
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Decoding Imagined Speech from EEG
using Transfer Learning
JERRIN, T P1, (Student Member, IEEE) and RAMAKRISHNAN, A G 2, (Senior Member, IEEE)
1Department of Electrical Engineering, Indian Institute of Science, Bangalore, India (e-mail: jerrinp@iisc.ac.in)
2Department of Electrical Engineering, Indian Institute of Science, Bangalore, India (e-mail: agr@iisc.ac.in)

Corresponding author: Jerrin T P (e-mail: jerrinp@ iisc.ac.in).

The authors received no funding for this work.

ABSTRACT We present a transfer learning-based approach for decoding imagined speech from elec-
troencephalogram (EEG). Features are extracted simultaneously from multiple EEG channels, rather than
separately from individual channels. This helps in capturing the interrelationships between the cortical
regions. To alleviate the problem of lack of enough data for training deep networks, sliding window-based
data augmentation is performed. Mean phase coherence and magnitude-squared coherence, two popular
measures used in EEG connectivity analysis, are used as features. These features are compactly arranged,
exploiting their symmetry, to obtain a three dimensional “image-like” representation. The three dimensions
of this matrix correspond to the alpha, beta and gamma EEG frequency bands. A deep network with
ResNet50 as the base model is used for classifying the imagined prompts. The proposed method is tested
on the publicly available ASU dataset of imagined speech EEG, comprising four different types of prompts.
The accuracy of decoding the imagined prompt varies from a minimum of 79.7% for vowels to a maximum
of 95.5% for short-long words across the various subjects. The accuracies obtained are better than the state-
of-the-art methods, and the technique is good in decoding prompts of different complexities.

INDEX TERMS brain–computer interface, transfer learning, electroencephalogram, speech imagery,
imagined speech

I. INTRODUCTION

Speech in both overt and covert forms are very natural to
human beings since we learn to speak even without any for-
mal education. During covert speech, we imagine speaking
without any intentional movement of any of our articulators
[1]. Decoding imagined speech from electroencephalogram
(EEG) involves the discrimination between a fixed set of
imagined words from the EEG captured during imagination.
A system for decoding imagined speech has several applica-
tions including speech imagery BCI systems. In such BCI
systems, speech imagery is used to generate distinct and
repeatable neural activity. These systems can help patients
whose muscles are paralyzed, as in the case of patients
suffering from locked-in syndrome, to communicate with
others and to operate devices such as computers [2].

Though it is almost a decade since the publication of the
first research article on decoding imagined speech from EEG,
the field has witnessed only slow progress compared to many
other fields such as speech recognition [1]. This is primarily
due to the lack of enough training data. Surplus training data

is one of the primary reasons for the success of modern
machine learning algorithms. This paper presents a novel
deep learning architecture that addresses the scarcity of data
in two ways: 1) by creating more data from the existing data
using data augmentation and 2) by using transfer learning
(TL) technique for training a deep network.

In most of the works in the literature such as [3]–[6],
[8]–[18], [20]–[22], individual EEG channels are considered
separately for extracting features. In these works except
[22], [26], wavelet domain features, mel-frequency cepstral
coefficients (MFCCs) and/or temporal domain features are
extracted from each channel and are concatenated to obtain
the feature vector for each trial. In [22], [26], the features
extracted from individual channels are considered as distinct
data vector and the decisions of the classifier for each channel
are combined to obtain the final classification result. The
feature extraction and classification techniques adopted in
these works are comprehensively discussed in the review
article [1]. Unlike these works where features are extracted
from individual EEG channels, in this work, we extract
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TABLE 1: Features and classifiers used in other works in the literature on decoding imagined speech from EEG. DNN: deep
neural network, CNN: convolutional neural network, RNN: recurrent neural network, DAE: deep autoencoder, LSTM: long
short-term memory, DWT: discrete wavelet transform, MFCC: mel frequency cepstral coefficients.

Sl.

No.
Authors Features Classifier

1 Garcia et al. [3] Discrete wavelet transform Random forest

2 Brigham et al. [4] Autoregressive model coefficients Nearest neighbour

3 Min et al. [5] Mean, variance, standard deviation, and skewness Extreme learning machine

4 Sereshkeh et al. [6] Discrete wavelet transform Regularized neural network

5 Nguyen et al. [7] Tangent vectors in Riemannian manifold Relevance vector machine

6 Coonecy et al. [8] MFCC, statistical features etc. Support vector machine

7 Garcia et al. [9] Bag of features Naive Bayes

8 Tottrup et al. [10] Spectral and temporal features Random forest

9 Balaji et al. [11] Spectral power Artificial neural network

10 Jahangiri et al. [12]–[15] Discrete Gabor transform Linear discriminant analysis

11 Pawar and Dhage [16] Discrete wavelet transform Extreme learning machine

12 Koizumi et al. [17] Spectral power Support vector machine

13 Deng et al. [18] Hilbert spectrum Linear discriminant analysis

14 Zhang et al. [19] Common spatial patterns Support vector machine

15 Zhao and Rudzicz [20] Statistical features Support vector machine

16 Sereshkeh et al. [21] Autoregressive model coefficients and DWT Support vector machine

17 Panachakel et al. [22] Temporal and DWT Deep neural network

18 Saha et al. [23] Channel cross-covariance CNN + RNN + DAE

19 Saha et al. [24] Channel cross-covariance CNN + LSTM

20 Saha et al. [25] Channel cross-covariance CNN + DAE + XG Boost

21 Panachakel et al. [26] Discrete wavelet transform Deep neural network

the features simultaneously from multi-channel EEG. This
approach is advantageous because studies have shown that
complex cognitive tasks like speech production involve infor-
mation transfer between multiple cortical areas. Extracting
features separately from individual channels may not capture
this interaction; however, when features are extracted simul-
taneously from multiple channels [27]–[30], this can be better
captured.

A few works in the literature [7], [23], [24] have already
employed simultaneous feature extraction from EEG for
decoding imagined speech. These studies have used channel
cross-covariance matrix for extracting the features. Features
and classifiers used in popular works on decoding imagined
speech from EEG are tabulated in Table 1.

Since it is difficult to have enough EEG data to train deep
networks, a few researchers have recently taken recourse to
transfer learning for decoding imagined speech from EEG.
Transfer learning improves the performance of a classifier
in the target domain by incorporating the knowledge gained

from a different domain [9], [31], [32]. In the work by García-
Salinas et al. [9], intra-subject transfer learning was applied
to classify an imagined word using a classifier trained on a set
of four words which does not include the target word. Cooney
et al. [33] employed two different approaches for inter-
subject transfer learning. A deep CNN architecture, similar
to [34] is initially trained on a set of subjects called the source
subjects and transfer learning is employed to improve the
performance of the classifier on a new (target) subject.

In our work, EEG data is first augmented using sliding
window method. From the augmented data, mean phase
coherence (MPC) and magnitude-squared coherence (MSC)
are extracted as features. A ResNet-50 [35] based transfer
learning model is used as the classifier. We report the re-
sults of this approach on a publicly available dataset [7].
The dataset contains EEG recorded when the subjects were
imagining four different types of prompts, namely vowels,
short words, long words and short-long words. The proposed
method achieves accuracies comparable to the state-of-the-
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art results on the same dataset.
The major contributions of this work are listed below:
1) Although there are works in the literature where fea-

tures are simultaneously extracted from multiple EEG
channels, this is the first work to extract mean phase co-
herence and magnitude-squared coherence as features
from EEG. Simultaneous extraction of features from
multiple EEG channels helps in capturing the inter-
electrode relationships related to speech imagery.

2) This is first work to make use of a deep network pre-
trained for classifying images as the base classifier for
classifying imagined speech EEG.

3) We exploit the symmetry in MPC and MSC for
compactly packing them into an “image-like” 3-
dimensional representation. The three dimensions cor-
respond to three different EEG frequency bands.

The rest of the paper is organized as follows: Sec. II
describes the dataset used in this work. Sec. III explains data
augmentation using overlapping window. Sec. IV deals with
the feature extraction method used in this work. The results
we have obtained and the comparison with other works in the
literature on the dataset we have used are given in Sec. V.
Sec. VI enumerates the major limitations of this work.

II. DATASET USED FOR THE STUDY
The dataset used in this work was recorded by Human-
Oriented Robotics and Controls (HORC) lab, Arizona State
University and is publicly available for download [7]. The
dataset consists of 64-channel EEG data acquired using
BrainProducts ActiCHamp amplifier system. The four types
of prompts used in the protocol are:

1) Long words: “independent” and “cooperate”
2) Short words: “in”, “out” and “up”
3) Vowels: “/a/”, “/i/” and “/u/”
4) Short-long words: “in” and “cooperate”
During the recording, the participants had to repeatedly

imagine uttering the prompts without moving their articula-
tors. The rate at which the prompt had to be imagined was
cued using audio beeps. Although 15 subjects (S1 - S15,
males = 11. females = 4) participated in the study, only the
data of a subset of these participants is available for each
protocol, details of which are listed in Table 2.

The data was recorded at a sampling rate of 1000 Hz
but was later downsampled to 256 Hz. Also, a 5th order
Butterworth bandpass filter with the pass band from 8 -
70 Hz was applied to remove any low frequency trends in
the acquired signal and electromyogram (EMG) artifacts. A
notch filter was used to remove the 60-Hz line noise. Ocular
artifacts were removed using adaptive filtering [36]. More
details about the dataset can be found in [7].

III. METHOD USED TO AUGMENT DATA
Data augmentation approaches such as overlapping or slid-
ing window [37]–[40] and generative adversarial networks
(GAN) [41]–[43] generate more training data from the exist-
ing data [44]. GAN is not the ideal approach for the current

FIGURE 1: Data augmentation using overlapping windows.
The initial EEG data has 1280 samples each from 64 channels
(5 seconds of EEG at 256 Hz sampling rate). The window
size is 256 samples or 1 s. The stride is 64 samples or 0.25 s
which means an overlap of 75%. A total of 17 windows are
obtained using this choice of window parameters.

problem since the amount of available data is very limited.
However, overlapping window can be used since the data
consists of repeated imaginations in each trial. Accordingly,
we have used overlapping windows as illustrated in Fig. 1.
The length of the window is empirically chosen as 1 s (256
samples) and stride as 0.25 s (64 samples). This leads to an
overlap of 0.75 s (192 samples). Using this approach, we can
augment the data by a factor of 17.

We had attempted to use autocorrelation function to iden-
tify the repetitions in the EEG data and window the data
based on the indices of repetition. However, it was difficult
to detect the peaks in the autocorrelation function due to the
low signal to noise ratio of the EEG signal.

IV. PARTICULARS OF FEATURE EXTRACTION
Unlike most works in the literature, we extract features
simultaneously from all the EEG channels. Two measures are
extracted as features:

1) Mean phase coherence
2) Magnitude-squared coherence

A. MEAN PHASE COHERENCE
Mean phase coherence (MPC) is a measure of phase synchro-
nisation between two EEG channels [45]. MPC is closely
related to phase locking value (PLV) defined for the condition
where the phase difference between the studied channels is
attributed to evoked activity [46]. PLV measures the phase
synchronisation between two channels across different trials
assuming that every trial is time-locked to a specific stimulus.
This assumption does not hold good for EEG acquired during
speech imagery since the imagination is not time-locked
across trials albeit the presence of cues for the participant.

MPC across the ith and kth EEG channels is defined as,

MPCi,k =
1

N

∣∣∣∣∣
N−1∑
n=0

e−j(φi(n)−φk(n))

∣∣∣∣∣ (1)

where N is the number of samples, φi(n) and φk(n) are
the instantaneous phases of channels i and k at the nth time
sample. The instantaneous phases of channels are obtained
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TABLE 2: Number of participants, whose data is available in each of the four protocols in the ASU imagined speech EEG
dataset. Although 15 subjects participated in the study, only the data of a subset of them is available in the public dataset.

Protocol Prompts
Total Number of

Participants
IDs of the Participants

Long words “independent” and “cooperate” 6 S2, S3, S6, S7, S9 and S11

Short words “in”, “out” and “up” 6 S1, S3, S5, S6, S8 and S12

Vowels “/a/”, “/i/” and “/u/” 8 S4, S5, S8, S9, S11, S12, S13 and S15

Short-long words “in” and “cooperate” 6 S1, S5, S8, S9, S10 and S14

using Hilbert transform. The value of MPC lies between
[0, 1]; a value close to zero indicates that the phase differ-
ences between the signals are random whereas a value of one
means that the two signals are phase synchronized during
most of the time interval considered [47]. MPC is used in
epilepsy [48], [49] and sleep studies [50].

B. MAGNITUDE-SQUARED COHERENCE (MSC)
Coherence captures the linear relationship in the spectral
domain [51]–[54] between a pair of signals. Let Si,i(ω)
and Sk,k(ω) denote the power spectral densities and Si,k(ω)
denote the cross power spectral density of Xi∗ and Xk∗. The
MSC between Xi∗ and Xk∗ is given by:

MSCi,k(ω) =
|Si,k(ω)|2

Si,i(ω)Sk,k(ω)
(2)

The spectral densities are all estimated using Welch’s
overlapped averaged periodogram method [55]. Hamming
window is used and the number of segments is eight. The
values of MPC and MSC lie in the interval [0, 1].

C. CONSTRUCTION OF INPUT AS 3D ARRAYS
Both MPC and MSC are frequency dependent measures.
The input to the classifier are three-dimensional arrays with
each dimension corresponding to one of the frequency bands,
alpha (8 to 13 Hz), beta (13 to 30 Hz) and gamma (30 to 70
Hz). The EEG data is bandpass filtered to obtain the MPC of
each EEG band. The MSC matrices for all the frequencies in
a given band are averaged. The bands below 8 Hz and above
70 Hz are not used since the publicly available dataset is band
pass filtered between 8 and 70 Hz.

There are six matrices corresponding to the three fre-
quency bands and two measures (MPC and MSC). Since the
input to the classifier needs to be similar to the images in
the ImageNet [56] database which our classifier is pretrained
on, we have compactly arranged the 6 matrices into a three-
dimensional array. In the case of a regular RGB image (such
as the images in ImageNet), each parallel plane corresponds
to one of the three colours: red, green and blue. In our
case, each parallel plane in the input three-dimensional arrays
corresponds to one of the three frequency bands: alpha, beta
and gamma. The compact arrangement is possible because
of the symmetry of the matrices. Since both MPC and MSC

matrices are symmetric, no information is lost if the upper
or lower triangular elements of the matrices are removed.
Therefore, a new matrix is created, consisting of the upper
triangular elements of MPC and lower triangular elements
of MSC of each band. Each of these newly constructed
matrices corresponds to one of the three frequency bands.
The diagonal elements of all the matrices are made zero and
these matrices are combined to form the three-dimensional
input array. Thus we have the information from both MPC
and MSC across the three bands compactly placed in a three-
dimensional array. If I is one of these three-dimensional
arrays, then I(i, j, 1), I(i, j, 2) and I(i, j, 3) respectively
denote the alpha, beta, and gamma band information. Further,
I(i, j, 1) for i > j denotes the MSC values in the alpha band
whereas I(i, j, 1) for i < j denotes the MPC values in the
alpha band. I(i, j, :) for i = j is zero for all the three bands.
Figure 2 shows the various steps in generating the input to
the classifier.

D. DETAILS OF THE CLASSIFIER
The architecture of the network used in this work is shown in
Fig. 3. A ResNet50 [35] based deep neural network model,
pre-trained on ImageNet [56], is used as the base model for
the classifier. Since this network is trained to classify 1000
object categories, the output layer is a fully connected (FC)
layer with 1000 neurons and softmax activation function. We
replaced this layer with two FC layers with ReLU activa-
tion function and one output layer with softmax activation
function. The first and second FC layers (FC1, FC2) have
128 and 64 neurons, respectively. The number of neurons in
the output layer is the same as the number of classes in the
imagined prompt category. For long and long-short words,
the number of classes is two whereas for short words and
vowels, it is three.

During the training on imagined speech data, the ResNet
model layers are frozen and only the appended FC layers
are trained. Thus the ResNet layers act as feature extraction
layers. Adam optimizer [57] is used with cross-entropy loss
function and a learning rate of 1e−4. 10-fold cross-validation
is performed on the data of each subject. The data is divided
into 10 folds and during each cross-validation iteration, 9 out
of the 10 folds are used for training and the remaining fold,
for testing. This is repeated 10 times so that all the folds are

4 VOLUME 4, 2016



Jerrin and Ramakrishnan: Decoding Imagined Speech from EEG using Transfer Learning

FIGURE 2: Illustration of various steps in the creation of the input to the classifier. In the case of training data, we start with
64×256 EEG data whereas with test data, we start with 64×1280. This difference is because of the fact that data augmentation
is performed only for the training data and not for the test data. BPF denotes bandpass filter. Outline boxes of red, green and
blue colours denote the data in the alpha, beta and gamma bands, respectively.

∑
ω∈α

,
∑
ω∈β

and
∑
ω∈γ

respectively denote the

summation of all the MSC matrices corresponding to alpha, beta and gamma bands. The dimension of the arrays that are input
to the classifier is 64× 64× 3.
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tested once. Only the training data is augmented. This does
not affect the dimensionality of the input data during testing
since the latter is determined by the number of channels and
does not vary with the length of the EEG signal.

During each cross-validation step, 85% of the training data
is used for training the classifier and the remaining 15%, for
validation. The maximum number of epochs for training is
100. To avoid overfitting, we have also implemented early
stopping based on validation accuracy with the patience
parameter set to 30 epochs. We ran the code on Google Colab.
The GPU configuration in the session was NVIDIA Tesla T4
with GDDR6 RAM. The approximate time for training the
network excluding feature extraction, file reading and other
overheads was around 4 minutes.

V. RESULTS OF OUR STUDY
We tested the proposed methods on all the types of speech
imagery available in the dataset. The accuracies obtained by
the classifier for different classes of imagined prompts are
listed in Tables 3, 4, 5 and 6, and compared with the state-of-
the-art results in the literature. Clearly, the accuracy for every
subject is better than the best in the literature for every type
of prompt. The accuracy of decoding the imagined prompt
varies from a minimum of 79.7% for vowels for the subject
S13 to a maximum of 95.5% for short-long words for the
subject S1. Figure 4 compares the mean accuracy across the
subjects for each class of imagined prompts with the best two
techniques reported in the literature.

To understand the effectiveness of data augmentation, we
trained the classifier separately using the actual and the
augmented data. Figure 5 compares the performance of our
technique with and without data augmentation for the task
of classifying short-long words. With data augmentation, the
accuracy for all the subjects is above 90%, with the maximum
of 95.5% for S1. Clearly, the accuracy of the system drops to
mere chance level performance when the data augmentation
stage is removed. This is expected due to the reduction in the
number of training data.

Figure 6 gives the overall confusion matrices for each
of the four classes of prompts. The precision and recall of
various prompts of all the four classes of prompts are listed
in Table 7. These values are consistently high, ranging from
about 84% for short words to about 92.5% for short-long
words. The precision and recall of all the prompts within each
class of prompts are comparable indicating that the classifiers
are not favouring any particular prompt within any class.
The proposed method has performance comparable to the
method developed by Saha and Fels [23] where a combi-
nation of CNN and recurrent neural networks (RNN) were
used. Although RNNs are capable of capturing time-series
information, they failed to give performance superior to our
results in our experiments with the same feature extraction
techniques. This might be because of the sliding window data
augmentation applied in this work, which disturbs the time-
series information in the data.

Since the number of classes in different types of imagined

prompts are different, we have also computed Cohen’s kappa
(κ) value for the different classifiers. Kappa is defined as:

κ :=
pcl − pch
100− pch

(3)

where pcl is the accuracy of the classifier and pch is the
chance level accuracy, both in percentage. The value of κ
lies in the range [−1, 1]. Values closer to 0 indicate that the
classifier is only as good as random guess whereas values
less than 0 indicate that the performance is inferior to random
guess. κ values of various classifications are compared with
those of the best techniques in the literature in Figs. 7, 8,
9, and 10 for long-words, short-words, vowels, and short-
long words, respectively. The mean values of κ for long
words, short words, vowels, and short-long words for the
proposed method are 0.78±0.01, 0.75±0.05, 0.78±0.06 and
0.87± 0.02, respectively. Clearly, short-long words have the
highest mean and the lowest standard deviation among all the
types of prompts. This may be because of the difference be-
tween the complexity of the two words, “in” and “cooperate”
(“in” is monosyllabic containing a nasal consonant whereas
“cooperate” is quadrisyllabic with no nasals). This result is
in-line with the observation of Nguyen et al. in [7].

Further, to study the effectiveness of the individual EEG
frequency bands in decoding speech imagery, we subdivided
each of them into three subbands. The subbands within each
frequency band are chosen such that they have approximately
equal bandwidths in the logarithmic frequency scale. Table 8
lists the subbands chosen within the alpha, beta and gamma
bands. Decoding experiments were separately conducted us-
ing only the features extracted from the subbands of each
of the main bands. The results of using these subbands for
classifying short-long words are shown in Fig. 11, along
with the results obtained using all the three undivided EEG
bands together. Clearly, the alpha and gamma bands have
the lowest and the highest accuracies, respectively. This is
in-line with the observation of Koizumi et al. [17]. Gamma
band gives a performance which is nearly 20% higher than
that of alpha band. For subjects S8 and S10, the accuracies
of beta band and gamma band are comparable. This trend
was observed in one of our previous works on classifying
imagined phonemes [58] where a different dataset was used.
The accuracy obtained by combining all the three bands is
higher than the accuracy with gamma band by a minimum of
5% and a maximum of 14% for different subjects, clearly
indicating the need for using all the three EEG frequency
bands to obtain the best performance.

VI. LIMITATIONS OF THE WORK
The following are the limitations of the current work:
• As with many works employing deep learning, we can-

not pinpoint to a particular part of the feature vector that
leads to the good performance of the system. It would
have been better if we are able to pinpoint a subset
of EEG channels that have good discriminatory power
for the imagined prompts. In our previous work [26],
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FIGURE 3: Architecture of the proposed deep network for decoding imagined speech. FC denotes a fully connected layer. The
dimension of the input data arrays is 64× 64× 3. FC1 and FC2 have 128 and 64 neurons, respectively. The number of neurons
in the output layer is the same as the number of classes in each category of imagined prompts. Layers with 30% dropout after
each FC layer are not shown. ResNet[1 : end− 1] denotes the ResNet model pre-trained on ImageNet with the last FC layer
removed. The parameters in the ResNet model are frozen and only the FC layers after the ResNet model are trained using the
imagined speech EEG.

TABLE 3: Comparison of our accuracies with similar studies on classifying long words, viz. “independent” and “cooperate”.
The accuracies in percentage are shown in the format mean± std. dev. Standard deviation values are not reported in [23].

Method/Participant ID S2 S3 S6 S7 S9 S11

Tangent + RVM [7] 70.8±7.8 64.3±6.6 72.0±0.6 64.5±5.5 67.8±6.8 58.5±7.4

Hierarchical deep features [23] 77.5 90.7 73.7 86.8 80.1 71.1

Proposed (ResNet50+TL) 91.8±5.3 91.5±4.4 85.5±4.1 92.5±6.7 88.3±6.6 83.3±3.4

TABLE 4: Comparison of our accuracies with similar studies on classifying short words, viz. “in”, “out” and “up”. The
accuracies in percentage are shown in the format mean± std. dev. Standard deviation values are not reported in [23].

Method/Participant ID S1 S3 S5 S6 S8 S12

Tangent + RVM [7] 48.0 ± 6.1 49.7 ± 5.5 46.3 ± 8.2 54.0 ± 9.1 47.7 ± 9.8 54.7 ± 6.9

Hierarchical deep features [23] 69 85 71 68 72 77

Proposed (ResNet50+TL) 81.7± 6.2 85.7 ± 5.8 80.0 ± 5.2 83.3 ± 5.9 84.3 ± 4.2 88.7 ± 4.6

TABLE 5: Comparison of our accuracies with similar studies on classifying the vowels “/a/”, “/i/” and “/u/”. The accuracies in
percentage are shown in the format mean± std. dev. Standard deviation values are not reported in [23].

Method/Participant ID S4 S5 S8 S9 S11 S12 S13 S15

Tangent + RVM [7] 47.0 ±4.6 48.0 ±7.2 51.0 ±6.7 47.0 ±5.5 53.0 ±4.0 51.0 ±6.3 46.7 ±8.2 48.0 ±7.2

Hierarchical deep features [23] 69 85 71 68 72 77 69 83

Proposed (ResNet50+TL) 83.3 ±5.3 93.3 ±2.3 89.9 ±5.5 85.33 ±6.2 87.7 ±4.2 81.3 ±4.9 79.7 ±4.2 89.7 ±5.7
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TABLE 6: Comparison of our accuracies with similar studies on classifying short-long words, viz. “in” and “cooperate”. The
accuracies in percentage are shown in the format mean± std. dev.

Method/Participant ID S1 S5 S8 S9 S10 S14

Tangent + RVM [7] 70.3 ± 5.5 71.5 ± 5.0 81.9 ± 6.5 88.0 ± 6.4 79.3 ± 7.7 89.3 ± 3.5

Wavelet + DNN [22] 65.5 ± 9.6 64.5 ± 10.3 71.0 ± 5.3 86.2 ± 8.7 76.3 ± 5.6 77.2 ± 5.3

Proposed (ResNet50+TL) 95.5 ± 4.3 94.0 ± 2.1 92.5 ± 1.7 91.4 ± 4.5 90.1 ± 3.7 93.3 ± 2.9

FIGURE 4: Performance comparison of the proposed (ResNet50+TL) technique with similar studies in the literature in terms
of the mean accuracy of classification of each type of prompts: long words, short-long words, vowels and short words. The
chance level accuracy for each type of prompts is shown by the dashed line.

we have used common spatial patterns to identify the
EEG channels of interest. We have also shown how the
accuracy varies with the number of channels used for
feature extraction. A similar analysis is difficult here
due to the huge computational cost and complexity of
the architecture. However, this high computational cost
is associated only with the training and not with testing.

• A similar analysis in terms of the prompts would also
be interesting. As we have shown in Sec. V, length of
the prompts do have good discriminatory powers. In one
of our other works, we have shown that MPC values
can be used for discriminating imagined prompts at the
phonological level [58]. A deeper analysis into what
the features are actually capturing can help in designing
better prompts for speech imagery based BCI systems.

• We have used two frequency dependent measures popu-
lar in connectivity analysis. Further analysis is required
to ascertain the differences in the information captured
by the two measures. The two measures are not exactly
the same, since if they were, all the input matrices would
have been perfectly symmetric. However, some similari-
ties are observed between the lower and upper triangular
entries of the input matrices in the beta band. The reason
for this similarity in some regions and lack of it in

other regions is an interesting topic for investigation,
considering the difference between the mathematical
formulations of the two measures.

• It would be interesting to quantify the effect of the
length of window and the stride used for data augmen-
tation on the classification accuracy.

VII. CONCLUSION
This work proposes a novel transfer learning based archi-
tecture for decoding imagined speech. The training data is
augmented using overlapping analysis windows to alleviate
the problem of having limited training data. A deep network
with ResNet50 network pre-trained on ImageNet as the base
classifier is used for classifying the imagined prompts. The
results obtained are superior to the state-of-the-art results
for every type of prompt and on every subject for the ASU
dataset used. This is the first work to use a network trained
for classifying real-world images for classifying imagined
prompts. Unlike most works in the literature on classifying
imagined prompts, we extract features simultaneously from
multiple EEG channels. This helps us to capture the inter-
channel interactions involved in speech imagery. Two pop-
ular measures used in EEG connectivity analysis, namely
mean phase coherence and magnitude-squared coherence are
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FIGURE 5: Comparison of the performance of the proposed (ResNet50+TL) technique with and without data augmentation,
in terms of the mean accuracy of classifying the short-long words “in” and “cooperate”. The data augmentation increases the
accuracy by about 40% in all the cases. The chance level accuracy is shown by the dashed line.

TABLE 7: Table showing the precision and recall of all the
prompts of various classes of prompts considered indepen-
dently. TP: number of true positives, FP: number of false
positives, TN: number of true negatives and FN: number of
false negatives

Prompt TP FP TN FN
Precision

(%)

Recall

(%)

Long words

independent 532 66 534 68 89.0 88.7

cooperate 534 68 532 66 88.7 89.0

Short-long words

in 518 39 521 42 93.0 92.5

cooperate 521 42 518 39 92.5 93.0

Short words

out 1005 194 2206 195 83.8 83.8

in 1009 191 2209 191 84.1 84.1

up 1008 193 2207 192 83.9 84.0

Vowels

/a/ 1378 216 2984 222 86.4 86.1

/i/ 1377 225 2975 223 86.0 86.1

/u/ 1380 224 2976 220 86.0 86.3

TABLE 8: Subbands of EEG frequency bands used in this
study. The subbands are chosen such that bandwidths within
each band are approximately equal in the logarithmic fre-
quency scale.

EEG Band Subband 1 Subband 2 Subband 3

Alpha 8 - 9.5 Hz 9.5 - 11 Hz 11 - 13 Hz

Beta 13 - 17.2 Hz 17.2 - 22.7 Hz 22.7 - 30 Hz

Gamma 30 - 39.8 Hz 39.8 - 52.8 Hz 52.8 - 70 Hz

used as features. These measures are compactly packed into
a three dimensional array, resembling the images in Ima-
geNet used for pre-training ResNet50. The compact packing
reduces the dimensions of the input to the classifier.
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FIGURE 7: Comparison of κ values with similar studies on classifying long words, viz. “independent” and “cooperate”.

FIGURE 8: Comparison of κ values with similar studies on classifying short words, viz. “in”, “out” and “up”.

FIGURE 9: Comparison of κ values with similar studies on classifying the vowels “/a/”, “/i/” and “/u/”.
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FIGURE 10: Comparison of κ values with similar studies on classifying short-long words, viz. “in” and “cooperate”.

FIGURE 11: Performance comparison of the proposed (ResNet50+TL) approach when subbands within each EEG frequency
band, alpha, beta and gamma are used to train the classifier for classifying short-long words, namely “in” and “cooperate”.
Each frequency band is further divided into three subbands which are equally spaced in the logarithmic scale. Gamma band
consistently outperforms the other bands and the accuracy significantly improves when all the bands are combined. The chance
level accuracy is shown by the dashed line.
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