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Abstract—Single-channel sleep EEG data from eight sub-
jects have been analyzed using Lempel-Ziv complexity mea-
sure and alpha-delta and gamma-delta power ratios. Com-
plexity values are consistently high during the waking state
for all the subjects and low during the sleep state. Similarly,
both the power ratios are high when the subjects are awake
and become low during sleep. We have obtained an accuracy
of 93.9% in classifying EEG epochs into data corresponding
to sleep or awake states. The misclassification is mainly
arising from the fact that both the complexity values and
the power ratios during the REM sleep state are sometimes
comparable to the waking state. By adding another signal such
as electromyogram or electrooculogram, one maybe able to
minimize the misclassification. The uniqueness of our work
is that we have been able to achieve a good accuracy using
only one EEG channel, two carefully chosen simple features
and a linear classifier.

Index Terms—sleep, waking state, coma, MCS, complexity,
power ratio, EEG, alpha, gamma, delta, LDA.

I. MOTIVATION

Not much is known about the integrity of the circadian
rhythm of sleep-wake cycle for the patients with disor-
ders of consciousness (DOC). Physicians specializing in
neurorehabilitation have observed that presenting sensory
stimuli of special interest to such patients result in faster
recovery of coma patients. In such cases, it is crucial that
the stimuli are delivered when the patient is in a waking
state. Unlike the normal people, it is not easy to determine
whether a coma patient is sleeping or awake. So, it is
very useful to investigate as to whether it is possible to
identify the sleep-awake state of such DOC patients using
electroencephalogram (EEG), electromyogram (EMG), etc.
This study is a prelude to such an attempt. We use readily
available sleep EEG data of normal people and subjects
with mild difficulty falling asleep and perform a binary
classification of sleep-awake states using a single EEG
channel.

Disorders of consciousness is a broad term encompassing
different states of consciousness including coma, vegetative
state, minimally conscious state and locked-in-syndrome

[2]. It is extremely difficult to distinguish between these
states by relying only on behavioral responses [9]. Unfor-
tunately, till date most of the clinicians rely only on the sub-
jective scale such as Glasgow coma score (GCS) [22] for
the diagnosis of DOC patients. Such scoring systems result
in a high rate of misdiagnosis (40%) [20]. This calls for an
effective and objective measure that can reliably distinguish
between these different states of consciousness. It has been
reported that sensory stimulation techniques using audio,
visual or olfactory stimuli have the potential to improve
the diagnostic accuracy as well as prognosis of the patients
with DOC [3, 13]. Further, such stimulation techniques can
be more effective if these stimuli are delivered when the
patient is in waking state. Hence, the information of sleep-
awake states of the patient becomes very important for the
clinicians. Unlike healthy subjects, there is no consistent
pattern reported in the sleep architecture of coma patients
[12].

Sleep is generally divided into two broad categories: Non
rapid eye movement (NREM) and rapid eye movement
(REM) [5]. NREM is further subdivided into four stages
representing a continuum of relative depth with stage 4
being the deepest sleep state. REM stage is quite similar
to that of wake state in terms of the EEG patterns and
therefore sometimes referred to as paradoxical sleep [21].
In case of DOC patients who do not show a consistent
sleep-wake cycle, the more important question is to detect
whether the brain is in sleep or awake state, rather than the
details of different sleep stages. Hence, we have focused
our research on the detection of only two broad states i.e.
sleep and awake.

Electrical activity of the brain shows highly non-linear
and dynamic properties [23]. Hence, non-linear dynamical
features such as complexity and entropy of the EEG signal
can provide crucial information about the different brain
states, particularly sleeping and awake brain. We expect
that the level of complexity would vary between the sleep
and awake states of the brain. In this paper, we have
used Lempel-Ziv complexity (LZC) measure as a primary
feature for the binary classification of sleep/awake states
of brain along with the ratios of spectral power in the978-1-7281-6916-3/20/$31.00 ©2020 IEEE



alpha to delta and gamma to delta band frequencies as
the secondary feature. LZC provides the spatio-temporal
information, while the frequency information is captured by
the spectral powers of alpha, delta and gamma frequency
bands. Thus, the primary and secondary features combined
together provide a rich information to distinguish between
the sleep and awake states of the human brain. The pro-
posed method utilizes the non-linear dynamics as well as
conventional power spectral techniques for feature selection
and linear discriminant analysis (LDA) for classification of
each epoch into sleep/wake state using a single channel
EEG signal.

II. RELATED LITERATURE

Sleep analysis is usually performed by the experts based
on the polysomnographic (PSG) recordings acquired during
sleep which includes multiple bio-signals such as EEG,
chin electromyogram (EMG), electrooculogram (EOG),
respiration and oxygen saturation (SpO2). Scoring is gen-
erally done according to the standard Rechtschaffen and
Kales (R& K) rules [18]. Such manual scoring procedure
is extremely time-consuming and suffer from subjectivity
as well as inter-rater variability. To overcome this issue,
many studies have attempted to develop an automated sleep
scoring method that can replace the manual scoring system.
The performance of these automated sleep identification
methods mainly depend on the choice of the features and
classifier. Most of the studies have used features based on
frequency content of the EEG signals; such as dominant
spectral frequency in EEG epochs or spectral power of
different frequency sub-bands [6, 7, 11]. Few studies also
utilized the temporal or time-frequency information embed-
ded in the sleep EEG signals [8, 16]. Recent studies have
further explored the nonlinear features such as entropy,
complexity and fractal dimensions to improve the accuracy
of the sleep stage classification [8, 17]. The most commonly
used classifiers are fuzzy-logic and neural networks [1,
15, 19]. Many studies have utilized multi-channel PSG
signals for sleep stage detection, but using more number
of channels during sleep becomes inconvenient, resulting
in sleep disturbance. Therefore, single channel EEG based
system is more suitable for sleep studies. The reported
overall agreements of single-channel EEG based sleep
scoring methods are still less than 83% and accuracy could
further be improved.

III. MATERIALS AND METHOD

A. Dataset used for the Study

We have used PhysioNet sleep-EDF database that pro-
vides sleep recordings and corresponding hypnograms in
European data format [10]. It contains EEG recordings
of two channels, namely FPz-Cz and Pz-Oz along with
horizontal EOG and submental EMG, each sampled at 100
Hz, from 4 ambulatory healthy volunteers and 4 subjects
who had mild difficulty falling asleep, but otherwise healthy

Fig. 1. Flowchart of the proposed method for sleep-awake classification.

during a night in the hospital. We have used only Pz-Oz
EEG channel in our study.

B. Proposed Method

A flowchart of the proposed method is presented in
Figure 1. The method comprises of three major steps: 1)
preprocessing; 2) feature generation and; 3) classification.

Step1: Preprocessing: The Pz-Oz EEG signal is first
passed through an 8th order Butterworth bandpass filter
with 0.5-45 Hz passband. This filtered signal is then used
for extracting features.

Step2: Feature generation: The continuous filtered signal
is then segmented into 30 sec long epochs. Two feature
sets are generated for each epoch, namely Lempel-Ziv
complexity and spectral power ratios.

1) Lempel-Ziv Complexity Measure: LZC is based on
the coarse-graining of the measurements, which means
that the raw signal is transformed into a new time-series
with very few symbols as the elements of the series [24].
LZC measures the number of distinct patterns in the given
sequence. Here, we have converted the time-series into a
binary sequence and then evaluated the number of distinct
patterns contained in it . It is also normalized to make it
independent of the sequence length. This EEG complexity
measure has already shown its capability to measure the
depth of anaesthesia and its online implementation fea-
sibility [24]. Hence, it can be a good feature candidate
for characterizing the different states of brain, especially
a sleeping and awake brain.

2) Spectral power ratios: From the magnitudes of the
discrete Fourier transform of each epoch, the power in each
of delta, alpha and gamma frequency bands is obtained.
The extracted features are the ratios of the powers in alpha
and gamma bands to the power in the delta band. Since
in sleep state, the signals of higher frequency such as
alpha and gamma bands reduce while the low frequency
signal such as delta dominates, we expect that the ratio
of gamma to delta and alpha to delta would increase in
waking state and fall sharply during sleep state of the brain.
Hence, the power ratios of high-frequency to low-frequency



TABLE I
NUMBER OF 30-SEC EPOCHS FROM ALL EIGHT SUBJECTS USED IN

THIS STUDY

Subject No. Number of Wake epochs Number of Sleep epochs
S1 1824 1024
S2 1885 944
S3 2104 676
S4 1909 948
S5 75 870
S6 128 923
S7 70 956
S8 60 792

Total 7133 8055

EEG signal carry potential information that can be used to
perform sleep/wake classification.

Step3: Classification: To classify the EEG signal epoch-
wise into two classes namely awake and sleep states, the
linear classifier LDA is used. The set of features obtained
in the previous step for each epoch and each subject is
fed to the LDA which fits a linear discriminant function
to the training set. After the model is trained, it is used to
predict the labels for the unseen test data so as to find the
generalization ability of the classifier. Here since we had
limited data, we used cross-validation technique with 10
folds of partition for generating training and test datasets.

Next, in order to assess the performance of the model,
we generate confusion matrices between the predicted class
labels and true class labels epoch-wise for each feature
individually and then combination of both the features.
To further evaluate the agreement between the proposed
method and the manual score, Cohen’s kappa coefficient
[4] is calculated using the generated confusion matrix. The
kappa coefficient κ takes into account the agreements that
occur by chance and therefore considered as a more robust
measure than conventional percent agreements.

The kappa coefficient can be calculated as follows:

κ =
Po − Pc

1− Pc
(1)

where Po is the proportion of observed agreements given
by:

Po =

∑2
i=1 Cii

N
(2)

where N is the total number of epochs which is the sum of
all the entries in the confusion matrix and Cij is the (i, j)
element of the matrix. Pc is the proportion of agreements
by chance, given by:

Pc =

∑2
i=1(

∑2
j=1 Cij

∑2
j=1 Cji)

N2
(3)

IV. RESULTS

Table I shows the number of epochs in the sleep and
awake states for all the eight subjects used in this study.

Fig. 2. Epoch-wise LZC values derived from the EEG of subject 1, along
with the hypnogram. red: LZC values; blue: two-state hypnogram.

Fig. 3. Means of the LZC values of EEG for all the eight subjects. blue:
wake state EEG; red: sleep EEG.

A. Role of complexity measure in sleep/awake classifica-
tion

It can be seen that the LZC is working extremely
well in determining the sleep/awake state of the brain.
Figure 2 shows the epoch-wise LZC values along with the
corresponding hypnogram of sleep/wake state for one of the
subjects. As expected, the value of complexity is high in
awake state and decreases during sleep. In the awake state,
the brain is active and so the complexity of EEG signal
is higher, while in sleep state, these activities get reduced
and thereby the complexity of the EEG signal drops. It is
evident from Figure 3 that the mean complexity values are
consistently higher for the awake state than for the sleep
state for all the eight subjects.

B. Role of spectral power ratios in sleep/awake classifica-
tion

Figure 4 shows that gamma band is dominant when
the brain is in awake state, while the sleep state is pre-
dominantly governed by the slow moving delta frequency.
Also, the mean power ratio of alpha to delta frequency
bands is much higher in the awake state than sleep state
across all the eight subjects, as evident from Figure 5.
This value is even higher in case of gamma to delta
power ratio as shown by Figure 6 and 7. The consistently



Fig. 4. Normalized gamma, alpha and delta power epoch-wise (lower
panel) and the corresponding two-state hypnogram (upper panel) for
subject 1. Green: power in the alpha band; black: power in the delta
band; red: power in the gamma band;

large values of gamma/delta power ratio in awake state for
all the subjects clearly indicate the dominance of higher
frequencies and suppression of low frequency signals in
awake state, while the opposite is true for the case of sleep
state. Hence the spectral information captured by these two
power ratios serves as a complementary feature to improve
the classification accuracy.

C. Analysis of classification performance based on the
proposed features

1) Performance of complexity measure on sleep/awake
detection: For each 30-sec EEG epoch, the primary feature
i.e. LZC and the corresponding label (wake/sleep) are used
to train the LDA model. Figure 8 shows the confusion
matrix of 2-stage classification of EEG epochs between
the proposed method and manual scoring. As expected,
this feature is able to capture most of the information and
provides sensitivity of about 91% for wake state and 96 %
for sleep state.

2) Performance of spectral power ratios on sleep/awake
detection: It is well established in the literature that sleep
state is predominantly occupied by low-frequency signals,
especially in deeper stages of sleep such as NREM-4.
Considering only power spectral ratios of alpha to delta
and gamma to delta frequency bands across all the subjects,
classification accuracy of about 78% is achieved. Around
61% of the wake states and 97% of the sleep states are
correctly classified using this feature. Figure 9 shows the
confusion matrix between the proposed method and manual
scoring method using only the secondary feature i.e. power
spectral ratios.

3) Performance of the combination of both features on
sleep/awake detection: Figure 10 shows the classification
performance using confusion matrix obtained by both LZC
and spectral power ratio as features. Combining both
the features improves the sensitivity to 92.5% for wake
state and 95.4% for sleep state, which is higher than the
previously reported studies in the literature. Accuracy of

Fig. 5. Ratios of mean powers in the alpha to delta frequency bands for
the eight subjects. Blue: from waking state EEG; red: sleep EEG.

greater than 93% could be obtained by LZC alone, which
is further improved by combining the power ratio with it.
The kappa coefficients and accuracies obtained by using
individual features and the combination of both features
are presented in Table II. The qualitative interpretations
of different ranges of kappa values [14] are mentioned in
Table III.

It is evident that the level of agreement between the score
generated by experts and that of our method is excellent for
LZC and moderate for spectral power-ratios. (Refer Table
III). This shows that indeed LZC is a useful feature for
sleep/wake state identification.

TABLE II
VALUES OF COHEN’S KAPPA COEFFICIENT AND ACCURACY FOR THE

FEATURES USED IN THIS STUDY

only LZC measure only spectral power-ratio both features combined
Kappa coefficient 0.87 0.57 0.88

Accuracy 93.4% 78.1% 93.9%

V. CONCLUSION AND FUTURE WORK

We have demonstrated that the feature vector derived
from a single channel EEG consisting of LZC value and
the band power ratios is very effective in classifying the
awake state from the sleep state of the brain. By utilizing
these two simple features, we could achieve an accuracy
of 93.9% and kappa coefficient of 0.88. Error analysis
indicates that part of the error arises from the fact that
the REM sleep epochs are not always correctly classified.
The classification accuracy can be improved using features

TABLE III
LEVEL OF AGREEMENT AND KAPPA COEFFICIENT VALUES

Agreement kappa coefficient
Poor < 0

Slight 0− 0.2
Fair 0.21− 0.40

Moderate 0.41− 0.60
Substantial 0.61− 0.80
Excellent > 0.8



Fig. 6. Ratios of mean powers in the gamma to delta frequency bands
for the eight subjects. Blue: from waking state EEG; red: sleep EEG.

Fig. 7. Epoch-wise values of the gamma to delta and alpha to delta power
ratios derived from the EEG of subject 1, along with the hypnogram. Red:
gamma to delta power ratios; black: alpha to delta power ratios; blue:
Two-state hypnogram.

Fig. 8. Confusion matrix between our scoring method using only the
complexity measure and the manual sleep scoring.

Fig. 9. Confusion matrix between our scoring method using only spectral
power ratio features and the manual sleep scoring.

Fig. 10. Confusion matrix between our scoring method using both LZC
and spectral power ratio features and the manual sleep scoring.

derived from EOG and EMG signals and/or using classifiers
with a nonlinear decision boundary. Further, we would test
the prediction accuracy of the trained model on unseen
test subjects, which will provide a better estimate of the
classifier’s performance.
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