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Abstract— This study explores automated sleep-wake classifi-
cation using Poincaré plots derived from a single EEG channel.
In order to quantify the Poincaré plots and utilize them for the
distinction of sleep and wake states of the healthy individuals
and patients with sleep disorders, various descriptors are
computed. The most commonly used standard descriptors are
SD1 and SD2, which determine the width and length of Poincaré
plot. Along with SD1 and SD2, the ratio of SD1 to SD2, area
of the Poincaré plots, energy of the slopes, and offsets obtained
by linear fits to Poincaré plots with distinct lags, standard
deviation, and complex correlation measure are also computed.
Random undersampling with boosting technique (RUSBoost) is
adopted to deal with the class imbalance problem. The perfor-
mance of the method is evaluated on three different publicly
available datasets by using 50%-holdout and 10-fold crossval-
idation techniques. We achieved crossvalidation accuracies of
98.2%, 96.0%, and 94.4% for Sleep-EDF, DREAMS-Subjects
and DREAMS-Patients datasets, respectively, by utilizing only
eight features, and a single EEG channel. Furthermore, for the
patient population with various sleep disorders such as mixed
apnea, periodic leg movement syndrome, sleep apnea-hypopnea
syndrome, and dyssomnia, we obtained average sensitivity of
96.8%, precision of 95.6%, and Fl-score of 96.2%, for the
sleep state; and 88.3%, 91.3%, and 89.8%, respectively for
the wake state. Our results are comparable to or better than
the existing studies in the literature. Further, the classification
accuracies for the patients with a model trained only on the
healthy population are quite impressive. Thus, the model is
effective and generalizes well for the patient population.

Index Terms—EEG, Poincaré plot, sleep disorders, sleep,
wake, hypnogram, RUSBoost, classification, generalization

I. INTRODUCTION

Sleep is extremely important for our physical and mental
well-being. Any compromise in the quality of sleep such as
sleep deficiency or fragmented sleep results in various health
problems. Sleep-related disorders such as apnea, periodic
limb movements in sleep, narcolepsy, and insomnia are
prevalent yet remain unidentified or misdiagnosed [1]. The
diagnosis is achieved through manual scoring of overnight
polysomnography (PSG) data, which are generally collected
in clinical settings with multiple electrodes attached to the
patient’s body. This results in further sleep disturbances and
hampers the natural sleep cycle. Hence, there is a need for
automated sleep analysis using minimal number of channels
and minimal computational requirements. Such a system can
provide an objective, efficient and faster way of scoring.
Sleep is broadly divided into two categories, namely NREM
(non-REM) and REM (rapid eye movements). The NREM
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sleep is further sub-divided into different stages i.e. N1, N2
and N3 based on the specific signatures of sleep waveforms.
The sleep epochs are staged on the basis of standard scoring
criteria such as Rechtschaffen and Kales (R&K) [2] or
American Academy of Sleep Medicine (AASM) [3]. The
annotation of sleep data into different stages as per the
scoring rules are conducted by sleep experts. However,
this manual scoring is time-consuming, expensive and also
suffers from subjectivity and inter-rater variability.

A number of studies are ongoing to develop an auto-
mated sleep stage classification using a single EEG channel.
Different techniques involving spectral bandpowers, empiri-
cal mode decomposition, complexity, time-frequency, graph-
theory, functional connectivity, and/or non-linear analyses
have been employed for the classification of sleep stages
with varying degree of success [4—11]. Zhu et. al. [4]
utilized graph domain features, namely mean degree and
degree distribution by mapping the sleep EEG signal into
a visibility graph. These features were fed to a support
vector machine (SVM) for the classification of sleep into
different states. Ganesan et. al. [S] used spectral bandpower
ratios and Lempel-Ziv complexity measure as features with a
linear classifier for classifying single-channel EEG data into
sleep and wake states. Another work by the same authors [6]
obtained a high accuracy of around 98% in classifying sleep
and wake states by using a combination of features from EEG
and EOG channels and SVM with a gaussian kernel. Sharma
et. al. [7] applied iterative filtering to decompose EEG
into amplitude-modulated (AM) and frequency-modulated
(FM) components. Various features from amplitude envelope
and instantaneous frequency of modes obtained by iterative
filtering fed to a random forest classifier provided a high
accuracy of 98% for sleep-wake classification. Bajaj et. al.
[8] employed multi-class SVM and time-frequency features
obtained using smoothed pseudo Wigner-Ville distribution
on sleep EEG data for 5-class and 6-class classification of
sleep. A study by Hassan et. al. [9] used ensemble empirical
mode decomposition and derived statistical moment based
features for sleep-stage classification. Anusha et. al. [10]
utilized functional connectivity between the midline EEG
channels for the analysis of different conscious states in
sleep and wakefulness. Gupta and Pachori [11] used Fourier-
Bessel decomposition to resolve the EEG into intrinsic band
functions and employed convolutional neural networks to
perform sleep staging.

This work utilizes Poincaré plot from a single EEG
channel to classify sleep and wake states. Poincaré plot is
a phase-space based approach which has been widely used



in heart rate variability analysis [12—-14]. A Poincaré plot
is created by plotting a signal x(k) against its delayed or
lagged version, x(k+ 7). The shape and other features of the
resulting scatter plot depend on the nature of the signal, and
provide valuable information about the long-term and short-
term variability present in most of the physiological signals.
PP analysis is computationally simple and thus facilitates
real-time assessment. However, it has been less explored for
the analysis of EEG signals, especially sleep EEG data. This
study applies various descriptors to quantify Poincaré plots
for classifying the sleep from wake state of healthy subjects
and patients.

Accurate detection of sleep and wake states is helpful
in the timely diagnosis and prognosis of comatose patients
[15] and various sleep disorders like insomnia or apnea. The
highlights of this work are: (1) exploring different descriptors
to characterize Poincaré plots, (2) analysing their utility in
sleep-wake classification, and (3) investigating the perfor-
mance on a patient population with various sleep disorders.

The rest of the paper is organized as follows: Section
Il presents a detailed description of the dataset and the
methodology considered in this work. The results reflecting
the model performance are discussed in Section III and the
conclusion is presented in Section IV.

II. MATERIALS AND METHODOLOGY
A. Experimental Dataset

In this work, we have used three different datasets, namely
DREAMS-Subjects [16], DREAMS-Patients [16] and Sleep-
EDF [17] datasets. All the three datasets are publicly avail-
able and comprise overnight polysomnography recordings.
The DREAMS-Subjects and DREAMS-Patients datasets in-
clude three EEG channels (CZ-Al or C3-Al, FP1-Al and
0O1-Al), one EMG channel, and two EOG channels of 20
healthy subjects (20-65 years old) and 27 patients (19-
74 years old) with various sleep disorders (mixed apnea,
periodic limb movements of sleep (PLMS), sleep apnea-
hypopnea syndrome (SAHS) or dyssomnia. Both datasets
provide expert scores with AASM as well as R&K scoring
criteria. In these two datasets, R&K scoring is performed
with 20 sec epochs, while AASM scoring is done on the basis
of 30 sec epoch length. The Sleep-EDF dataset comprises
two EEG channels (FPz-Cz and Pz-Oz) and one EOG
channel data from 8 subjects (21-35 years old); out of which
four are healthy and four have mild sleeping difficulty. The
experts have scored this dataset with 30 sec epochs based on
R&K scoring criteria.

We have utilized a single EEG channel, namely Cz-A1 for
DREAMS-Subjects and DREAMS-Patients dataset, and Pz-
Oz for Sleep-EDF database. These EEG channels are chosen
since they provided maximum accuracies for different sleep
stage classification problems in our previous studies [5, 6,
18, 19] employing other approaches. The details of the epoch
distributions of sleep and wake states for different datasets
are listed in Table 1. Since this study focuses only on sleep-
wake state identification, we merged all the sleep stages,
namely NREM (S1, S2, S3, and S4) and REM together as

sleep state. We considered R&K scoring criteria as ground
truth for all the datasets.

TABLE I
DISTRIBUTION OF SLEEP AND WAKE STAGE EPOCHS IN DIFFERENT
DATASETS EMPLOYED FOR THIS STUDY

Dataset # Subjects | Wake | Sleep | Total Epochs
DREAMS-Subjects 20 5546 | 23187 28733
Sleep-EDF 8 8055 7133 15188
DREAMS-Patients 27 11573 | 30083 41656

B. Methodology

The workflow of this study is as follows: The raw EEG
signal is filtered using an 8th order Butterworth bandpass
filter with a passband of 0.5-49.5 Hz. Then it is segmented
into 20 or 30 sec epochs, based on the ground truth format.
Next, Poincaré plots are generated using pairs of consecutive
points (x(k),x(k+1)). Examples of the resulting scatter plots
are shown in figures 1 and 2. These figures present the
Poincaré plots (PP) for sleep and wake states of a subject
and a patient, respectively. It can be seen that the dispersions
along the diagonal line (line of identity) as well as along the
perpendicular direction to the diagonal are quite different
for the two states in both cases. Hence, the idea is to
derive different features describing the length, width and area
of these plots to distinguish between the sleep and wake
states. Eight features, namely SD1 (width), SD2 (length),
SD1/SD2, S (area), CCM (complex correlation measure),
standard deviation of each epoch, energy of the slopes and
offsets obtained after fitting a linear regression model on the
multiple lagged PP (lag 7 varied from 1 to 100) are extracted
from these plots. These features are then smoothed using a
moving average filter of window size 35 samples (empirically
chosen) and fed to a classifier. The outcome of the classifier
is a binary hypnogram which represents the two states i.e.,
sleep and wake, across the entire duration of the sleep.

1) Feature Extraction: We derived eight different features
by quantifying the Poincaré plots of the sleep EEG signal.
The two standard descriptors which are widely used to
characterize PP are SD1 and SD2 [13]. SDI1 is the stan-
dard deviation of the distribution of points around the line
perpendicular to the identity (also referred to as its width)
and SD2 is the standard deviation around the identity line
(referred to as the length of PP). Apart from these standard
descriptors, a few studies have also utilized SD1/SD2 to
determine the depth of anaesthesia [20, 21]. Therefore, we
have used SD1, SD2, SD1/SD2 and the area of the elliptical
structure formed by the scatter plots (with semi-major axis
as SD2 and semi-minor axis as SD1) as descriptors of the PP.
We have also looked into the variation of the data in sleep and
wake epochs, and found that the standard deviation of each of
these epochs can indeed help in improving the classification
accuracy. Hence, we included standard deviation of each
epoch as a feature along with the descriptors derived from PP.
Since EEG has both long-term and short-term correlations
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Fig. 1. Example illustration of Poincaré plots for sleep and wake states of

a subject from the DREAMS-Subjects database.
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Fig. 2. Example illustration of Poincaré plots for sleep and wake states of
a patient with mixed apnea from the DREAMS-Patients database.

at different time scales, a delayed PP approach suggested in
[12] is also used in our work. Instead of using consecutive
samples (i.e., with lag of 1), we used multiple lags (varied
from 1 to 100) and for each such lag, constructed a PP and
computed energy of the waveforms generated by the slopes
and intercepts (Eg and Ep) of linear fit on the lagged Poincaré
plots. These energy values seem to provide a good distinction
between sleep and wake states with higher energy in the wake
than the sleep state.

Further, a novel descriptor called complex correlation
measure (CCM) proposed in [14] to quantify the temporal
information of Poincaré plot is also utilized in this work.
CCM measures the sum of the areas of triangle formed
by three consecutive points in a moving window across
the Poincaré plot, thereby providing temporal variations

within that window. Hence, it calculates a finer point-to-
point variation which might not be captured by standard
descriptors (SD1 and SD2) since they essentially capture
gross overall temporal variability. All the features considered
in this work are listed in Table II.

TABLE I
FEATURES CONSIDERED IN THIS STUDY.

Features Description
SD1 Width of PP (dispersion perpendicular to the line of identity)
SD2 Length of PP (dispersion along the line of identity)
SD12 Ratio of SD1 to SD2
SD Standard deviation of epoch
S Area of PP (w x SD1 x SD2)
CCM Complex correlation measure of PP
Eg Energy of the slopes of multiple lagged PP
Eo Energy of the offsets of multiple lagged PP

2) Classification: The classifier used in this study is
RUSBoost, which is an ensemble of decision trees along
with random undersampling [22]. The reason to choose
RUSBoost classifier is that it is able to tackle the problem
of class-imbalance by undersampling the majority class,
thus providing a balanced dataset for classification. The
different hyperparameters of RUSBoost are the number of
weak learners (trees), learning rate, and maximum number
of splits for each tree. The values are chosen to be 2000
weak learners, with learning rate of 0.1 and maximum splits
equal to the number of training samples. These values are
fine-tuned by using a grid search across a range of values
for each of these hyperparameters.

The statistical significance of the features is tested by
Kruskal-Wallis test, a non-parametric version of one-way
ANOVA. The p—values for each dataset is listed in Table
III. It can be seen that all the eight features are statistically
significant with p—value less than 0.005. The performance
of the proposed method is evaluated using 50%-holdout and
10-fold crossvalidation techniques. In 50% hold-out method,
half of the total number of subjects available in a dataset
are used for training, and the remaining for testing. This is
repeated for 10 different runs, each run randomly selecting
the training and test subjects. In 10-fold crossvalidation
technique, all the subjects’ data are merged and split into
10 different folds; out of which 9 folds are used for training,
and the left out fold for testing. This is executed 10 times;
each time one of the 10 folds is used as the test set. The
final performance is reported as the average classification
accuracy across the 10 folds.

III. RESULTS AND DISCUSSION

The proposed method achieves 10-fold crossvalidation
accuracy of 96.0% using Cz-A1 EEG channel on DREAMS-
Subjects dataset using only 8 features. The confusion matrix
between the scores predicted by our method and the experts
is presented in Table IV. The values in the diagonal show
the number of correctly classified epochs corresponding
to each state (sleep and wake). The performance metrics,



TABLE III
SIGNIFICANCE ANALYSIS (p-VALUES) USING KRUSKAL-WALLIS
ONE-WAY ANOVA TEST FOR DIFFERENT DATASETS

Features Datasets
DREAMS-Subjects | Sleep-EDF | DREAMS-Patients
SD 0 0.3¢ —25 0
SD2 0.37¢—13 0 0
SD1 0 0 0
S 0.62¢ — 13 0 0.13¢ —45
SD12 0 0 0
CCM 0 0 0
Es 0 0 0
Eo 0 0 0

namely sensitivity, precision, and F1-score (harmonic mean
of precision and sensitivity) are also computed. These metrics
are derived from the confusion matrix as shown below.

Sensitivity =TP/(TP+FN) (1)
Precision=TP/(TP+FP) (2)
F1—score=2TP/(2TP+FN + FP) 3)

where TP, FP, and FN denote true positives, false
positives and false negatives, respectively.

The values of these performance metrics are presented
in Table V for all three datasets. For DREAMS-Subjects
dataset, our method provides high sensitivity, precision and
Fl1-score values of 97.9%, 96.9%, and 97.4% for the sleep
state, while they are comparatively less (86.2%, 90.5%, and
88.3%, respectively) for the wake state. Table VI compares
the classification accuracies and kappa values [23] of the
proposed method with the existing literature for DREAMS-
Subjects dataset. It can be seen that this approach is able to
provide comparable results with a minimal set of 8 features.
Furthermore, an average classification accuracy of 90.9 +
1.1% 1is obtained using 50%-holdout validation technique
(performance averaged over 10 runs; each run comprising
50% of the total number of subjects randomly selected for
training and the rest 50% used for testing).

TABLE IV
CONFUSION MATRIX FOR 2-CLASS (SLEEP-WAKE) CLASSIFICATION
USING POINCARE PLOTS OF A SINGLE EEG CHANNEL (CZ-A1) ON
DREAMS-SUBJECTS DATASET WITH 10-FOLD CROSSVALIDATION.

PREDICTED CLASS

Sleep Wake
Sleep | 24153 305
TRUE CLASS ~gage T 774 827

On DREAMS-Patients dataset, we achieved 10-fold cross-
validation accuracy of 94.4% with 96.8% sensitivity, 95.6%
precision, and 96.2% Fl-score for the sleep stage. Also,
a high kappa value of 0.86 is obtained indicating good
agreement between the experts and our method. Table VII
shows the confusion matrix for the patient dataset using

TABLE V
RESULTS OBTAINED ON DREAMS-PATIENTS, DREAMS-SUBJECTS,
AND SLEEP-EDF DATABASES EMPLOYING 10-FOLD CROSSVALIDATION.
LISTED ARE THE SENSITIVITY, PRECISION AND F1-SCORE VALUES (IN
%) USING A SINGLE EEG CHANNEL.

Database [ Sensitivity [  Precision Fl-score |

| Sleep | Wake | Sleep | Wake | Sleep | Wake |

DREAMS-Patients 96.8 88.3 95.6 91.3 96.2 89.8
DREAMS-Subjects 97.9 86.2 96.9 90.5 97.4 88.3
Sleep-EDF 98.2 98.1 97.9 98.4 98.0 98.3

10-fold crossvalidation. We obtained 50%-holdout accuracy
(averaged over 10 runs) of 79.5 £3.9%. Since none of
the studies in the literature have reported the performance
on DREAMS-Patients database, we could not compare the
results of our method. We also evaluated the prediction
accuracies for each of the patients by using the training data
of only healthy subjects. The results are presented in Fig.
3 for each of the patients corresponding to various sleep
disorders: PLMS, dyssomnia, mixed apnea and SAHS (one
patient is not shown here as the pathological condition is not
specified in the dataset). It is evident from the figure that
the proposed method is able to provide good classification
accuracies for the unseen test data of patients group. Figure 4
presents the actual hypnogram and the hypnogram generated
by the proposed method for a patient. In this case, out
of 1501 epochs, 1388 epochs are correctly classified, thus
providing an accuracy of 92.5%. This shows that our method
is well able to predict the correct state for most of the epochs.

TABLE VI
COMPARISON OF OUR 10-FOLD CROSSVALIDATION ACCURACY (IN %)
AND KAPPA VALUE WITH THE EXISTING LITERATURE FOR SLEEP-WAKE
CLASSIFICATION ON THE DREAMS-SUBJECTS DATASET.

Study MEFF-R [18] | Shen [24] | Hassan [9] | Our Method
Accuracy 96.5 96.2 93.3 96
Feature size 98 >80 28 8
Kappa 0.88 - - 0.86
TABLE VII

CONFUSION MATRIX FOR 2-CLASS (SLEEP-WAKE) CLASSIFICATION
USING POINCARE PLOTS OF A SINGLE EEG CHANNEL (CZ-A1) ON
DREAMS-PATIENTS DATASET WITH 10-FOLD CROSSVALIDATION.

PREDICTED CLASS

Sleep Wake
Sleep | 29106 977
TRUE CLASS Wake 1350 10223

For Sleep-EDF dataset, sensitivity, precision, and F1-score
values of 98.2%,97.9%, and 98.0% are obtained by 10-
fold crossvalidation for sleep state; and 98.1%,98.4%, and
98.3%, respectively for the wake state. The corresponding



TABLE VIII
CONFUSION MATRIX FOR 2-CLASS (SLEEP-WAKE) CLASSIFICATION
USING POINCARE PLOTS OF A SINGLE EEG CHANNEL (Pz-0Z) ON
SLEEP-EDF DATASET WITH 10-FOLD CROSSVALIDATION.

PREDICTED CLASS

Sleep Wake

Sleep | 7006 27

TRUE CLASS [ ~gake T 153 7902
TABLE IX

COMPARISON OF OUR 10-FOLD CROSSVALIDATION ACCURACY (IN %)
AND KAPPA VALUE WITH THE EXISTING LITERATURE FOR 2-CLASS
CLASSIFICATION ON THE SLEEP-EDF DATASET.

Study MEFF-R [18] | Sharma [7] | Ronzhina [25] | Our Method
Accuracy 97.6 98.0 96.9 98.2
Kappa 0.94 0.96 - 0.96
Feature size 98 20 30 8

confusion matrix is presented in Table VIII. Also, as com-
pared to the earlier studies, the proposed method is able
to provide better classification accuracy and kappa value
(refer Table IX). With the Sleep-EDF dataset, we obtained
an accuracy of 94.0 £2.6% using 50%-holdout validation
approach.
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Fig. 3. Sleep-wake classification accuracies for each patient from the

DREAMS-Patients dataset (N=26; Mixed apnea:2, PLMS:9, SAHS:9, Dys-
somnia:6) by training the model only on healthy subjects (N=20) from the
DREAMS-Subjects database.

We also found that the PP for the wake state takes a more
elongated shape than for the sleep state. This observation
is found to be consistent across all the control subjects as
well as patients. This indicates that there is an increased
level of long-term variability in the wake state. Further, we
did not find any significant difference in the wake state
between the two groups (healthy and patients). However, all
the descriptors showed a significant difference across these
two groups in the sleep state.

IV. CONCLUSIONS

This study explores the utility of Poincaré plots in sleep
EEG analysis. Poincaré plot (PP) analysis has been widely
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Fig. 4. Actual (blue colour) hypnogram (1:Wake; 0: Sleep) of a patient
from the DRMS-PAT dataset and the hypnogram predicted (red colour) by
our method.

used in the biomedical domain, especially for the analysis
of heart rate variability and depth of anaesthesia. However,
it has been less explored for sleep EEG analysis. The
complexity of the brain differs between the sleep and wake
states. An awake brain is more complex and chaotic than
that in sleep, which we found to be well captured by the
Poincaré plots. Descriptors characterizing these plots form
good features to distinguish between these two states of
the brain. These PP descriptors are fed as features to the
RUSBoost classifier for sleep-wake classification of healthy
individuals and patients with sleep disorders.

We have utilized three different publicly available datasets
to validate the performance of our method. We achieved
high sensitivity values of 97.9% and 96.8% as well as high
precision values of 96.9% and 95.6% for sleep stage in
healthy (DREAMS-Subjects) and patient groups (DREAMS-
Patients), respectively, using a single EEG channel. A high
classification accuracy of 98.2% is obtained for Sleep-EDF
dataset. Also, high F1-score values are obtained for all three
datasets, especially for the Sleep-EDF (98% and 98.3% for
sleep and wake state, respectively). Hence, the proposed
method is able to provide good classification accuracies on
unseen patients for sleep-wake identification by just exploit-
ing simple features from Poincaré plots of sleep and wake
states of healthy subjects. This shows its generalizability.
The main advantage of PP analysis is that it does not need
heavy computation, and thus is fast and efficient. Therefore,
it is preferable for real-time analysis. In our future work,
we would like to investigate some more properties such
as symmetry and higher order Poincaré plots which may
provide further improvement in the sleep-wake classification.

REFERENCES

[1] Bruce M Altevogt, Harvey R Colten, et al. “Sleep dis-
orders and sleep deprivation: an unmet public health
problem”. In: (2006).



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

A Rechtschaffen. “A manual of standardized termi-
nology, technique and scoring system for sleep stages
of human subjects”. In: Public Health Service (1968).
Richard B Berry et al. “The AASM manual for the
scoring of sleep and associated events”. In: Rules,
Terminology and Technical Specifications, Darien,
Lllinois, American Academy of Sleep Medicine 176
(2012), p. 2012.

Guohun Zhu, Yan Li, and Peng Wen. “Analysis and
classification of sleep stages based on difference vis-
ibility graphs from a single-channel EEG signal”.
In: IEEE Journal Biomed. Health Informatics 18.6
(2014), pp. 1813-1821.

Ramakrishnan Angarai Ganesan and Ritika Jain.
“Sleep-awake classification using EEG band-power-
ratios and complexity measures”. In: 17th India Coun-
cil International Conf (INDICON). IEEE. 2020, pp. 1-
6.

Ramakrishnan Angarai Ganesan and Ritika Jain. “Bi-
nary state prediction of sleep or wakefulness using
EEG and EOG features”. In: 17th India Council
International Conf (INDICON). IEEE. 2020, pp. 1-7.
Rajeev Sharma, Ram Bilas Pachori, and Abhay Upad-
hyay. “Automatic sleep stages classification based on
iterative filtering of electroencephalogram signals”.
In: Neural Computing and Applications 28.10 (2017),
pp. 2959-2978.

Varun Bajaj and Ram Bilas Pachori. “Automatic clas-
sification of sleep stages based on the time-frequency
image of EEG signals”. In: Computer Methods and
Programs in Biomedicine 112.3 (2013), pp. 320-328.
Ahnaf R H and Mohammed I H B. “Automated
identification of sleep states from EEG signals by
means of ensemble empirical mode decomposition
and random under sampling boosting”. In: Computer
Methods and Programs in Biomedicine 140 (2017),
pp.- 201-210.

AS Anusha and AG Ramakrishnan. “Midline EEG
functional connectivity as biomarker for conscious
states in sleep and wakefulness”. In: 43rd Annual
International Conf. of the Engineering in Medicine &
Biology Society (EMBC). IEEE. 2021, pp. 1924-1927.
Vipin Gupta and Ram Bilas Pachori. “FBDM based
time-frequency representation for sleep stages clas-
sification using EEG signals”. In: Biomedical Signal
Processing and Control 64 (2021), p. 102265.
Arnaud Brignol, Tarik Al-Ani, and Xavier Drouot.
“EEG-based automatic sleep-wake classification in
humans using short and standard epoch lengths”. In:
12th International Conference on Bioinformatics &
Bioengineering (BIBE). IEEE. 2012, pp. 276-281.
Michael Brennan, Marimuthu Palaniswami, and Pe-
ter Kamen. “Do existing measures of Poincare plot
geometry reflect nonlinear features of heart rate vari-
ability?” In: IEEE Transactions on Biomedical Engi-
neering 48.11 (2001), pp. 1342-1347.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Chandan K Karmakar et al. “Complex correlation
measure: a novel descriptor for Poincaré plot”. In:
Biomedical Engineering Online 8.1 (2009), pp. 1-12.
Ritika Jain and Angarai Ganesan Ramakrishnan.
“Electrophysiological and neuroimaging studies—
during resting state and sensory stimulation in dis-
orders of consciousness: a review”. In: Frontiers in
Neuroscience 14 (2020), p. 987.

S Devuyst. The DREAMS Databases and Assessment
Algorithm [Data set]. 2005.

A L Goldberger et al. “PhysioBank, PhysioToolkit,
and PhysioNet: components of a new research re-
source for complex physiologic signals”. In: Circu-
lation 101.23 (2000), e215-e220.

Ritika Jain and Ramakrishnan A G. “Reliable sleep
staging of unseen subjects with fusion of multiple
EEG features and RUSBoost”. In: Biomedical Signal
Processing and Control 70 (2021), p. 103061.

Ritika Jain and Ramakrishnan Angarai Ganesan. “An
efficient sleep scoring method using visibility graph
and temporal features of single-channel EEG”. In:
43rd Annual International Conf of IEEE Eng Med &
Biol Soc (EMBC). IEEE. 2021, pp. 6306-6309.

K Hayashi, T Yamada, and T Sawa. “Comparative
study of Poincaré plot analysis using short electroen-
cephalogram signals during anaesthesia with spectral
edge frequency 95 and bispectral index”. In: Anaes-
thesia 70.3 (2015), pp. 310-317.

Kazuma Hayase, Kazuko Hayashi, and Teiji Sawa.
“Hierarchical Poincaré analysis for anaesthesia moni-
toring”. In: Journal of Clinical Monitoring and Com-
puting 34.6 (2020), pp. 1321-1330.

Chris Seiffert et al. “RUSBoost: A hybrid approach to
alleviating class imbalance”. In: IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and
Humans 40.1 (2009), pp. 185-197.

Mary L McHugh. “Interrater reliability: the kappa
statistic”. In: Biochemia medica 22.3 (2012), pp. 276—
282.

Huaming S et al. “An automatic sleep stage classifi-
cation algorithm using improved model based essence
features”. In: Sensors 20.17 (2020), p. 4677.

Marina Ronzhina et al. “Sleep scoring using artificial
neural networks”. In: Sleep Medicine Reviews 16.3
(2012), pp. 251-263.



