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Abstract

Extensive experiments have been carried out in this study to classify sleep EEG

from three different standard databases - Sleep EDF, DREAMS and Expanded

sleep EDF databases. Both two-class (sleep-awake) and multiclass classifications

have been performed using a fusion of various EEG features and an ensemble

classifier called random undersampling with boosting technique (RUSBoost).

The results achieved using a single channel EEG are comparable or better than

the state-of-the-art methods in the literature for both types of classification, on

all the databases. Two-class classification is useful to determine the preferred

timings for sensory stimulation of patients with disorders of consciousness. 10-

fold cross-validation accuracies of 92.6% and 97.9% have been obtained on Sleep

EDF database for 6-class and 2-class problems, respectively. Using Expanded

Sleep-EDF dataset, the accuracies improved to 96.3% for 6-state and 99.8% for

2-state classification. For DREAMS dataset, we achieved an accuracy of 96.6%

for 2-state classification. Unlike most research in the literature where perfor-

mance on unseen subjects is not considered, we report classification results on

the data from unseen test subjects using both 50%-holdout and leave-one-out

cross-validation approaches. Similar results were achieved using both valida-

tion techniques for different datasets emphasizing the reliability of our method.

These results are very crucial for the method to be applicable for clinical use on

new patients.
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1. Introduction

Sleep is extremely crucial for the maintenance of physical and mental health

of human beings. Sleep deprivation or poor quality of sleep can lead to numerous

health problems, depression or even death [1]. In order to analyze the various

sleep-related disorders, the quality of sleep is evaluated using polysomnography

(PSG) which utilizes multiple signals such as electroencephalogram (EEG), elec-

trocardiogram (ECG), electrooculogram (EOG) and electromyogram (EMG).

Sleep scoring is performed by the sleep experts based on the visual analysis

of the PSG signals. However, this manual scoring is tedious, costly and time-

consuming. An automated system may be more efficient for sleep scoring since

it can reduce the time and cost involved in sleep stage classification. Based

on Rechtschaffen & Kales’s (R&K) scoring criteria, sleep is categorized into

rapid eye movement (REM) stage, four non-rapid eye movement (NREM) stages

namely S1, S2, S3 and S4, and awake stage [2]. Each of these stages is charac-

terized by a specific signature in terms of the corresponding EEG, EOG and/or

EMG patterns.

In 2007, American Academy of Sleep Medicine (AASM) proposed a new

sleep scoring standard, which merged S3 and S4 stages into a single stage [3].

According to AASM standard, there are only three NREM sleep stages namely

N1, N2 and N3, while REM and wake stages are the same as in R&K standard.

N1 stage is essentially a changeover from wakefulness to sleep, with slowing

down of heartbeat, breathing, eye movements and even brain waves [1]. As

the sleep deepens in the N2 and N3 stages, all the physiological signals further

slow down. N2 stage is characterised by the presence of micro-structures such

as sleep spindles, K-complexes, or both [4]. N3 is the deepest stage of sleep

prominently characterized by the low-frequency delta waves. REM stage is
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very similar to the awake state, also referred to as the dream stage [5]. Many

researchers are working towards accurate and automatic sleep stage classification

[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29]. Some of these works have utilized temporal features or spectral

information, while others have considered time-frequency analysis using wavelet

transforms or Wigner-Ville distribution (WVD) to extract both the time and

frequency information embedded in the EEG signal [7, 9, 11, 20, 23, 30]. In

[20], an analysis of covariance matrices of the wavelet decomposition of five

EEG channels is utilized and an overall accuracy of about 83% is achieved for

5-stage sleep classification. Bajaj et. al. [7] employed time-frequency image of

the EEG signals using pseudo WVD for the classification of sleep stages into 5

or 6 classes. They achieved overall accuracies of 88.5% and 92.9% for 6-stage

and 5-stage classifications, respectively, using 10-fold cross-validation. However,

this study considered only a small subset of the Sleep-EDF database (4700 out

of 15188 epochs). Therefore, the results obtained are based on limited data, and

need to be further validated by including the entire dataset (i.e. 8 subjects) as

well as considering a larger database.

Various time-domain decomposition techniques such as empirical mode de-

composition (EMD) and its variants like ensemble EMD (EEMD) have also been

utilized in a few studies [9, 10, 11, 31]. Hassan et. al. [31] obtained an overall

accuracy of 88.6% using EMD and statistical features for 6-state classification.

In [11], the authors applied EEMD in conjuction with random undersampling

boosting (RUSBoost) classification technique and obtained 88% accuracy for

6-state classification. Another study by the same authors utilized complete en-

semble empirical mode decomposition with adaptive noise (CEEMDAN) which

provided an accuracy of 86.89% [10]. Further improvement in classification

accuracy (89.6%) was achieved by using tunable Q-factor wavelet transform

(TQWT) with adaptive boosting (Adaboost) [32]. This method provided over-

all accuracies of 89.6%, 90.8%, 91.5%, 93.9% and 97.2% for 6-stage to 2-stage

classifications, respectively. With a similar notion of EMD, Sharma et. al. [22]

employed a method based on iterative filtering of EEG signals to obtain modes
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referred to as AM-FM (amplitude-modulated and frequency-modulated) com-

ponents. They obtained overall classification accuracies ranging from 90% to

98% for various classifications involving multiple classes.

Non-linear features such as complexity, fractal dimension, sample entropy,

higher order spectra, Lyapunov exponent, and Lempel-Ziv complexity have also

been employed by several studies to distinguish between different sleep stages

[33, 9, 17, 18, 16, 15, 25]. Liang et. al. [18] proposed a method based on multi-

scale entropy and autoregressive modelling for sleep scoring. This study could

achieve an overall accuracy of around 83% by using a single EEG channel, linear

classifier (LDA) and post-processing based on smoothing. Fraiwan et. al. [9]

employed time-frequency analysis and entropy measures to derive EEG features

for 5-stage classification as per AASM standard. An accuracy of 83% could be

achieved with the random forest classifier. Ganesan et. al. [16] achieved an ac-

curacy of around 94% for 2-state classification by using Lempel-Ziv complexity

and spectral band power ratios. Another study by the same authors obtained

98% accuracy for sleep-wake classification by using features from both EOG and

EEG channels [15]. Lajnef et. al. [17] utilized multiple physiological signals,

namely EEG, EOG and EMG to derive various linear and nonlinear features

such as variance, skewness, kurtosis, linear prediction error energy, spectral

power and power ratios, teager energy operator and permutation entropy. They

obtained an overall accuracy of 88% for 5 classes using dendogram-based SVM

(DSVM). However, all the above mentioned studies did not report the results

of various multi-class (i.e. 2-, 3-, 4-, 5- and 6-class) classification problems.

Some researchers have particularly focused only on the detection of REM

sleep stage [34, 35]. Imtiaz et. al. [35] proposed a new feature called spectral

edge frequency (SEF) and used it along with the absolute and relative power

in 8-16 Hz band for the detection of REM stage. They achieved a sensitivity of

81% and specificity of 75% for REM detection on the sleep data of 8 subjects.

However, this work did not consider identification of multiple sleep stages. Sim-

ilarly, Agrawal et. al. [34] proposed a REM sleep detection scheme with the

help of two EOG channels with minimal parameter adjustments. They achieved
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an overall sensitivity of 67.2% and specificity of 77.5% for the test data on five

subjects.

Phan et. al. [36] proposed a metric learning approach for the classification

of various sleep stages. This approach could outperform many existing methods

by utilizing Mahalanobis distance metric instead of the default Euclidean met-

ric in kNN (K-nearest neighbors). They achieved an overall accuracy of 98.3%

and 94.5% for 2-state and 4-state classifications, respectively. However, this

study considered only four (all healthy) out of eight subjects’ data (excluding

the other four with sleeping difficulties) from sleep-EDF database. This requires

further validation of the results on a larger database. Further, they merged S1

and REM stages together; resulting in a higher 4-state classification accuracy

because S1 and REM are generally the most difficult stages to score accurately.

A study by Liu et. al. [37] utilized multi-domain analysis of EEG signals to

extract various features for sleep stage identification. The feature extraction

process involved multifractal detrended fluctuation analysis (DFA), visibility

graph algorithms, frequency analysis as well as non-linear analysis and the clas-

sifier used in this study was least-square SVM. However, they have considered

only 6-class classification and data from limited subjects.

Some of the studies in the literature have employed neural network and deep

learning techniques to classify multiple sleep stages. Hsu et. al. [12] utilized

energy features derived from an EEG channel and a recurrent neural classifier.

Accuracy of about 87% is obtained for 5-stage sleep classification. Dong et.

al. [38] proposed a mixed neural network approach by combining the rectifier

neural network and long short-term memory (LSTM) network to achieve optimal

classification performance. Further, their aim was to minimize the number of

channels without losing much information and they concluded that an EOG

and a frontal EEG channel can provide sufficiently high accuracy for sleep stage

classification. Tsinalis et. al. [27] incorporated convolutional neural networks

(CNN) for sleep scoring without considering any prior domain knowledge. This

work could achieve an overall 5-class accuracy of 74% across 20 healthy subjects.

Ronzhina et. al. [39] used artificial neural networks for multi-class classification
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and obtained accuracy values of 76.4%, 81.6%, 88.9% and 96.9% for 6-class,

4-class, 3-class and 2-class classifications, respectively. In [40], Chambon et. al.

employed deep learning approach that exploited multimodal and multivariate

signals (EEG, EMG and EOG) without the need of any handcrafted features.

They showed that the temporal context of these signals can be exploited to

further improve the classification performance. This study considered six EEG

(F3, F4, C3, C4, O1, O2), two EOG (left and right) and three EMG (chin)

channels for 5-state sleep classification.

Andreotti et. al. [41] proposed a transfer learning approach in which the

model can be trained on a large public database and then fine-tuned on each

subject. This study compared various existing CNN approaches on four differ-

ent databases. They demonstrated that the model’s performance on a smaller

and more challenging dataset can be improved by utilizing the technique of

transfer learning. Phan et. al. [42] utilized deep bidirectional recurrent neu-

ral network (RNN) with attention mechanism for sleep-staging using a single

EEG channel. They used this trained network only for extracting features while

classification is performed using a linear SVM. A recent study by the same au-

thor [43] proposed a hierarchical RNN called SeqSleepNet utilizing multichannel

time-frequency image to classify a sequence of multiple epochs at a go. This

work could establish a standard baseline outperforming most state-of-the-art

methods including DeepSleepNet [24] and [25] on a massive dataset comprising

200 subjects. The latest study [44] along the similar notion of transfer learn-

ing approach introduced a novel framework called MetaSleepLearner to assist

the clinicians in sleep scoring. It utilized a massive dataset for pre-training the

network and fine-tuned it to new subjects from other cohorts by using only a

few samples from each subject. This approach resulted in a new benchmark

for semi-automated sleep-stage classification. A recent study by Zhang et. al.

[45] proposed orthogonal convolutional neural network (OCNN) in which they

used Hilbert-Huang transform to convert the time series EEG signal into 2-D

time frequency image followed by dimensionality reduction by the use of au-

toencoder. This study used two different datasets in which they achieved clas-
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sification accuracy of 87-88%. But, since they did not evaluate their method on

the commonly reported dataset (Sleep-EDF dataset), it is difficult to compare

their performance with the rest of the studies.

Wavelet coefficients and artificial neural networks were utilized by Ebrahimi

et. al. [30] to discriminate four sleep stages, namely awake, S1+REM, S2 and

SWS (slow wave sleep i.e. S3+S4). They obtained 93% accuracy using a single

EEG channel. However, they considered data of only seven subjects and also

merged S1 and REM together (i.e. REM and an NREM stage) into a single

stage, which are often the most difficult sleep stages to distinguish. Therefore,

a high accuracy could be achieved, but it would be fair if the distinction between

REM and S1 stage is considered in a 4-stage sleep classification.

Among the various PSG signals, EEG is considered to be the most infor-

mative for analyzing the different states of the brain. However, relying only on

EEG signals to differentiate between the N1 and wake stage or REM stage is

difficult, since N1 stage marks the transition from wakefulness to sleep and REM

possesses patterns quite similar to the awake state. Therefore, a high percent-

age of the epochs belonging to REM or awake or N1 are generally misclassified.

Utilizing EMG or EOG signal along with the EEG can further improve the clas-

sification accuracy. Hence, some studies have included EOG and EMG channels

along with the EEG channels to achieve a better classification performance, es-

pecially for the N1 and REM stage [17, 40, 46].

In this study, we have proposed a single-channel EEG-based automatic sleep-

stage identification method (MEFF-R) by utilizing a wide variety of features and

an ensemble classifier. The features are chosen such that they can characterize

most of the aspects of the EEG signal such as irregularity, frequency and tempo-

ral information, entropy or periodicity. Further, in order to tackle the problem

of class-imbalance, we have utilized a hybrid sampling-boosting technique i.e.

random undersampling and adaptive boosting with an ensemble classifier (RUS-

Boost). The promising results of the proposed method show that MEFF-R can

serve as a potential alternative to the tedious, time-consuming and expensive,

manual sleep scoring procedure.
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The major highlights of our work are: 1) the set of features and classifier

utilized in this method are able to outperform most of the recent works in the

literature; 2) better S1 detection accuracy than most of the existing studies; 3)

high classification accuracies across three different datasets using various val-

idation techniques i.e. 10-fold crossvalidation, leave-one-subject-out (LOSO)

and 50%-holdout validation, and 4) promising results for the prediction of sleep

stages on unseen subjects. In this work, our objective is to study various fea-

tures that can capture the different aspects of the EEG signal and utilize a

combination of such features to provide a high classification accuracy among

the different sleep stages, especially on subjects unseen by the classifier during

training. The rest of the paper is structured as follows: The proposed method

is explained in detail in section 2, followed by the experimental results and their

comparison with the previous studies in section 3. Discussion is provided in

section 4 and section 5 concludes the paper.

2. Materials and Method

The flowchart of the proposed multiple EEG feature fusion with RUSBoost

(MEFF-R) method is shown in figure 1. In this work, we have not considered

EMG or EOG signals and utilized only the EEG signal. We have examined

the performance of the proposed method in two scenarios: a) by considering

only a single EEG channel and b) combination of two or three EEG channels.

Further, unlike most research work reported in the literature, we have carried out

subject-independent testing, in addition to subject-dependent testing. Reliable

performance on test data from subjects not seen by the classifier is important

to conclude that the technique is usable in real-life clinical setting on hitherto

unseen subjects (patients).

2.1. Datasets used for the experiments

We have performed experiments on three different publicly available and

widely used datasets, namely Sleep-EDF, Expanded Sleep-EDF, and DREAMS

Subjects databases.
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Figure 1: Flowchart of the proposed Multiple EEG feature fusion with RUSBoost (MEFF-R)

technique for sleep staging

2.1.1. Sleep-EDF database

The first dataset used in this study is Sleep-EDF database from Physionet

[47]. It has overnight sleep data from 8 subjects, four healthy and four with

mild difficulty in falling asleep. These recordings consist of horizontal EOG,

Fpz-Cz and Pz-Oz EEG channels sampled at 100 Hz. Each 30s epoch has been

scored by experts as per R&K scale [2].

2.1.2. DREAMS Subjects database

This database comprises whole night polysomnographic recordings from 20

healthy subjects (16 females and 4 males). It consists of at least two EOG

channels (P8-A1, P18-A1), three EEG channels (Cz-A1 or C3-A1, FP1-A1 and

O1-A1) and one submental EMG channel, all sampled at 200 Hz [48]. The

sleep stage annotations have been provided according to both R&K and AASM

criteria on the basis of 20 and 30 second epochs, respectively.

2.1.3. Expanded Sleep-EDF database

The third dataset used in this study is the Expanded Sleep-EDF database

which is also available on Physionet [47]. This is an expanded version of Sleep-
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EDF database, containing 197 PSG sleep recordings, 153 of them from healthy

subjects and 44 from people with mild difficulty falling asleep. These record-

ings have been scored on the basis of 30s epochs according to R&K manual.

In this study, we have considered the EEG recordings of 30 subjects and the

corresponding epoch distribution is shown in Table 1.

The sleep stages according to R&K criteria are: Wake, S1, S2, S3, S4 and

REM (rapid eye movement) while as per AASM scoring rule, the stages are

classified as: Wake, N1, N2, N3 and REM. Table 1 presents the total number of

epochs analyzed for different sleep/wake stages for each of the three datasets.

Table 1: Sleep stage-wise distribution of the number of EEG epochs considered for experi-

mentation in this study from each standard dataset.

Database Wake REM S1 S2 S3 S4 Total

Sleep-EDF 8055 604 3621 672 627 1609 15188

DREAMS 5601 4555 1788 13274 2112 2929 30259

Expanded Sleep-EDF 55949 2174 13235 2430 1912 5858 81558

2.2. Extraction of different features

The raw EEG signal is preprocessed using an 8th order butterworth IIR

bandpass filter with the passband from 0.5 to 49.5 Hz. These cut-off frequencies

are chosen in order to remove the DC, some slow drifts and the line noise (50

Hz). This signal is then segmented into 30 s or 20 s epochs (depending upon the

ground truth format), from which the epochs with movement or/and no score

are removed. From these segmented epochs, different features are extracted as

explained below, and provided as inputs to the classifier for training. Various

multi-domain features are chosen in this work so as to capture the different

aspects of the sleep EEG signal.

In order to measure the temporal variations of the signal, we have utilized

autoregressive modelling and Hjorth parameters, whereas frequency contents are

studied using band power ratios. In general, sleep is dominated by low frequency

signals (delta or theta), while wake or light sleep states are governed by high
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frequency bands such as alpha or beta. Hence, the ratios between powers in

these frequency bands are robust markers of the various sleep stages and are

utilized primarily in all the studies on sleep-stage classification. Further, to

obtain time-frequency representation of the EEG signals, we have used discrete

wavelet transform (DWT). EEG signal is highly non-linear in nature and its

complexity varies across different sleep stages. Therefore, we calculated the

Lempel-Ziv complexity (LZC) measure, which has been used in our earlier work

to detect sleep and wake states of the brain [16]. Along with LZC, we have used

other non-linear measures like sample entropy and Higuchi fractal dimension

to capture the irregularity and structure of the signal at multiple scales. Both

these non-linear features have proven their ability to classify sleep and wake

stages in our previous work [15]. Some of the statistical features successfully

employed in previous studies [19, 49] are also utilized in this work. A detailed

description of all these features is given below.

2.2.1. Autoregressive (AR) model parameters

An autoregressive model predicts the current value of a signal based on its

past values [50]. This is the most frequently used technique in linear predictive

modelling of time series. The number of past samples used for prediction de-

termines the order of the model. We have used AR model of order 8 to predict

the EEG samples of each individual epoch.

x(n) =

p∑
j=1

ajx(n− j) (1)

where p is the order of the AR model and aj are the AR coefficients, which are

used as the features.

2.2.2. Higuchi fractal dimension (HFD)

Fractal dimension is an important characteristic of a system, because it

contains information about the geometrical structures at multiple scales [51].

Higuchi’s algorithm [52] is popular for calculating the fractal dimension. In

11



order to obtain Higuchi’s fractal dimension, a new set of series is first generated

from the original time series, defined as follows:

Xm
k : x(m), x(m+ k), x(m+ 2k), ...x(m+ bN −m

k
ck) (2)

with m = 1, 2, ...k and b.c is the floor operation. Then the length of the curve

associated with each of the newly generated time series Xm
k is calculated as,

Lmk =
1

k

( bN−m
k c∑
i=1

| x(m+ ik)− x(m+ (i− 1)k) |
)( N − 1

bN−mk ck

)
(3)

〈L(k)〉 ∝ k−D (4)

The average value 〈L(k)〉 of the lengths associated with the set of time

series follows a power law given by (4), where ’D’ is the value of Higuchi fractal

dimension. We have calculated HFD values for various frequency bands listed

in Table 2.

2.2.3. Sample entropy (SE)

Entropy quantifies the irregularity in the signal based on the series of pat-

terns embedded in it. Since entropy is an estimate of the degree of randomness,

its value is higher when the sequences in a series are less ordered. For instance,

the value of entropy would be lesser in sleep stages than in wake state. Sample

entropy has also been utilized to monitor the depth of anaesthesia of patients

during surgery [53]. Sample entropy (SE) has been shown to perform better

than the approximate entropy (ApEn) [54]. Also, unlike ApEn, sample entropy

is easier to implement and is independent of the length of data. Therefore, SE

is favored in many studies involving stationary time series analysis [53, 55]. SE

is defined as:

SE(m, r,N) = − ln [Cm+1(r)/Cm(r)] (5)
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where Cm is given by

Cm(r) =
{Number of pairs (i, j) with | xmi − xmj |< r, i 6= j }

{Number of all probable pairs}
(6)

The parameters m, r and N are the length of sub-series, tolerance for accepting

matches and the total number of samples in the series, respectively. The values

of the parameters used in this study, chosen based on the previous studies

[14, 55], are m = 2 and r = 0.15 times the standard deviation of the original

time series.

2.2.4. Lempel-Ziv complexity (LZC)

It is based on coarse-graining of the measurements, which means that the

raw signal is transformed into a new time-series with very few symbols as the

elements of the series [56]. LZC measures the number of distinct patterns em-

bedded in the given sequence. In order to calculate LZC, we first convert the

time-series into a binary sequence by thresholding it with respect to the mean

value of the epoch. Then, we evaluate the number of distinct patterns contained

in that sequence. It is also normalized to make it independent of the sequence

length. This EEG complexity measure has already proved its ability to assess

the depth of anaesthesia and it is computable in real time [57]. Hence, it can

be a good feature to characterize the different sleep stages.

The following procedure has been adopted to calculate the values of LZC

corresponding to the EEG signal.

Step 1: Convert EEG samples {Xi|i = 1, 2, 3....n} into a binary sequence by

setting the threshold as the mean of the samples, Xm = (1/n)
n∑
i=1

Xi, where n

is the length of the epoch.

Step 2: The new sequence Y = s1, s2, s3....sn obtained in the previous step is

used to compute the distinct patterns embedded in it. This requires comparison

of the present subsequence with the preceding one. If they are distinct, the

complexity counter C is incremented.
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Step 3: Normalisation of the counter C by n/log2(n). This gives us the value

of LZC corresponding to the EEG epoch.

The values of LZC capture the information of different patterns across mul-

tiple sleep stages and therefore help in distinguishing amongst the sleep and

wake stages.

2.2.5. Discrete wavelet transform (DWT) coefficients

Wavelet transform provides time-frequency information about the signal, un-

like the Fourier transform which provides only the frequency representation of

the signal. DWT represents the signal as the linear combination of dilated and

translated versions of a chosen basis function, known as the mother wavelet.

DWT applies a low-pass and a high-pass filter at each level of decomposition

resulting in approximation and detail signals. We perform 4-level wavelet de-

composition of each 30s epoch of the EEG signal using order-2 Daubechies

wavelet. The detail coefficients (D1 to D4) contain high frequency content of

the signal while the approximation coefficient (A4) contains the low frequency

information. Finally, we calculate the minimum, maximum, mean and standard

deviation for each of the wavelet coefficients. Hence, for each coefficient (one

approximation and four detail coefficients), we have four corresponding values

which gives us a total of 20 features (referred to as DWT1− DWT20).

2.2.6. Band power ratios

Features such as ratios of powers in different frequency bands can provide

useful information regarding the sleep stages. For instance, low frequency delta

waves are dominant in the deep sleep stages like S3 and S4, while in waking

state, higher frequency bands such as alpha or beta waves are dominant. We

have employed Welch’s method to estimate the power spectral density for each

epoch and computed power in the different frequency bands listed in Table 2.

The following eight ratios of powers in the different frequency bands have

been computed and added to the list of features used.
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Table 2: EEG bands considered in this study and their frequency ranges in Hz. Sp Band

refers to the spindle band.

Band δ θ α β γ Sp Band Band-I Band-II

Freq 1-4 4-8 9-12 13-30 30-49.5 11.5-16 0.5-3.5 3.5-8

1. Alpha to delta power ratio :

Rα,δ = Pα/Pδ

2. Alpha to theta power ratio:

Rα,θ = Pα/Pθ

3. Beta to delta power ratio:

Rβ,δ = Pβ/Pδ

4. Beta to theta power ratio:

Rβ,θ = Pβ/Pθ

5. Theta to delta power ratio:

Rθ,δ = Pθ/Pδ

6. Alpha to slow wave (SW) power ratio:

Rα,SW = Pα/P(Band-I + Band-II)

7. Theta to Alpha-Delta ratio:

Rθ,α−δ = PBand-II/P(α+Band-I)

8. Spindle power ratio (SPR): The spindles are oscillatory-structured sleep

elements found in N2 stage. Since they occupy the frequency range of

11.5-16 Hz, this frequency band is referred to as the spindle band. Spindle
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power ratio is calculated as the ratio of power in the spindle band to that

of the total power PT in the complete signal (0.5 to 49.5 Hz). This ratio

can be highly informative for sleep staging, especially for the detection of

NREM stage 2.

RSP = PSp Band/PT

2.2.7. Hurst exponent

Hurst analysis is generally used to estimate the long-term memory of a time

series [58]. Hurst exponent has been successfully used for the prediction of

epileptic seizures and sleep stage analysis [33, 59]. It is a nonlinear measure,

defined as

H =
log(R/S)

log(T )
(7)

where T is the duration of the signal, R is the difference between the maximum

and minimum deviations from the mean and S is the standard deviation.

We compute Hurst exponent corresponding to the filtered signals obtained

by passing the raw signal through five different frequency bands i.e. alpha, beta,

delta, theta and gamma bands as defined in Table 2. Thus, Hurst exponents

add five to the overall feature dimension.

2.2.8. Sum of absolute differences (SAD)

It is defined as the sum of the absolute first difference signal samples in

the series, computed for each epoch. We have evaluated this feature for all

the frequency bands mentioned in Table 2, which adds eight to the feature

dimension.

SAD =

N∑
n=1

| x(n)− x(n− 1) | (8)

where N is number of samples in an epoch.

2.2.9. Log root of squared difference signal (LRSD)

This feature was originally proposed by Memar et. al. [19] to measure the

sequential variations among the samples of a signal. It is calculated as the
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logarithm of square root of the sum squared differences between the consecutive

samples. The values are obtained for the eight frequency bands considered in

this study.

LRSD = log10

(√√√√ N∑
n=1

(x(n)− x(n− 1))2

)
(9)

where N is the number of samples in an epoch.

2.2.10. Detrended variation

This is also a nonlinear feature, which has been explored by several studies

to determine the self-similarity in a time series [60, 61, 62]. To compute this

feature, each epoch is divided into segments of length p, whose local linear fit is

subtracted and then root-mean square variation F is computed. Here, a window

length of 10 samples (p = 10) is considered and the detrended variation for each

epoch is computed as,

y(n) = x(n)− µ

F =

√√√√(1/N)

N∑
n=1

[y(n)− yp(n)]2
(10)

where N is the epoch length, µ is the mean of the epoch and yp is the piecewise

straight-line fit of y with length p.

2.2.11. Hjorth parameters

These are related to the variances of the signal and its first and second

derivatives [63]. These comprise Hjorth activity (AH), mobility (MH), and

complexity (CH), which are defined as follows:

AH = σ2
x

MH = σx′/σx

CH =
σx′′/σx′

σx′/σx

(11)

where σx, σx′ and σx′′ are the standard deviations of the signal x(n), its first

derivative x′(n) and second derivative x′′(n), respectively. Again, each of the
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three values are calculated for the filtered signals corresponding to the different

frequency bands listed in Table 2.

2.2.12. Statistical features

We have calculated two statistical features epoch-wise for alpha, beta, delta,

theta and gamma frequency bands. The two novel features namely maximum-

minimum distance and energy speed, proposed by Aboalayon et. al. [49] are

utilized to capture the underlying statistics and provide useful information to

distinguish between the different sleep stages.

Maximum-minimum distance (MMD): To begin with, the distance (d) be-

tween the maximum and minimum points is obtained for each sliding window

of 100 samples within the epoch. For each such mini-epoch (window of 100

samples), d is calculated as described in (12). Finally, the sum of the (d) values

of all the mini-epochs is the MMD value for an epoch and this is obtained for

different frequency bands.

d =
√

∆x2 + ∆y2

MMD =

i=n∑
i=1

di

(12)

where ∆x is the difference between the indices of the maximum and minimum

samples and ∆y is the corresponding amplitude difference; n is the total number

of mini-epochs in an epoch.

Energy speed (EnSp): This is the product of the energy and speed of the

signal. We have computed the EnSp value of each epoch for alpha, beta, delta,

theta and gamma frequency bands. Energy of an epoch is obtained as:

E =

k=N∑
k=1

x2k (13)

where xk are the EEG samples of the epoch. The speed of the signal is defined

as

v = f ∗ λ (14)
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Table 3: The p-values obtained for the various EEG-derived features using Kruskal-Wallis

one-way ANOVA test. Five DWT features, whose p-values are high, are not considered in the

feature-set.
Features p−value Features p−value Features p−value Features p−value Features p−value Features p−value Features p−value

AR1 0 AR2 0 AR3 0 AR4 8.4e− 70 AR5 0 AR6 0 AR7 8.1e− 266

AR8 0 DWT1 0 DWT2 0 DWT3 0 DWT4 0 DWT5 0 DWT6 0

DWT7 0 DWT8 0 DWT9 0 DWT10 0 DWT11 0.9671 DWT12 0.099 DWT13 0.7335

DWT14 0.4781 DWT15 0.1582 DWT16 0 DWT17 0 DWT18 0 DWT19 0 DWT20 0

HFDδ 0 HFDθ 0 HFDα 0 HFDβ 0 HFDγ 0 HFDSB 0 HFDBand−I 0

HFDBand−II 0 LZC 0 Rα,δ 0 Rα,θ 0 Rβ,δ 0 Rβ,θ 0 Rθ,δ 0

Rα,SW 0 Rθ,α−δ 0 RSP 0 Hγ 0 Hδ 0 SADδ 0 SADθ 0

SADα 0 SADβ 0 SADγ 0 SADSB 0 SADBand−I 0 SADBand−II 0 LRSDδ 0

LRSDθ 0 LRSDα 0 LRSDβ 0 LRSDγ 0 LRSDSB 0 LRSDBand−I 0 LRSDBand−II 0

Hα 0 AH,δ 0 AH,θ 0 AH,α 0 AH,β 0 AH,γ 0 AH,SB 0

AH,Band−1 0 AH,Band−II 0 MH,δ 0 MH,θ 0 MH,α 0 MH,β 0 MH,γ 0

MH,SB 0 MH,Band−1 0 MH,Band−II 0 SE 0 CH,δ 0 CH,θ 0 CH,α 0

CH,β 0 CH,γ 0 CH,SB 0 CH,Band−1 0 CH,Band−II 0 σ 0 EnSpδ 0

EnSpθ 0 EnSpα 0 EnSpβ 0 EnSpγ 0 MMDδ 0 MMDθ 0 MMDα 0

MMDβ 0 MMDγ 0 F 0 Hθ 0 Hβ 0

where λ is the length of the mini-epoch i.e. 100 samples and f is the mid-

frequency of the pass band.

Standard deviation: If x̄ is the mean of the samples, the standard deviation

σ(x), also used as a feature, is given by,

σ(x) =

√∑N
i=1(xi − x̄)2

N
(15)

2.3. Feature selection by statistical significance

In order to examine the statistical significance of the features considered in

the study, we have used the non-parametric Kruskal-Wallis one-way analysis of

variance test at a confidence level of 95% [64]. 23 sets of features, namely AR

model coefficients, HFD, LZC, power ratios such as alpha to delta ratio, beta

to theta, beta to delta, alpha to theta, theta to delta, alpha to slow wave ratio,

theta to alpha-delta ratio, and spindle power ratio, DWT coefficients, Hurst

exponent, SAD, LRSD, detrended variation, standard deviation, EnSp, MMD,

Hjorth’s mobility, complexity and activity and sample entropy are considered in

this study. Further, some of these features are calculated for different frequency

bands listed in Table 2. The features are normalized using z-score normalisation

method. The corresponding p−values obtained by using Kruskal-Wallis test are

shown in Table 3.
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All the features, except for the mean values of wavelet coefficients (DWT11−

DWT15) have p−values less than 0.005, and hence considered relevant for sleep-

stage classification. The features DWT11 −DWT15 are not statistically signifi-

cant and therefore excluded from the feature-set. The final set of all the features

included in the study are shown in Table 4. The total dimension of the feature

vector is 98.

Table 4: List of all the features used for classification of sleep EEG.

Feature Dimension Feature Dimension

AR model parameters 8 Max Min Distance 5× 1 = 5

3 values X 5 DWT coefficients 15 Energy-Speed 5× 1 = 5

Alpha to delta band power ratio 1 Hurst Exponent 5× 1 = 5

Alpha to theta band power ratio 1 Log Root Sq Diff 8× 1 = 8

Beta to delta band power ratio 1 Hjorth’s complexity 8× 1 = 8

Beta to theta band power ratio 1 Hjorth’s mobility 8× 1 = 8

Theta to delta band power ratio 1 Hjorth’s activity 8× 1 = 8

Alpha to slow wave band power ratio 1 Higuchi FD 8× 1 = 8

Theta to alpha-delta band power ratio 1 Detrended variation 1

Relative spindle band power ratio 1 Standard deviation 1

Lempel-Ziv Complexity 1 Sample entropy 1

SAD values for 8 frequency bands 8 All the features 98

2.4. RUSBoost Classifier

The major issue in sleep stage classification is that of class-imbalance. The

distribution across different sleep stages is highly skewed: stages such as wake

and S4 have more epochs than that of REM. Hence, there is a need to overcome

this problem; otherwise, the classifier may end up performing poorly on the

minority class. An efficient way to tackle it is by using sampling methods or

modelling algorithms like boosting. We can either go for undersampling the

majority class or oversampling the minority class, such that both these classes

have similar number of samples and hence give a balanced dataset to work with.

In this work, we utilize random undersampling technique (RUS) since it helps

in reducing the size of data and computational time. Other method is SMOTE
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i.e. synthetic minority oversampling technique, which oversamples the minority

class by generating synthetic data. Oversampling results in a larger training

dataset, thus increasing the model training time. Also, it has been reported

in the literature that RUS outperforms SMOTE in most of the scenarios [65].

Hence, we adopt the RUS technique along with adaptive boosting algorithm

(Adaboost) by utilizing an ensemble of decision trees as weak learners. The

choice of using ensemble classifier with RUS approach provides us with an im-

proved performance than that of the traditional SVM or kernel-SVM, especially

for the minority classes.

We have found that as the datasize increases, the performance of SVM de-

teriorates and it also requires higher computational time. The SVM-RBF (i.e.

SVM with a radial basis function as kernel) classifier provides an accuracy of

around 68% for 6-state classification using a subset of 8 subjects from the Ex-

panded Sleep-EDF dataset, while the RUSBoost classifier is able to reach up

to 94% accuracy on the same data. The ensemble classifier therefore turns out

to be a much better choice than SVM. This is because of the fact that the en-

semble learning algorithms generally tend to outperform other machine learning

algorithms when dealing with unbalanced data [65].

So, we have used two methods to tackle this problem: a) data-level method

by re-sampling approach (we use RUS technique) and b) algorithm-level method

by utilizing ensemble learning and boosting. RUSBoost (random undersampling

with boosting) merges the two key techniques i.e. undersampling and boosting

to improve the classifier’s performance [65]. It is useful in dealing with the

problem of class imbalance, such as in sleep stage classification, where there is a

lot of variability in the number of epochs for different sleep stages. For instance,

Table 1 shows that the number of REM epochs in Sleep-EDF database is 604

which is far less than the 8055 wake epochs. Also in the other two datasets, the

epoch distribution across different sleep stages is very uneven, which results in

the class-imbalance problem.

Further, while evaluating the performance of unbalanced datasets, accuracy

is not generally considered as the best metric. Hence, we have used various
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other metrics that can provide better insight such as confusion matrix, precision,

recall, F1-score and MCC (Matthews correlation coefficient) [66].

The EEG derived features and the corresponding hypnogram are provided

as input to the classifier. We have compared the performance using single EEG

channel with that of using a combination of multiple EEG channels on three

different datasets. Further, 10-fold cross-validation is performed to evaluate the

generalization capability of the model.

2.5. Performance Evaluation of the proposed MEFF-R technique

In order to evaluate the performance of the proposed technique on the test

subjects, we adopt three different approaches: (i) subject-independent testing

(SIT) (ii) subject-dependent testing (SDT), and (iii) 50% hold-out testing. In

the first case (SIT), we consider leave-one-out strategy to keep one subject’s

data as the test set, while training and validating via 2-fold cross-validation

on the rest of the dataset. This process is repeated k times, where k is the

number of subjects considered in the respective dataset. This approach ensures

that none of the instances of the test data is seen by the model, and hence

the prediction is independent of the test subject. This provides a more reliable

measure of the classifier’s ability to predict the sleep stages of a new test subject

which is desired practically in a clinical setting.

The second approach, which has generally been followed in most of the

studies in the literature, involves training and test sets that share epochs from

the same subjects. In this method, the partition occurs with respect to the

epochs, and not subject-wise. So, some of the epochs from the test subject

will be part of the training data too. Hence, it is biased and overestimates the

generalizability of the classifier.

The third approach involves a random 50%-50% splitting of the entire dataset

such that the data from half of the total subjects are utilized for training the

model, and the remaining half, for testing. In this way, half of the subjects from

the dataset are unseen by the model. This allows more subjects (half the size

of the database) to be available for testing as compared to the leave-one-out
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strategy, where only a single subject is available for testing at a time. Further,

we carry out five different runs, each time choosing a random set of subjects for

training and testing. This provides a robust estimation of the generalizability

of the model.

3. Experimental Results

We have experimented with a variety of features that can be used to classify

different sleep stages accurately. We have also compared the performance with

single EEG channel against that with the use of multiple EEG channels. Three

different datasets have been used to test the accuracy and reliability of the

proposed method. Different n−class classification problems (common structure

for all the three datasets) considered in this study are shown in Table 5.

Table 5: Various number of classes (sleep/wake states) considered for classification in this

study under the two different scoring standards.

Classes AASM score R&K score

6 - W Vs REM vs S1 vs S2 vs S3 vs S4

5 W vs REM vs N1 vs N2 vs N3 W Vs REM vs S1 vs S2 vs (S3+S4)

4 W vs REM vs (N1+N2) vs N3 W vs REM vs (S1+S2) vs (S3+S4)

3 W vs REM vs NREM (N1+N2+N3) W vs REM vs NREM (S1+S2+S3+S4)

2 W vs Sleep (N1+N2+N3+REM) W vs Sleep (S1+S2+S3+S4+REM)

All the experiments are performed using MATLAB 2017a environment on

Intel i7-3770@3.40GHz with 8 GB RAM. It requires around 25 sec on an average

to extract the features from an EEG epoch and about 6 min to train the model.

When the data of a new subject is used for testing the model, it takes around

1.3 sec to classify a 30s epoch. Thus, once the model is trained, testing can be

performed for each epoch, along with the acquisition of the signal for the next

epoch. However, the computational complexity has not been stated in most of

the papers in the literature. A study by Jiang et. al. [67] has mentioned the

computational time to be ∼ 57s for the training of classifier using Intel i7-6700

processor with 24 GB RAM. Though the training time in our method is higher
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than the above study, the training is a one-time process and not to be performed

every time. So once the model is trained, the sleep stage classification for an

epoch of a test subject requires much less time (∼ 25sec).

The classification performance is reported in terms of confusion matrices,

kappa coefficients (κ) and overall accuracies. Confusion matrix presents a sum-

mary of the number of misclassifications corresponding to the different classes.

For instance, the confusion matrices in Figs. 4, 6 and 8 show that the REM

sleep stage is generally misclassified as S1 stage and vice-versa in all the three

datasets. It also provides us with the values of the sensitivity and specificity of

each class, thereby indicating the performance of the classifier corresponding to

each sleep stage. Further, it can be seen from the confusion matrices shown in

figures 4, 6, 8 that sleep stage S1 provides the least sensitivity values among all

the stages. The reason for this is that S1 sleep stage is very similar to REM as

well as wake stages. The confusion matrix also tells us where we need to work

further if we are interested to further improve the classification accuracy. For

example, we can now set up a next level classifier, which disambiguates REM

from S1, leading to better classification of REM stage.

The sensitivity, precision and specificity values of individual classes are re-

ported for each dataset. For the expanded sleep-EDF and DREAMS datasets,

we have evaluated the classification accuracy on the test data using three dif-

ferent approaches as mentioned before.

3.1. Results of MEFF-R technique on Sleep-EDF database

Table 6 compares the subject-dependent classification results on the Sleep-

EDF database using single as well as both EEG channels (Fpz-Cz & Pz-Oz)

with the performance of the techniques in the literature. It is evident from the

table that by using a single EEG channel, the proposed method outperforms

the rest of the studies for 6-state, 4-state, and 3-state classification problems.

Using both EEG channels provides better results for all the classes than using

a single-channel. Classification accuracy for 2-class problem is higher in [10,

11, 22, 68] than the proposed method. However, the studies by Hassan et. al.
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[11] and Yildirim et. al. [68] did not consider k-fold cross-validation technique

which provides a more robust measure of the classification performance of the

model. Also, they have distributed equal number of epochs for each of the

sleep stages in the training and test sets. As a consequence, the model provides

increased accuracy. Further in [10], the authors have not reported the sensitivity

or specificity values for 2-state classification and hence those results cannot be

compared directly. Also, the sensitivity values of S4 and REM sleep stages

reported in [10] are significantly lower (< 40% and < 80%, respectively) than

that of our work (≈ 82% and ≈ 85%, respectively).

Most of the studies [10, 11, 19, 22, 29, 31, 39] have followed the existing

literature, which suggests that Pz-Oz channel provides better performance than

Fpz-Cz channel. However, we have found that for the Sleep-EDF dataset, Fpz-

Cz channel provides better results for all the number of classes except the 2-

class problem. This particular observation coincides with those of a few recent

studies [16, 25, 24, 26, 67, 68]. Figure 2 shows the performance curve for 6-stage

classification with the sequential inclusion of each feature into the feature-set

for Sleep-EDF and DREAMS databases. It can be seen that the classification

accuracy increases with the increase in number of features for both the datasets.

Also, the improvement is much higher for the set of features included initially

than the features added later. Inclusion of more than 15 set of features presents

a slow and steady improvement with the addition of each new feature. It is also

evident from the figure that each feature-set is able to provide some information

regarding the different stages of sleep.

In order to examine the agreement between the scores of the expert and

our method, the confusion matrix corresponding to 6-state classification using

single EEG channel (Fpz-Cz) is shown in Figure 3. The confusion matrix for

6-class using both channels (FPz-Cz and Pz-Oz) is presented in Figure 4. It

can be inferred that the classification accuracy improves by utilizing the infor-

mation from both EEG channels. The confusion plots for Pz-Oz channel and

combination of both channels for the other number of classes are not shown

here, but the accuracy for each class is listed in Table 6. Also, the comparison
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Figure 2: 5-fold cross-validation accuracies for 6-class classification as a function of the number

of sets of features, using sequential selection of feature-set for sleep EDF and DREAMS

databases with single EEG channel (FPz-Cz and Cz-A1, respectively)

of S1 sensitivity values across the existing literature for 6-class and 5-class on

the Sleep-EDF dataset is presented in Table 7. It can be seen that the MEFF-R

method performs comparable to or better than others for both the number of

classes. The performance of the model for three broad sleep stages i.e. wake,

NREM and REM is also evaluated using the metrics of precision, recall, F1-

score [69] and Matthews correlation coefficient (MCC) [66]. The values (mean

and standard error of mean i.e. SEM) obtained for all these metrics for the

three sleep states are shown in Figure 5. The wake state has the maximum

recall, precision, F1-score and MCC, followed by NREM and REM. Further, all

three stages show high MCC values implying all the classes are predicted quite

well. It is because MCC takes into account all the four values in the confusion

matrix and hence the value is high only if the classifier is able to perform well

on both positive and negative classes. The sensitivity, precision and specificity

values corresponding to each of the sleep stages in different n-class classification

problems (n varying from 6 to 2) are shown in Table 13.
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Figure 3: Confusion matrix for 6-stage sleep classification by MEFF-R method using single

EEG channel (FPz-Cz) on Sleep-EDF database using 10-fold cross-validation. Significant

number of S1 epochs are misclassified as REM (17.2%) or waking (14.9%) state.
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Figure 4: Confusion matrix for 6-stage sleep classification using both EEG channels (FPz-Cz

and Pz-Oz) on Sleep-EDF database using 10-fold cross-validation. A sizable fraction of S1

epochs (111 out of 604) are misclassified as REM state.
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Table 6: Comparison of performance (subject-dependent test accuracy in %) of MEFF-

R technique on Sleep-EDF database with those of techniques in the literature. For each

classification problem, the best result is shown in bold.

Method Channel Validation 2-class 3-class 4-class 5-class 6-class

Bajaj et al. [7] Pz-Oz 10-fold CV (4700 epochs) - - - 92.9 88.5

Berthomier et al. [6] Pz-Oz Not mentioned 95.4 88.3 74.5 71.2 -

Doroshenkov et al. [8] Pz-Oz Not mentioned 95.4 88.3 74.5 71.2 61.1

Ghimatgar et. al. [70] Fpz-Cz 50% /50% 97.9 94.9 92.7 91.7 90.8

Hassan et. al. [11] Pz-Oz 50% /50% 98.2 94.2 92.7 83.5 88.1

Hassan et. al. [10] Pz-Oz 7592/7596 epochs 99.5 94.1 92.1 90.7 86.9

Hsu et. al. [12] Fpz-Cz 1920/960 epochs - - - 87.2 -

Jiang et al. [67] Fpz-Cz 10-fold CV - - - 92.7 -

Liang et al. [18] Pz-Oz 50% /50% - - - 83.6 -

Phan et al. [36] Pz-Oz 70% /30% (11314 epochs) 98.3 - 94.5 - -

Rahman et. al. [21] EOG 50% /50% 98.2 94.1 92.9 91.0 90.3

Ronzhina et al. [39] Pz-Oz 10-fold CV 96.9 89.0 81.6 – 76.4

Sharma et. al. [22] Pz-Oz 10-fold CV 98.0 94.7 92.3 91.1 90.0

Vural et al. [71] Fpz-Cz & Pz-Oz - - - - - 70.0

Yildirim et. al. [68] Fpz-Cz 70% /15% /15% 98.3 94.2 91.4 90.8 89.5

Zhu et. al. [29] Pz-Oz 10-fold CV 97.9 92.6 89.3 88.9 87.5

Zhu et. al. [72] FPz-Cz 70% /30% 93.7

MEFF-R Pz-Oz 10-fold CV 97.6 95.0 92.7 91.9 90.6

MEFF-R Fpz-Cz 10-fold CV 97.0 95.1 93.6 92.8 91.6

MEFF-R Pz-Oz & Fpz-Cz 10-fold CV 98.0 95.8 94.4 93.7 92.6

CV: cross-validation

3.2. Results of MEFF-R technique on DREAMS Subjects database

In DREAMS Subjects database, both R&K and AASM scored labels are

available. So, we have performed sleep-stage classification according to both

the scoring criteria. The classification performance for the different testing ap-

proaches, namely SIT and SDT using a single EEG channel (FP1-A2 or CZ-A1)

and the combination of a few channels are presented in Table 8 for R&K scoring.

The classification accuracy achieved by MEFF-R for SDT is higher than those

of all other studies in the literature for all classification problems. The best per-

formance using a single channel is obtained with the central electrode (Cz-A1)

followed by the fronto-parietal channel (FP1-A2). The classification accuracy is

further improved by utilizing the combination of the two EEG channels FP1-A2

and Cz-A1. The occipital channels (O1-A2 and O2-A1) resulted in low perfor-

mance and hence are not reported here. Further, utilizing three EEG channels
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Figure 5: Performance metrics of MEFF-R for 3-stage (Wake, REM and NREM) classification

on Sleep-EDF database using single EEG channel (FPz-Cz).

(FP1-A2, Cz-A1 and O1-A2) resulted in an improved performance for 4-class,

5-class and 6-class classification problems. Only a few studies have reported

results based on subject independent testing for this dataset and among those,

MEFF-R provides higher accuracies for all classification problems except for

5-class. Yang et. al. [74] obtained better accuracy than the proposed method

for 5-state classification using 1D-CNN combined with hidden Markov model

(HMM). However, they achieved a lower sensitivity of ∼ 34% for S1 sleep stage

than obtained by our method (∼ 54%).

The confusion matrix as per R&K scoring criteria for 6-stage classification

using Cz-A1 is shown in Figure 6. The values of sensitivity, specificity and

precision corresponding to each sleep stage for different n-class classification

problems (n ∈ {6, 5, 4, 3, 2}) using Cz-A1 channel are presented in Table 13.

We have achieved sensitivities of 90.1% and 97.9% for the detection of the wake

and sleep states, respectively, which are higher than those of all the previously

reported studies. Figure 7 shows the precision, recall, F1-score and MCC (mean

and SEM values) corresponding to the three broad sleep stages namely NREM,

REM and wake for the DREAMS dataset. The values of all the metrics, except
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Figure 6: Confusion matrix for 6-stage sleep classification using single EEG channel (Cz-A1)

on DREAMS database using 10-fold cross-validation. 382 (21.4%) and 290 (16.2%) out of the

total 1788 epochs belonging S1 stage are misclassified as REM and waking state, respectively.
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MCC, are the highest for NREM stage followed by Wake and REM stages. The

n-state (n varying from 6 to 2) classification results on unseen subjects using

50% hold-out technique are shown in Figure 9. In this approach, 10 (out of

20) subjects are chosen randomly to train the classifier and the remaining 10

subjects are used to test the classification performance for different states. It

is evident from the figure that the classification accuracy increases from around

75% for 6-state classification to 95% for 2-state classification. This is because it

becomes more challenging to accurately classify each of the states as we increase

the number of classes in the classification problem.

Table 9 presents the classification accuracy for all the number of classes using

single EEG channel as per both R&K and AASM scoring criteria. Evidently

the MEFF-R approach performs equally well for AASM standard. Our method

is consistent with both the scoring standards and provides high accuracies for

all the states irrespective of the criteria. The results for multiple classification

problems (2-state to 6-state) are shown for the top two single EEG channels.

For this dataset, Cz-A1 yields the best classification accuracies for all the states.

3.3. Results of MEFF-R technique on Expanded Sleep EDF database

For this dataset, we have trained the RUSBoost classifier on the EEG data

from 30 subjects. Table 10 compares the classification performance on Ex-

panded Sleep-EDF database in terms of accuracy (in %) for the different number

of classes with those of the techniques reported in the literature. For subject-

dependent testing, the best overall accuracy has been achieved by MEFF-R

for all the classification problems from 2 to 6-classes. Further, we achieved a

very high accuracy of above 99% in every case (except 6-class) by combining

features from both the EEG channels. This is the highest sleep staging per-

formance reported so far in the existing literature. We have also reported the

subject-independent test results which provide a far better measure of the gen-

eralizability of the model. The accuracy for this testing would be less than that

of subject-dependent testing, since SIT tests the model on an unseen subject’s

data which is not the case in SDT. However, most of the studies in the literature
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Figure 7: Performance metrics for 3-stage (Wake, REM and NREM) classification on

DREAMS database using single EEG channel (Cz-A1).
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have reported only 5-state classification. Among all the reported studies, the

best overall classification accuracy for subject-independent testing is achieved

by our method for all the multi-class problems except for 5-class. Jiang et.

al. achieved higher 5-state classification accuracy for SIT than the proposed

method; however they have considered lesser number of epochs for evaluating

their model. Also, our method has achieved a higher kappa value of 0.90 than

that of 0.86 reported in their study.

Figure 8: Confusion matrix for 6-stage sleep classification using single EEG channel (Pz-Oz)

on Expanded Sleep-EDF database. 425 (19.5%) S1 epochs out of the total 2174 epochs are

classified wrongly as belonging to REM stage.

We have also presented the prediction accuracy of the model for eight new

subjects whose data is not included for training (30 subjects) and hence, not

seen by the model previously. Table 12 shows the prediction accuracy of the

model (in %) on these eight unseen subjects for multiple sleep states. On the

average, it is able to predict the different sleep stages with an accuracy of about
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89%, 90% and 95% for 6-, 5- and 2-classes, respectively.

The confusion matrix between the evaluation of the experts and our results

for 6-state classification using the Pz-Oz channel is shown in Figure 8. The

sensitivity for S1 stage is less than that of all other sleep stages. It can be seen

that most of the misclassified S1 epochs are categorized as wake or REM, the

reason being its similarity to the waking state. Since S1 stage is the transition

from waking to sleep, it shows characteristics similar to that of the wake state.

Further, S1 and REM stages exhibit similar EEG patterns [77]. Hence the ac-

curate classification of this particular sleep stage is challenging. In the case of

2-state classification, our method achieves high sensitivities of 98.7% and 95.7%

for wake and sleep states, respectively, using a single EEG channel. These sen-

sitivity values could be further increased to 99.9% and 99.6% for wake and sleep

stages, respectively, by using both EEG channels. The performance measures

such as sensitivity, specificity and precision corresponding to each stage for dif-

ferent classification problems using single EEG channel (Pz-Oz) are presented

in Table 13.

For this dataset, Pz-Oz provides the best classification performance among

the single channels for all the classes. Further, the fusion of two EEG channels

results in the best overall classification accuracies for all the classification prob-

lems (2-state to 6-state), as seen in Table 10. The precision, recall, F1-score

and MCC for the three main sleep stages (NREM, REM and wake) are pre-

sented in Figure 10. The values of all the four metrics are maximum for wake

stage, followed by NREM and REM. In fact, the values of precision, recall and

F1-score are around 99% in the wake stage, revealing that the wake stage has

been accurately identified by the model.

Figure 9 presents the mean classification accuracy and standard error across

the different n-states (n ∈ {6, 5, 4, 3, 2}) for DREAMS and Expanded sleep EDF

databases, for 20 and 30 subjects, respectively. These results are obtained by

utilizing randomly chosen 50% of the subjects for training and remaining 50%

for testing across multiple runs, separately with each database. Here, we have

not considered Sleep-EDF database since it has only 8 subjects’ data, which is
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not sufficient for the 50% - 50% splitting of train-test set.

The performance improves with the reduction in the number of sleep states,

reaching the maximum for the 2-state classification problem; which is as ex-

pected. Further, the DREAMS database is a more challenging dataset than

the Sleep-EDF, which is apparent from Figure 9. Only a few studies have re-

ported the performance on DREAMS database and also the accuracies reported

by those studies are lower (see Table 9). However, the improvement in perfor-

mance from (n+ 1)−state to n−state classification problem (n = 2 to 5) is high

in DREAMS dataset. Further, it is interesting to note that the classification

accuracies on unseen test subjects are comparable between the 50%-holdout

technique and the cross-validated subject independent testing (SIT) method

across multiple classes for both DREAMS and Expanded sleep EDF datasets.

We have also computed the kappa (κ) coefficient for all n-class classification

problems (n ∈ {6, 5, 4, 3, 2}) across all the three datasets, which are listed in

Table 11. The obtained values of κ ranges from 0.87 to 0.96 for both sleep

EDF and its expanded version, which shows an excellent agreement between

the scoring by experts and MEFF-R method. For DREAMS dataset, κ shows

a good agreement with values ranging from 0.77 to 0.88 across the different

classes. However, it is slightly less than the other two datasets and the possible

reason is as mentioned in the previous paragraph.

4. Discussion

Tables 6, 8 and 10 compare the performance of our method with those of

the previous studies for the different datasets considered in this work. For

all the three databases, the MEFF-R method provides promising results with

classification accuracies higher than or comparable to those in the literature.

In this study, we have experimented with all the available EEG channels so

as to report the best channel to use for sleep staging. We find that the cen-

tral electrode provides the best classification accuracy. In the case of DREAMS

database, we have obtained the maximum classification accuracy by utilizing Cz-
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Figure 9: Sleep staging performance of MEFF-R technique on unseen subjects for different

n-state classifications (n ∈ {6, 5, 4, 3, 2}) on Expanded Sleep EDF (15 subjects’ data each for

training and testing) and DREAMS (10 subjects’ data each for training and testing) databases

using a single EEG channel. Values plotted are the mean accuracies over five separate trials

with random choice of training and testing subjects.
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Figure 10: Performance metrics for 3-stage (Wake, REM and NREM) classification on the

Expanded Sleep-EDF database using single EEG channel (Pz-Oz).

A1 channel (Cz channel referenced to mastoid), and for sleep-EDF dataset, we

have got the best accuracy for FPz-Cz channel (bipolar frontal-central channel).

On the other hand, Pz-Oz (bipolar parietal-occipital channel) channel provides

the best classification performance for the Expanded Sleep EDF database. Fur-

ther, the combination of FPz-Cz and Pz-Oz channels provide better performance

than the single EEG channels for both Sleep-EDF and Expanded Sleep-EDF

datasets. Similarly, for the DREAMS database, the combination of FP1-A2

and Cz-A1 provides better accuracy than the individual EEG channels.

It has been suggested in the literature that most of the observations such as

delta activity, k-complexes and lower sleep spindles are predominantly frontal

phenomena, and are thus best captured by the FPz-Cz channel. On the other

hand, theta activity and higher frequency sleep spindles, being parietal phe-

nomena, are best captured using the Pz-Oz channel [53]. Hence, any of these

locations would be sufficient to provide information regarding the different sleep

stages. However, the frontal location should be preferred since it is more con-
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venient and also minimizes sleep disturbances.

As compared to the previously reported studies, our work has the following

key advantages. Firstly, we have experimented with a variety of features as well

as different classifiers and finally reported the feature-set and classifier that pro-

vides the best classification performance for all the classes. We have compared

the performances among different EEG channels and their combinations. The

fusion of two EEG channels results in a higher classification accuracy than using

a single channel. Further, in the case of larger datasets, the RUSBoost classi-

fier outperforms the traditional SVM classifier in terms of both computational

time and classification accuracy. We have utilized the RUSBoost classifier to

overcome the class imbalance problem. Secondly, many studies [7, 6, 8] have

considered only the Sleep-EDF dataset to validate their method, which is a

small database with only 8 subjects. Hence, these methods need to be validated

on larger datasets, which we have taken care of in this work. Unlike some of

the studies [7, 6, 8], we have utilized three different datasets and the results

are promising on all the three, indicating the efficacy and generalizability of our

method.

Thirdly, the proposed method has achieved better S1 sensitivity values than

the rest for both 6- and 5-classes, except for the study by Tsinalis et. al.

[26]. However, the latter has performed only 5-state classification. A high

sensitivity for S1 stage is crucial since it is used to mark the onset of sleep

and transition from awake to sleep state. This is particularly important for

neurorehabilitation in coma, where providing sensory stimulation in awake state

is more effective than in sleep state [82]. Fourthly, many studies have used

a single splitting of train-test data to evaluate the performance of the model

[6, 11, 12, 18, 68], which is not as robust as cross-validation based evaluation.

In our work, we have reported the k-fold cross-validation performances for all the

datasets. Further, testing of unseen subjects has not been considered in most

of the studies [6, 10, 11, 75, 80] and hence they do not provide any information

regarding the performance on new unseen subjects whose data has not been

seen at all by the model. This is an important requirement from a practical
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point of view and has been addressed in our work. Finally, we have considered

various n-state classification problems (n ∈ {6, 5, 4, 3, 2}), unlike many studies

which have reported only 5-state classification [12, 55, 18, 24, 25, 27].

The major application of our study is that it can be readily deployed to

perform automatic sleep staging. Thus, it can assist the sleep experts to analyse

any anomaly in the sleep parameters such as sleep efficiency, percentage of REM

and slow wave sleep (SWS), percentage of NREM stage, and spindle density.

Further, it has been reported in the literature that alterations in the spindle

density can be a symptom of various neurological disorders such as dementia,

schizophrenia, depression or Parkinson’s disease [83, 84, 85, 86]. Therefore,

early detection of any anomaly is extremely crucial for the diagnosis of these

disorders; and an automatic sleep staging method such as MEFF-R can assist

the experts. Since spindles are mostly localized in N2-stage of sleep, the experts

can analyse only the N2-stage provided by MEFF-R to detect any abnormal

pattern. Similarly, to analyse any irregularity in percentage of REM sleep or

SWS, MEFF-R can provide the input to experts in the form of annotated sleep

stages. This may reduce the burden on the sleep experts in annotating the

whole overnight PSG and then looking for a particular trait of interest.

We have achieved comparable or better S1 sensitivity values than the previ-

ous studies; however, still the values are lower than those for all the other sleep

stages. In future work, we intend to improvise the detection accuracy of S1 sleep

stage. Another limitation of this study is that all the datasets studied include

only healthy subjects or some with mild sleeping difficulty. However, patients

with various sleeping disorders such as insomnia, narcolepsy or REM-sleep be-

havior disorder (RBD) [87] are not encompassed here. Thus it is desirable to

validate the MEFF-R method on patients’ data in our next study.
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Table 7: Comparison of S1 sensitivity values (in %) of the proposed method with the literature

on Sleep-EDF dataset. The values are shown for both 6-class and 5-class classifications.

Authors 6-class 5-class

Doroshenkov et. al. [8] 4.8 -

Zhu et. al. [29] - 15.8

Liang et. al. [18] - 18.7

Sharma et. al. [22] 18.9 18.7

Ghimatgar et. al. [70] - 23.7

Vural et. al. [71] 33.7 -

Liang et. al. [73] - 35.1

Ronzhina et. al. [39] 35.8 -

Hsu et. al. [12] - 36.4

Kim et. al. [46] - 38.6

Hassan et. al. [31] 39.1 39.7

Sharma et al. [23] 41.4 17.4

Hassan et al. [10] 47.3 47.0

Fraiwan et. al. [9] - 43.2

Sun et. al. [25] - 52.5

Tsinalis et. al. [26] - 59.8

Zhu et. al. [72] - 52.2

MEFF-R 58.9 59.4
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Table 8: Comparison of sleep-staging performance of MEFF-R (in %) on DREAMS database

with those of existing techniques in the literature, using R&K standard. Cross-validation re-

sults obtained using one, two and three channels are tabulated. For each type of classification,

the best result is shown in bold.
Method EEG channel Validation 2-class 3-class 4-class 5-class 6-class

Subject-Dependent Testing

Hassan et. al. [11] Not mentioned 10-fold CV 93.3 84.4 79.1 73.5 70.7

Shen et. al. [75] Cz-A1 10-fold CV 94.9 87.7 82.7 80.9 78.2

Shen et. al. [76] Cz-A1 10-fold CV 96.2 88.7 84.0 82.3 78.9

MEFF-R FP1-A2 10-fold CV 96.0 92.0 88.0 84.5 81.8

MEFF-R Cz-A1 10-fold CV 96.5 92.3 88.7 85.7 83.1

MEFF-R FP1-A2 & Cz-A1 10-fold CV 96.6 93.0 89.2 86.0 84.4

MEFF-R FP1-A2 & Cz-A1 & O1-A2 10-fold CV 96.6 92.4 90.5 87.4 85.1

Subject-Independent Testing (i.e. average prediction on unseen subject)

Yang et. al. [74] Cz-A1 20-fold CV - - - 81.7 -

MEFF-R Cz-A1 LOSO 93.8 87.3 83.4 79.8 76.3

MEFF-R FP1-A2 & Cz-A1 LOSO 93.5 87.6 84.4 80.5 76.9

CV: cross-validation; LOSO: leave one subject out

Table 9: Performance of MEFF-R technique on DREAMS database for two to six classes

based on R&K and AASM criteria using the top two single EEG channels.

FP1-A2 Channel Cz-A1 Channel

Class R&K AASM R&K AASM

2 96.0 % 95.1 % 96.5 % 96.0 %

3 92.0 % 91.3 % 92.3 % 91.8 %

4 88.0 % 87.3 % 88.9 % 87.3 %

5 84.5 % 83.8 % 85.7 % 83.3 %

6 81.8 % - 83.1 % -
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Table 10: Performance of MEFF-R on Expanded Sleep EDF database compared with those

in the literature (both subject-dependent and independent testing). For each type of classifi-

cation, the best result is shown in bold.
Method EEG channel Validation Classifier Epochs 2-class 3-class 4-class 5-class 6-class

Subject-Dependent Testing

Jadhav et. al. [78] Fpz-Cz 70%/10%/20% CNN (Squeezenet) 62177 - - - 83.3 -

Jiang et. al. [67] Fpz-Cz 10-fold CV HMM-RF 36972 - - - 92.6 -

khalili et. al. [79] Fpz-Cz 20-fold CV RL+TCNN+CRF 41950 - - - 85.4 -

Silveria et. al. [80] Pz-Oz 10-fold CV RF 106376 - 93.9 92.3 91.5 90.5

Shen et. al. [76] Pz-Oz 10-fold CV Bagged Trees 104368 98.7 94.9 93.9 92.5 92.0

Yildirim et. al. [68] Fpz-Cz 70% /15% /15% 1D-CNN 127512 97.9 94.2 92.2 90.5 89.4

MEFF-R Pz-Oz 10-fold CV RUSBoost 81558 98.4 96.9 95.8 95.1 94.2

MEFF-R Fpz-Cz 10-fold CV RUSBoost 81558 97.8 96.2 95.3 94.5 93.7

MEFF-R Pz-Oz & Fpz-Cz 10-fold CV RUSBoost 81558 99.8 99.6 99.6 99.5 96.3

Subject-Independent Testing (i.e. average prediction on unseen subject)

Ghimatgar et. al. [70] Fpz-Cz LOSO RF+HMM 40100 94.9 88.3 83.5 81.2 78.2

Ghimatgar et. al. [70] Fpz-Cz 50%-holdout RF+HMM 40100 95.5 88.2 83.5 80.5 76.9

Jiang et. al. [67] Fpz-Cz LOSO HMM-RF 54728 - - - 93.0 -

Phan et. al. [42] Fpz-Cz LOSO ARNN-SVM 46236 - - - 82.5 -

Supratak et. al. [24] Pz-Oz 20-fold CV CNN+BLSTM 41950 - - - 79.8 -

Supratak et. al. [24] Fpz-Cz 20-fold CV CNN+BLSTM 41950 - - - 82.0 -

Mousavi et. al. [81] Pz-Oz 20-fold CV BiRNN+EDNA 42308 - - - 82.8 -

Mousavi et. al. [81] Fpz-Cz 20-fold CV BiRNN+EDNA 42308 - - - 84.3 -

Sun et. al. [25] Fpz-Cz LOSO WDBN+BLSTM 41950 - - - 85.5 -

Tsinalis et. al. [27] Fpz-Cz 20-fold CV CNN 37022 - - - 74.8 -

Tsinalis et. al. [26] Fpz-Cz 20-fold CV Autoencoders 37022 - - - 78.9 -

Yang et. al. [74] Fpz-Cz 20-fold CV CNN+HMM 42308 - - - 84.0 -

Zhu et. al. [72] FPz-Cz LOSO CNN+ABNN 42269 - - - 82.8 -

MEFF-R Pz-Oz LOSO RUSBoost 81558 97.1 95.2 93.3 92.4 90.9

MEFF-R Fpz-Cz LOSO RUSBoost 81558 96.0 94.3 93.1 92.2 91.0

MEFF-R Pz-Oz & Fpz-Cz LOSO RUSBoost 81558 97.3 95.1 93.9 92.9 91.6

ABNN: Attention-based neural network; ARNN: Attention-based recurrent neural network;

BLSTM: Bidirectional long short-term memory network; BiRNN: Bidirectional recurrent neural

network; CV: cross-validation; CNN: Convolutional Neural Network; CRF: Conditional Random

Field; EDNA: Encoder-Decoder network with attention mechanism; HMM: Hidden Markov model;

LOSO: Leave one subject out; RF: Random Forest; RL: Representation Learning; TCNN: Temporal

CNN; WDBN: Window deep belief network.

Table 11: Kappa coefficients of MEFF-R on Sleep-EDF, DREAMS and Expanded Sleep EDF

databases using the single EEG channels of FPz-Cz, Cz-A1 and Pz-Oz, respectively.

Dataset 6-class 5-class 4-class 3-class 2-class

Sleep EDF 0.87 0.88 0.89 0.91 0.94

DREAMS 0.77 0.81 0.84 0.85 0.88

Expanded Sleep EDF 0.88 0.90 0.91 0.93 0.96
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Table 12: Prediction accuracy (in %) of MEFF-R on 8 unseen subjects from Expanded Sleep

EDF dataset for 6-class, 5-class and 2-class classifications.

Unseen test subject 6-class 5-class 2-class

S1 90.7 92.0 98.1

S2 88.6 92.3 97.8

S3 89.6 90.5 94.1

S4 83.5 84.5 86.9

S5 87.8 88.0 93.5

S6 91.3 91.6 97.8

S7 90.1 91.2 97.0

S8 89.8 89.5 99.1
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5. Conclusion

In this work, we have considered a variety of features such as fractal dimen-

sion, sample entropy, wavelet coefficients, complexity, power-ratios, statistical

features and autoregressive model parameters, that can extract maximum infor-

mation from the EEG signal. These features characterize most of the aspects of

an EEG signal like irregularity, frequency content, time-frequency information,

and periodicity. In order to eliminate the class-imbalance issue in all the sleep

datasets, we have utilized the random under-sampling with boosting (RUS-

Boost) classifier. The classification performance has been evaluated for various

number of classes from two to six. We have employed three different datasets

to evaluate the model’s ability to classify distinct sleep stages and the perfor-

mance on all the datasets are promising. This shows that our method is able

to generalize well by providing good classification accuracies across all the three

datasets. Further, three different approaches to assess the performance of the

trained model are considered in our study. One approach is subject-dependent

testing which is mostly reported in the literature, but does not provide an

unbiased estimate of the model’s prediction ability. On the other hand, the

subject-independent testing approach provides a more reliable measure of the

generalizability of the model, since it evaluates the performance on unseen test

subjects. Also, the third approach utilizes 50% of the total subjects available

in the dataset for training and tests the model’s performance on the remain-

ing unseen (50%) subjects. We have obtained similar results for both SIT and

50%-holdout approaches, which again confirms the reliability of the MEFF-R

technique.

We have achieved overall accuracies of 98.0%, 95.8%, 94.4%, 93.7% and

92.6% for 2-class to 6-class classifications, respectively, for the Sleep-EDF dataset.

The accuracies obtained by our method are the highest among the reported stud-

ies for all the number of classes, except 2-class. In the case of DREAMS Subjects

database, we have attained maximum overall accuracies across all the number of

classes employing single channel as well as multiple channels of data using SDT.
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Further, the classification performance in the case of SIT is also promising. To

the best of our knowledge, results based on prediction accuracy of unseen sub-

jects have not been reported much in the literature. For the Expanded Sleep

EDF database, we have attained maximum overall accuracies of 99.8%, 99.6%,

99.6%, 99.5% and 96.3% for 2-class to 6-class problems, respectively, which are

again higher for all n-class classifications (n ∈ {2, 3, 4, 5, 6}) than the previous

studies. Also in the case of SIT, MEFF-R technique provides better or compa-

rable results for all the classes. The results show that the MEFF-R method has

the potential to provide accurate classification for multiple sleep stages. It has

been validated by utilizing three different datasets and three different validation

techniques and it has provided results consistent with the experts’ score using

either scoring standard. Hence, it can be used to automate sleep staging and

mitigate the problem of expensive, subjective and tedious manual sleep scoring

procedure.
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