 2.0 66.1± 1.8 66.1± 2.0 66.4± 1.9

10−05 63.2± 1.7 63.3± 1.8 64.1± 1.9 64.3± 1.7 64.9± 2.0 65.6± 1.6 66.0± 2.2 66.6± 2.1 67.0± 1.3

10−06 62.6± 2.1 63.7± 1.6 64.3± 1.8 64.0± 2.2 65.3± 1.8 65.1± 1.6 66.0± 1.8 66.9± 2.1 66.9± 1.9

10−07 63.0± 2.1 63.9± 1.8 64.6± 1.7 64.1± 1.9 65.0± 1.8 65.4± 1.6 66.5± 2.1 66.6± 1.8 66.9± 2.1

10−08 63.0± 2.0 63.8± 1.5 64.6± 2.0 64.3± 2.1 65.2± 1.9 65.3± 2.2 66.4± 2.0 66.9± 1.8 66.7± 1.9

10−09 62.8± 1.9 64.1± 1.7 63.9± 1.9 64.1± 2.0 65.6± 1.9 65.4± 1.8 66.3± 2.2 66.7± 1.9 66.6± 1.6

10−10 63.0± 1.8 63.4± 1.6 64.8± 1.6 64.4± 2.2 65.4± 1.7 65.5± 2.1 66.6± 2.0 66.6± 1.9 66.5± 1.8

10−∞ 63.0± 1.8 63.8± 1.7 64.3± 1.7 64.2± 1.5 64.8± 1.7 65.5± 1.8 65.9± 2.3 66.7± 1.9 66.7± 1.9

TABLE VI
MEDITATION V/S REST STATE CLASSIFICATION ACCURACIES (mean± SD IN %) ACROSS ALL PARTICIPANTS USING HIGHER GAMMA BAND EEG DATA.
THE CLASSIFICATION STRATEGY IS INTER-SUBJECT USING LEAVE-ONE-OUT CROSS-VALIDATION. EACH ROW CORRESPONDS TO DIFFERENT VALUES OF

THE REGULARIZATION PARAMETER OF COMMON SPATIAL PATTERN WITH TIKHONOV REGULARIZATION (α). EACH COLUMN CORRESPONDS TO
DIFFERENT VALUES OF THE NUMBER OF CSP FILTER PAIRS USED FOR CLASSIFICATION. THE CLASSIFIER USED IS LDA.

Number of Filter Pairs
α 2 3 4 5 6 7 8 9 10

10−01 58.8± 1.5 59.5± 1.6 60.7± 1.7 62.7± 1.9 63.5± 2.2 63.0± 1.7 63.5± 1.6 64.2± 1.6 64.3± 1.6

10−02 65.0± 1.8 66.7± 1.6 67.9± 1.9 68.2± 1.7 67.0± 2.3 67.6± 1.7 68.5± 1.5 68.4± 1.5 68.6± 1.6

10−03 67.1± 1.6 70.2± 1.9 71.6± 2.1 71.3± 1.9 71.4± 1.8 72.4± 1.8 72.2± 1.8 72.7± 1.8 73.1± 1.6

10−04 68.9± 1.9 69.7± 2.5 70.9± 1.9 72.1± 2.1 72.2± 2.0 73.4± 1.9 73.7± 1.8 74.0± 1.8 73.9± 1.9

10−05 68.5± 2.8 70.5± 2.1 71.2± 2.6 71.6± 2.0 72.9± 1.8 73.0± 2.1 73.4± 1.9 73.7± 2.1 73.6± 2.4

10−06 68.1± 2.8 70.3± 2.4 71.3± 2.2 72.1± 2.1 72.5± 1.7 72.8± 1.9 73.1± 1.6 73.8± 1.8 73.2± 1.7

10−07 68.5± 2.8 70.4± 2.0 71.3± 2.0 71.8± 1.8 72.5± 2.2 72.9± 2.1 73.2± 1.9 73.8± 1.9 73.8± 1.7

10−08 67.2± 3.3 70.7± 2.3 70.6± 2.2 71.8± 2.1 72.6± 1.7 73.1± 2.0 73.5± 2.0 73.3± 2.3 74.0± 2.0

10−09 68.3± 2.6 70.7± 2.2 71.0± 2.3 72.2± 2.3 72.6± 1.9 73.3± 1.9 73.3± 1.7 74.0± 1.8 73.3± 1.9

10−10 67.9± 2.9 70.5± 1.9 71.2± 2.8 72.8± 2.1 72.4± 2.3 73.2± 1.5 73.3± 2.0 73.0± 2.0 73.7± 1.9

10−∞ 68.1± 2.4 70.5± 1.8 70.9± 2.2 72.1± 2.0 72.8± 2.0 73.2± 1.5 73.2± 2.0 73.5± 2.1 73.5± 1.8

VI. CONCLUSION

A CSP-LDA based system for distinguishing meditation
state from eyes-open baseline is presented in this paper.
The meditation practice chosen is Rajayoga meditation. The
proposed method achieves as accuracy of 97.9 ± 0.5% for
intra-subject classification and 74.0 ± 1.8% for inter-subject
classification. This difference in accuracies in the two settings
is inline with the differences observed in other tasks such as
classification of motor imagery from EEG. Contrary to the
results in the literature on classifying motor imagery from
EEG, Tikhonov regularization leads to decrease in accuracies.
There is an increase in the accuracy when more number of
filter pairs are used for classification, similar to the trend
observed in speech imagery classification. However, unlike
speech imagery classification, the accuracy plateaus in the
case of classification of meditation.
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