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Abstract

In rapid parallel MR imaging, the problem of image reconstruction is chal-

lenging. Here, a novel image reconstruction technique for data acquired

along any general trajectory in neural network framework, called “Compos-

ite Reconstruction And Unaliasing using Neural Networks” (CRAUNN), is

proposed. CRAUNN is based on the observation that the nature of aliasing

remains unchanged whether the under-sampled acquisition contains only low

frequencies or includes high frequencies too. Here, the transformation needed

to reconstruct the alias-free image from the aliased coil images is learnt, using

acquisitions consisting of densely sampled low frequencies. Neural networks

are made use of as machine learning tools to learn the transformation, in

order to obtain the desired alias-free image for actual acquisitions containing

sparsely sampled low as well as high frequencies. CRAUNN operates in the

image domain, and does not require explicit coil sensitivity estimation. It is

also independent of the sampling trajectory used, and could be applied to
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arbitrary trajectories as well. As a pilot trial, the technique is first applied

to Cartesian trajectory-sampled data. Experiments performed using radial

and spiral trajectories on real and synthetic data, illustrate the performance

of the method. The reconstruction errors depend on the acceleration factor

as well as the sampling trajectory. It is found that higher acceleration fac-

tors can be obtained when radial trajectories are used. Comparisons against

existing techniques are presented. CRAUNN has been found to perform on

par with the state-of-the-art techniques. Acceleration factors of up to 4, 6

and 4, are achieved in Cartesian, radial and spiral cases respectively.

Key words: Parallel Magnetic Resonance Imaging, under-sampling,

non-Cartesian sampling, unaliasing, neural networks.

1. Introduction1

Parallel MR Imaging is gaining popularity since it enables rapid imaging,2

leading to images with better spatio-temporal resolution. Typically, reduced3

data acquisition is carried out and prior knowledge of the coil sensitivities is4

used to obtain the desired image. Image reconstruction approaches are ba-5

sically classified depending on whether it is carried out in image-domain or6

k-space or both. The quality of image reconstructed depends on the sampling7

trajectory, data reduction factor, as well as the reconstruction approach em-8

ployed. Reduced data acquisitions along different sampling trajectories lead9

to aliasing of different nature, and hence the quality of image reconstruction10

depends on the complexities in unaliasing (generation of missing k-space11

points) for the trajectory employed. Some of the reconstruction strategies12

critically depend on the precise estimation of coil sensitivity. Problems of13
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numerical instability might arise in the event of noisy acquisitions.14

Pruessman et. al (1) proposed a method called “Sensitivity Encoding”15

(SENSE), first applied on Cartesian trajectories. Here, unaliasing is carried16

out in image domain, by framing the problem in linear algebraic framework.17

It is well-known that Cartesian regular under-sampling results in localized18

peaks in the point spread function (PSF), which enables one to compute19

the unfolding matrix in a straight-forward manner. Another advantage of20

Cartesian trajectory lies in the utilization of FFT for various operations,21

making the solution practical. Data acquisition along non-Cartesian trajec-22

tories (2) leads to reduced motion and flow-induced errors. Besides, it allows23

the start of data acquisition at the center of k-space along with the advan-24

tage of needing shorter scan paths to cover a given area, as compared to the25

Cartesian trajectories. However, in the case of under-sampled non-Cartesian26

trajectories, the PSF obtained is not localized and hence unaliasing is not27

straightforward. Besides, re-gridding is required to utilize the FFT algo-28

rithm, making the solution computationally demanding. The linear-algebraic29

framework used in (1) was extended to non-Cartesian trajectories by propos-30

ing an iterative solution using conjugate-gradient method, which is known as31

“Conjugate Gradient SENSE” (CG-SENSE) (3). Although this solution is32

widely used, it faces the problem of regularization in the event of poor SNR,33

leading to numerical instabilities. Many regularization techniques were re-34

ported (4) to counter problems of numerical instabilities, the most popular35

of them being Tikhonov (5) regularization scheme.36

Another strategy for image reconstruction, that utilized projections on37

convex sets, called POCSENSE was proposed in (6). The advantage of this38
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method lies in its capability to incorporate prior knowledge into the solu-39

tion. This solution is also iterative, and unlike SENSE, poses the problem40

in a set-theoretic framework, rather than linear-algebraic, making it possible41

to incorporate non-linear constraints. Both of the above-mentioned methods42

face the drawback of needing a separate low-frequencies scan for estimation43

of coil sensitivities. However, this drawback is not seen in techniques such44

as (7), where Nyquist sampling of the low k-space is used to obtain blurred45

alias-free acquisitions. Regular Cartesian sampling schemes were modified to46

variable-density trajectories, with Nyquist sampling of the low k-space and47

sparse sampling of the outer k-space. The densely sampled low k-space was48

used to estimate the coil sensitivities, thus eliminating the need for a separate49

calibration scan. A technique utilizing B-splines (8) was recently proposed50

for reconstruction in parallel imaging. Here, coil-weighted aliased images are51

linearly combined to obtain the desired alias-free image. The reconstruction52

operator is determined from the images obtained using acquisitions contain-53

ing only low frequencies. The same reconstruction operator is applied to54

images obtained using acquisitions containing the entire range of k-space fre-55

quencies. The coefficients that linearly combine, are expressed as a linear56

combination of B-splines. The reconstruction parameters are obtained by57

minimizing the error for the images obtained using acquisitions containing58

only low frequencies. This technique is restricted only to Cartesian sampled-59

data since it utilizes the localized behaviour of Cartesian PSF while arriving60

at the solution.61

An entirely different approach to image reconstruction is to work in the62

k-space in order to generate the unacquired points. “Simultaneous acquisi-63
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tion of spatial harmonics” (SMASH) (9) was first proposed to generate the64

missing lines in k-space by linearly combining the coil sensitivity profiles.65

However, this method was not practically utilized because of the difficulties66

in the design of precise coil profiles. Most of the k-space based techniques67

proposed later utilize the acquired neighbouring points to generate the miss-68

ing samples. The techniques differ in the method adopted to generate the69

combining co-efficients.The first k-space interpolation technique that linearly70

combined the acquired points within a local neighbourhood to generate the71

missing points, was called “Generalized Auto-calibrating Partially Parallel72

Acquisitions” (GRAPPA) (10). This method assumed uniformly-spaced ac-73

quisitions along Cartesian trajectories. However, low k-space was adequately74

sampled, with these lines being called “ACS” (Auto-calibration lines). The75

combining weights were determined using the ACS lines, and the same com-76

bining weights are used for the acquisitions of the entire k-space.77

GRAPPA has been extended to handle non-Cartesian trajectories as well.78

Extension to radial sampling was proposed by laying out the acquired radial79

along a pseudo-Cartesian plane (11). The same idea was adapted for spiral80

acquisitions in (12). However, the drawback of this procedure was that it81

required a complete separate scan to determine the combining weights. This82

drawback was overcome in works that reported determination of the com-83

bining weights using Nyquist sampled low k-space (13) using dual-density84

spirals. In (14), interpolation kernels are separately generated for each sec-85

tor that the k-space is divided into. Variations of GRAPPA like PARS (15)86

and ‘Direct SENSE’ (16) differ in the criterion for selection of the best neigh-87

bourhood. In methods like ‘parallel image reconstruction based on successive88
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convolution operations’ (BOSCO) (17), convolution kernels are devised using89

low k-space, that are used to generate the missing points in the high k-space.90

In k-space based techniques the estimation of coil sensitivities is not very91

critical, and also they have the advantage that the processing takes place in92

the same domain as that of data acquisition. However, these methods are93

typically more computationally intensive than image-domain methods.94

Hybrid methods such as “Sensitivity Profiles from an Array of Coils for95

Encoding and Reconstruction in Parallel” (SPACE-RIP) (18) that work in96

both image and k-space domains have also been explored. This method too97

requires estimation of coil sensitivities, which are used to partially encode98

the image. Reduced acquisition of k-space is carried out and images recon-99

structed.100

Neural networks (NN) have been used in the recent past (19) to determine101

coil sensitivities at the spatial co-ordinates where the estimation otherwise102

carries no confidence. NN are used to extrapolate values at noisy points using103

the knowledge of the coil sensitivities at other points where the confidence104

in the values is higher. In (20), NNs are used to predict un-acquired k-space105

samples in the context of single-coil MR imaging.106

The image reconstruction scheme proposed in this paper, “Composite107

image Reconstruction And Unaliasing using Neural Networks” (CRAUNN)108

works in the image domain. It is based on the observations about PSF109

obtained using acquisitions that contain only low frequencies and those that110

contain high frequencies too. Here, NN is used to learn the function that111

takes as input aliased coil images and outputs the corresponding unaliased112

image. Images obtained using low-frequency data are used in the training113
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phase that determine the connecting weights in the network topology. The114

technique is applied to Cartesian, spiral and radial acquisitions of real and115

synthetic data.116

The rest of the paper is organized as follows. Section 2 explains the117

CRAUNN approach. Section 3 discusses the data used, the results obtained,118

and comparisons with other standard techniques. Section 4 discusses the119

issues involved in the CRAUNN approach. The paper concludes with section120

5.121

2. Materials & Methods122

2.1. Problem formulation for Cartesian sampling123

In parallel MR scanners multiple receiver coils are used to improve image124

SNR. Images from the individual coils are separately reconstructed and com-125

bined to yield a composite image, which serves as a benchmark for quality126

comparisons with reduced data parallel imaging reconstruction schemes. The127

problem formulation for Cartesian sampling, discussed here, can be extended128

to non-Cartesian cases too.129

The notations used here are taken from the paper (8). The composite130

image (here, root-sum-of-squares), when there is no acceleration, is assumed131

to be the true image. For accelerated Cartesian data acquisition, where each132

coil under-samples the data, the image acquired from the lth coil, Sl is given133

as,134

Sl(x, y) = Cl(x, y)S(x, y) (1)

where Cl is the complex sensitivity of the lth coil, and S is the true image.135
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It is well-known that sparse sampling in k-space causes aliasing in image136

domain. In the event of rectangular uniform under-sampling by factor M137

where Ny is the maximum number of phase encodes possible corresponding138

to the full unreduced FOV, the aliased image obtained at the lth coil, SA
l is139

given by,140

SA
l (x, y) =

M−1∑
m=0

Sl(x, y + m
Ny

M
) (2)

Hence,141

SA
l (x, y) =

M−1∑
m=0

Cl(x, y + m
Ny

M
)S(x, y + m

Ny

M
) (3)

In the CRAUNN approach, the image reconstruction operator is assumed142

to be a function of the aliased coil images, processed pixel-wise. The recon-143

struction function, F, to estimate the composite alias-free image S, is given144

as:145

S(x, y) = F
(
SA

l (x, y)
)

(4)

where, l = 1, 2, · · · , L. The function is allowed to be arbitrary in form and146

complexity, and is determined using neural networks. Unaliasing and com-147

bining of coil images to generate the composite image are accomplished to-148

gether by the neural network, without explicitly requiring the coil sensitivity149

estimation.150

2.2. PSF Observations : Basis of CRAUNN151

The proposed method, CRAUNN, is based on the observation that for152

a fixed under-sampling factor, the nature of the PSF remains the same,153

irrespective of whether the regularly under-sampled acquisition contains only154

low frequencies or both high and low frequencies. As is well-known in the155
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case of Cartesian sampling (see Fig. 1(a-b)), for a fixed under-sampling156

factor, the PSF obtained for a low-frequency acquisition peaks at precisely157

the same points as the PSF for an acquisition containing both low and high158

frequencies. In the case of low-frequency acquisition, the peaks get smeared,159

indicating blurring. Similar observations can be made from Figs. 1(c-f),160

which show the magnitudes of PSFs for spiral and radial acquisitions for the161

under-sampling factor of 2. The extent of aliasing is shown by the brightness162

of the regions seen in the figures. Here, the PSFs are not localized unlike the163

Cartesian case and hence unaliasing is not straightforward. In the case of164

spiral sampling, accelerated scans mean utilization of lesser number of spiral165

interleaves. As the spacing between two consecutive interleaves increases, the166

concentric circles seen in the PSF get closer leading to greater aliasing. In the167

case of radial sampling, acceleration implies utilization of lesser number of168

radial projections. As the spacing between two consecutive radial projections169

increases, the streaking artifacts increase. Radial PSF offers an inherent170

advantage over spiral PSF since the aliasing artifacts occur away from the171

center.172

2.3. Overview of CRAUNN reconstruction173

Figure 2 gives an overview of the proposed reconstruction technique. This174

method needs an unaliased dataset of low k-space acquisition. The neural175

network architecture used here is a single hidden layer feed-forward network176

with radial basis functions. The input layer consists of 18 nodes, while the177

output layer is made of a single node. The hidden layer has 98 nodes. The178

details of the neural network parameters can be found in the appendix. The179

complex pixel intensities of the coil images and their spatial co-ordinates180
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Illustration that the nature of aliasing does not depend on the extent of fre-

quency content in the acquisition. The figures show the PSF obtained on under-sampling

different trajectories. From top to bottom, the panels correspond to Cartesian, spiral and

radial acquisitions, respectively. Figures on the left side of each panel show the PSF for

low frequencies only, whereas those on the right display the PSF for both low and high

frequencies.
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Figure 2: Image reconstruction by CRAUNN: The acquired data is selectively used to

obtain different images at different stages of the image reconstruction (The top leg of the

block diagram represents the training phase, while the bottom leg represents the actual

reconstruction phase)

together form the feature vector. The system works in 2 phases, namely181

training (learning) and reconstruction.182

2.3.1. Images for learning and reconstruction183

Figure 2 explains how the acquired data is selectively utilized to obtain184

images for different purposes in the course of image reconstruction using the185

CRAUNN approach.186

• Alias-free Images containing only low frequencies : It is well-known that187

alias-free acquisitions can be obtained by considering k-samples within188

low k-space where the sampling density satisfies Nyquist requirements.189

While Cartesian sampling schemes are modified to variable-density tra-190

jectories, non-Cartesian sampling trajectories may not need modifying191

since they inherently over-sample low k-space. In the case of spiral192

sampling, variable density spirals are used, such that a central disk of193

radius kmax/10 is sampled at Nyquist rate. This densely sampled disk194

is used to obtain alias-free acquisitions. However, in radial sampling,195
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variable density sampling is not possible. Hence a separate alias-free196

low-frequency acquisition scan is required in order to obtain blurred197

alias-free coil images. The alias-free coil images are combined to ob-198

tain the composite alias-free blurred version of the true image. Here,199

the composite image is taken as the root-sum-of-squares combination.200

• Aliased Coil Images containing only low frequencies : During training,201

the aliased coil images containing only low frequencies form the input202

to the system, while the corresponding alias-free image obtained from203

the preceding section forms the target of the system. Low k-space sam-204

ples that affect under-sampling by the desired acceleration factor are205

retained, thereby generating aliased coil images with low frequencies206

alone. Now aliased coil images and the corresponding true image con-207

taining the same set of low k-space frequencies are obtained, which is208

what is required in the training phase.209

• Aliased Coil Images containing both low and high frequencies : These210

images are used in the reconstruction phase. The aliased coil images211

containing both low and high frequencies are obtained by considering212

the uniformly under-sampled k-space. The appropriate samples in the213

low k-space are ignored in order to introduce aliasing by the required214

acceleration factor. Features from these aliased coil images are input215

to the configured neural network. The output is the estimate (recon-216

struction) of the corresponding alias-free image.217
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Figure 3: Training and reconstruction phases of CRAUNN.

(a) Training phase. The inputs are the intensities of corresponding pixels from all the

aliased coil images, as well as the co-ordinates of the pixel, while the output is the corre-

sponding pixel intensity of the alias-free composite image; Images here contain only low

frequencies. (b) Reconstruction phase. Inputs are the aliased coil images containing both

low and high frequencies uniformly under-sampled. The output is the estimate of the

desired image.
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2.4. Training and Reconstruction phases218

CRAUNN reconstruction works in two phases: Training phase and Re-219

construction phase, as shown in Figs. 3(a) and (b), respectively.220

In the training phase, the system learns the transformation that takes as221

input, aliased coil images and outputs the corresponding true alias-free com-222

posite image. In the reconstruction phase, the transformation thus learned in223

the training phase from the fully sampled central k-space lines is used. In this224

phase, the images are constructed using both low and high frequencies, uni-225

formly under-sampled. Here the configured system is fed aliased coil images,226

and outputs the estimate of the desired alias-free, composite image. In this227

phase, only the low k-space data (the ACS data acquired at Nyquist rate) is228

used. At the end of this phase, the interconnecting weights among the nodes229

in the various layers are frozen, and the system is said to be configured for230

the image reconstruction.231

In the reconstruction phase, the transformation thus learned in the train-232

ing phase from the fully sampled central k-space lines is used. In this phase,233

the images are constructed using both low and high frequencies, uniformly234

under-sampled. Here the configured system is fed aliased coil images, and235

outputs the estimate of the desired alias-free, composite image.236

3. Results237

All simulations are carried out in MATLAB. CRAUNN is applied to238

Cartesian, spiral and radial data. Results are shown for different categories239

of data in order to illustrate the performance of the method: actual acquisi-240

tions of data from human subjects as well as real phantom, data computed241
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from simulated phantoms, actual and simulated Cartesian acquisitions inter-242

polated along spiral/radial trajectories to simulate spiral/radial data. For243

all the non-Cartesian cases, re-gridding on a 2X grid is performed as in (21)244

using a Kaiser-Bessel window of width 2.5. Errors in image reconstruction245

are quantified using error images as well as by comparing scan lines that run246

through the images. Besides, ‘Structural similarity index measure’ (SSIM)247

(22) is used to assess the quality of image reconstruction. SSIM is widely248

used by the image/video processing community in order to evaluate degra-249

dations in image/video reconstruction, based on structural similarities with250

the original. This is similar to perceptual difference model, a popular tool for251

quantitative evaluation of MR image quality (23), which also utilizes correla-252

tion with human rating. SSIM is a full-reference metric. The technique needs253

a gold standard image with respect to which the similarity of the test image is254

determined. In our work, the gold standard used is the image obtained using255

un-accelerated scans, while the test image is the reconstruction obtained from256

reduced data sets using the proposed technique. The SSIM code available at257

the website http://www.ece.uwaterloo.ca/˜z70wang/research/ssim has been258

used for evaluations.259

3.1. Reconstructions from Cartesian data :260

A real brain data set (8-coil data) utilized in (24), available on the website261

http://www.ece.tamu.edu/˜mrsl/JIMJI TAMU/ pulsarweb/index.htm is used262

for the study. The data matrix is of size 256 × 256. The central 32 lines are263

sampled at Nyquist rate, while the remaining k-space is sparsely sampled, de-264

pending on the down-sampling factor. Figure 5 compares the reconstructed265

and the corresponding error images, for a downsampling factor of 4, for the266
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brain image shown in Figure 4. The same sparsely sampled data is used267

for reconstruction using the standard parallel imaging techniques, SENSE268

and GRAPPA, for down-sampling by 4 and 32 Nyquist sampled low k-space269

lines. The SENSE and GRAPPA reconstructions have been obtained using270

codes available at http://www.ece.tamu.edu/˜mrsl/JIMJI TAMU/ pulsar-271

web/index.htm.

Figure 4: Real data : Original image of the brain data used for the study.
272

3.2. Reconstructions from spiral data :273

Phantom data is obtained using a 8-channel head coil and a gradient274

echo spiral pulse sequence (16 interleaves, 3096 samples per interleaf) on a275

GE 1.5 T Excite scanner. The spiral trajectory desired is such that the lower276

k-space up to kmax/10 is sampled at Nyquist rate, while fewer interleaves are277

used among higher frequencies. All the spiral data sets are density compen-278

sated and re-gridded to Fourier-reconstruct the corresponding images. All279

the Fourier-reconstructed images are then cropped to a 256 × 256 grid. To280

simulate accelerated scans, a subset of spiral interleaves are set to zero, de-281

pending on the acceleration factor. For example, for an acceleration factor282
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(a) (b) (c)

(d) (e) (f)

Figure 5: Performance on the real brain data image shown in Fig. 4 for Cartesian under-

sampling by 4. Top Panel : Comparison of images reconstructed by (a) SENSE (b)

GRAPPA (c) CRAUNN (color scale : 0 to 255). Bottom Panel : Comparison of error

images. (d) SENSE (e) GRAPPA (f) CRAUNN (color scale : 0 to 34)
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of 2, every alternate spiral interleave is set to zero. The well-known CG-283

SENSE is also used to reconstruct the same data. We have utilized the code284

for CG-SENSE applicable to Cartesian trajectories available at the website285

http://www.nmr.mgh.harvard.edu/˜fhlin/tool sense.htm. For image recon-286

struction using data sampled along spiral and radial trajectories, routines for287

density compensation and re-gridding had to be added to the existing code.288

The iterative CG-SENSE reconstruction is considered to have converged us-289

ing the delta-convergence check (3). The reconstructed and error images are290

shown in Fig. 6.291

The rectilinearly acquired brain data utilized in the Cartesian case is now292

spirally re-sampled with 24 interleaves, with 4015 points in each interleaf. To293

simulate accelerated scans, this data is undersampled by the appropriate fac-294

tor. The reconstructions obtained using both CRAUNN and CG-SENSE are295

compared in Fig. 7. The spirally re-sampled data will show up artifacts due296

to motion, susceptibility, etc. different from data acquired along spiral tra-297

jectories. A simulated standard phantom, used in non-Cartesian MR studies298

(25), is also used to assess the performance of the CRAUNN method. The299

reconstruction parameters remained the same as in the preceding data set.300

The results obtained and the comparison with those of CG-SENSE are shown301

in Fig. 8.302

3.3. Image reconstructions from radial data :303

For the radial case, a synthetic phantom is created with 180 projections304

each with 128 points. The phantom is multiplied with the 8-coil complex305

sensitivity data available on http://www.ece.tamu.edu/˜mrsl/JIMJI TAMU306

/pulsarweb/index.htm, and transformed to k-space in order to simulate 8-307
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Performance comparison on a real phantom data set for spiral under-sampling

by 4. (a) True image (16 spirals) [0-255]. (b) Direct reconstruction of under-sampled data

[0-255]. (c) Reconstruction with CRAUNN [0-255]. (d) Corresponding error image [0-60].

(e) Reconstruction using CG-SENSE [0-255]. (f) Corresponding error image [0-51].

channel parallel MR data. Complex noise is added to the obtained k-space308

with an SNR of 10 dB, in order to simulate conditions of real acquisition. Ac-309
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(a) (b)

(c) (d)

Figure 7: Comparison of reconstructions of real brain data shown in Fig. 4 for spiral

under-sampling by 4. (a) Reconstruction with CRAUNN [0-255]. (b) Corresponding

Error image [0-25.5]. (c) Reconstruction using CG-SENSE [0-255]. (d) Corresponding

Error image [0-46].

celerated data is obtained by ignoring the appropriate number of radial pro-310

jections. All the radial data sets are density compensated and re-gridded to311

Fourier-reconstruct the corresponding images. All the Fourier-reconstructed312

images are then cropped to a 128 × 128 grid. Unlike the Cartesian and spi-313

ral cases, reconstruction of accelerated radial data requires a pilot scan with314

unaccelerated acquisition within a certain k-space radius. For the simula-315

tions carried out, it is assumed that all samples till the frequency kmax/10316

are available along all the projections . These low frequency acquisitions are317
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(a) (b) (c)

(d) (e)

Figure 8: Comparison of reconstructions of a simulated data set for spiral under-sampling

by 4. (a) Original image [0-255]. (b) Reconstruction with CRAUNN [0-255]. (c) Cor-

responding error image [0-92]. (d) Reconstruction using CG-SENSE [0-255]. (e) Corre-

sponding error image [0-92].

used for the training phase. For the actual reconstruction, accelerated data318

sets are used. The reconstructed and error images using both CRAUNN and319

CG-SENSE are shown in Fig. 9.320

In addition, the real data used for Cartesian case, is again re-sampled321

radially (180 projections, 385 points) in k-space. Because of this, the results322

obtained on this data must be treated only as proof of principle. After323

density compensation and re-gridding, all Fourier-reconstructed images are324

cropped to a 256 × 256 grid in this case. For comparison, reconstruction325
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using under-sampled data (x6) is performed using both CRAUNN as well as326

CG-SENSE. The reconstructions obtained using CRAUNN as well as those327

obtained using CG-SENSE are shown in Fig. 10.328

4. Discussion329

The reconstruction method proposed in this paper, CRAUNN, makes no330

assumptions about the nature of the sampling trajectory and hence can be331

generalized to any arbitrary trajectory. Cartesian data acquisition is a sim-332

ple, tractable case and hence was attempted, first as a proof of concept of333

the CRAUNN approach. Encouraging results obtained here enabled us to334

proceed further to the non-Cartesian cases. The function that processes the335

aliased coil images to yield the alias-free true image, is estimated with no as-336

sumptions of form or complexity. The only underlying assumption is that the337

transformation that holds for acquisitions containing low frequencies alone338

also holds good for acquisitions that contain high and low frequencies, as339

seen from the observations made using the PSF images. The fact that the340

network is solely trained by the same image, leads to fewer artifacts than341

could have occurred if features from other images would be learnt. Besides,342

explicit evaluation of coil sensitivities is not required, which is an advan-343

tage, compared to existing methods like CG-SENSE. Unregularized SENSE344

is utilized to justify the comparison since CRAUNN does not incorporate any345

noise-related information.346

The results for Cartesian acquisition are shown in Fig. 5. It is seen347

that the reconstruction obtained using SENSE clearly preserves the struc-348

tures, but loses out on account of allowing bright replicates. The replica-349
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Comparison of reconstructions of a simulated phantom using radial under-

sampling by 6. (a) Simulated phantom reconstructed using 180 radials [0-255]. (b) Di-

rect reconstruction using data under-sampled by 6 [0-255]. (c) Image reconstructed with

CRAUNN [0-255]. (d) Corresponding error image [0-50]. (e) Image reconstructed using

CG-SENSE [0-255]. (f) Corresponding error image [0-55].
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(a) (b)

(c) (d)

Figure 10: Performance comparison of CRAUNN and CG-SENSE on brain data shown in

Fig. 4 using radial under-sampling by 6. (a) Image reconstructed using CRAUNN [0-255].

(b) Corresponding Error image [0-38]. (c) Image reconstructed using CG-SENSE [0-255].

(d) Corresponding Error image [0-46].
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Figure 11: Comparison of a scan line through the original and reconstructed images using

CRAUNN for spiral sampling (under-sampled by 4) for the data used in Fig. 6.

tion of larger structures stands out in the reconstruction. Reconstruction350

using CRAUNN and GRAPPA are comparable. The output obtained us-351

ing GRAPPA is visibly textured on both sides of what should have been a352

homogeneous-looking region. CRAUNN output looks relatively clearer, but353

also results in an artifact seen in the image off-center to the right, as a dark354

streak.355

In spiral and radial trajectories, the center of the k-space is adequately356

sampled, and hence the direct reconstruction without any intermediate process-357

ing of the sparsely acquired data also preserves the broader details of the im-358

age. However, the differences in reconstruction appear more prominently in359

the finer details. Comparison of the profile lines for the reconstructed images360

for spiral and radial cases are shown in Figs. 11 and 12 respectively. The361

comparison of the finer image details in the reconstructed images for spiral362

and radial cases are shown in Figs. 13 and 14, respectively.363

In the results obtained for the spirally re-sampled brain image (See Fig.364
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Figure 12: Comparison of a scan line through the original and reconstructed images using

CRAUNN for radial sampling (under-sampled by 6) for the data used in Fig. 9.

7) , the reconstructions obtained using CRAUNN and CG-SENSE are com-365

pared. The error images show the residual aliasing in the image obtained366

using CG-SENSE, which is not seen in the image obtained using CRAUNN.367

In the case of radial sampling, (See Fig. 10), greater acceleration factors are368

possible since the nature of aliasing leads to artifacts away from the center369

of the FOV. Most of the artifacts encountered here are mainly the streaking370

artifacts towards the image corners.371

The comparison of the SSIM indices for the phantom image reconstructed372

using CG-SENSE and CRAUNN are shown in Fig. 15. The scale of the SSIM373

indices range from 0 to 1, where 0 shows very poor similarity to the original374

image, while 1 shows the best similarity. It can be seen that CRAUNN375

results in greater similarity to the reference image, as the SSIM indices show376

greater brightness than the one obtained using CG-SENSE. However, there377

are isolated spots such as the centre of the FOV and part of the right extreme378

of the FOV, where CG-SENSE has better similarity with the original.379
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(a)

(b) (c) (d)

Figure 13: Comparison of details in the reconstructed images using the data shown in

Fig. 6. (a) Original Phantom image. The region being observed for details is a comb-like

structure marked by a rectangle. Spiral data used is under-sampled by 4. (b) Comb in

the original image. (c) Comb in the direct reconstruction. (d) Comb in the reconstruction

using CRAUNN.
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(a)

(b) (c) (d)

Figure 14: Comparison of details in the reconstructed images of a synthetic phantom.

(a) Original Phantom image. The region being observed for details is marked by a rectan-

gle. Radial data used is under-sampled by 6. (b) Detail in the original image. (c) Detail

in the direct reconstruction. (d) Detail in the reconstruction using CRAUNN.

An experiment was carried out where the low k-space area that is Nyquist380

sampled, is reduced to half the size. Figure 16 shows that the resulting image381

is blurred in this case. This is because using very low frequency acquisitions382

for training the neural network, teaches the network to yield smoothened383

images. The fine features in the image do not get registered with the network,384

thus leading to blurring artifacts in the reconstructed image. Although the385

experiment was carried out on spirally sampled data, the observations can386
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(a) (b)
Figure 15: : Comparison of SSIM indices of the reconstructions of the phantom shown in

Fig. 8(a). (a) SSIM indices of CRAUNN reconstruction [0-1]. (b) SSIM indices of CG-

SENSE reconstruction [0-1]. Higher intensities denote better similarity with the original

image.

be extended to Cartesian and radial data too.387

The time taken by CRAUNN to reconstruct images of size 256 × 256, on388

a pentium 2.6 GHz processor (with 1 GB RAM) using MATLAB codes, is389

about 5 minutes. On the other hand, CG-SENSE is quicker and takes less390

than 2 minutes on the same machine for images of the same size.391

The neural network topology, learning parameters and feature vectors392

used, have been the same all through, for the different sampling trajectories393

used. Since the number of feature vectors is equal to the number of pixels in394

the image, each feature vector being independent of all others, the CRAUNN395

approach is parallelizable across pixels, and can be made faster.396

The drawback of the CRAUNN approach is that it is not possible to com-397

pute the confidence level of the estimate of pixel intensities, unlike the case398

of SENSE. Further, it is difficult to predict the nature of artifacts that might399

appear in the reconstructed images. The training phase needs about hun-400

dred iterations to converge to an error of (1/100)th of the maximum intensity.401

For larger acceleration factors, the reconstruction errors are larger. One of402
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(a) (b)

Figure 16: Reconstruction using reduced low k-space acquisition for training (Spiral data

used in Fig. 6 undersampled by 4). (a) Reconstructed Image [0-255]. (b) Corresponding

Error image [0-70].

the reasons is that the training error itself saturates at a marginally higher403

value for larger acceleration factors. Fig.17 shows the typical behaviour of404

the training error observed with different acceleration factors. As seen in the405

plot, the training error at acceleration factor 2 saturates at a slightly lower406

value compared to the training error at acceleration factor 4.407

5. Conclusion408

For parallel magnetic resonance imaging, a neural network framework is409

proposed that reconstructs composite images and performs unaliasing of coil410

images. Here, the observations about the nature of artifacts being similar411

irrespective of whether the acquisition contains low frequencies alone, or in-412

clude higher frequencies too, is exploited. Images obtained using low k-space413

frequencies are used to learn the model needed for image reconstructions414
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Figure 17: Typical plot of neural network training error (Y-axis) vs. number of iterations

(X-axis), for different acceleration factors.

using the entire range of k-space frequencies. The CRAUNN approach is415

demonstrated to work for spiral and radial trajectories. CRAUNN can be416

applied to arbitrary trajectories in general. No assumptions are made about417

the transformation that is sought. From our experiments, we find that accel-418

eration factors up to 6 are achieved with radial trajectories, while Cartesian419

and spiral trajectories result in acceleration factors up to 4.420
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7. Appendix435

Neural networks have emerged as a powerful mathematical tool for solv-436

ing various problems like pattern classification and medical imaging due to437

their suitability for mapping complex characteristics, and learning. Of the438

many neural network architectures proposed, single hidden layer feed-forward439

network with sigmoidal or radial basis function are found to be effective for440

solving a number of real-world problems. The free parameters of the network441

are learned from the given training samples using gradient descent algorithm.442

7.1. Multi-layer Perceptron (MLP) Network443

A typical MLP network consists of three or more layers of processing444

nodes (neurons): an input layer that receives external inputs, one or more445

hidden layers, and an output layer which produces the target outputs. Using446

universal approximation property, one can say that the single layer feed-447

forward network with sufficient number of hidden neurons m can approx-448

imate any function to any arbitrary level of accuracy. It implies that for449

bounded inputs to the network there exist optimal weights (not necessarily450

unique) to approximate the function. Hence, in our study, we also use single451

hidden layer network to approximate the functional relationship between the452

aliased coil images and the true image. Let U be the n-dimensional features453

(U ∈ <n) input to the network. At the hidden layer, this input vector is454

transformed to an m-dimensional (m > n) intermediate vector V, by the455

hidden neurons whose activation function is commonly chosen as the bipolar456

sigmoid function, defined as457

f(t) =
1.0− exp(−t)

1.0 + exp(−t)
(5)
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The intermediate vector (V) comprises of elements vi computed as458

vi = f

(
n∑

j=1

wijuj

)
i = 1, 2, · · · ,m (6)

where wij is the weight connection between the jth input neuron and ith459

hidden neuron. The output (P̂ ) of the MLP network with m hidden neurons460

and a single output neuron is given by:461

P̂ = f

(
m∑

j=1

w̃jvj

)
(7)

where w̃j is the weight connection between the jth hidden neuron and the462

output neuron.463

7.2. Back Propagation Learning Algorithm464

Back Propagation (BP) is one of the simplest and most general methods465

for the supervised training of MLP (26). The basic BP algorithm works as466

follows:467

1. Initialize all the connection weights (W and W̃) with small random468

values from a pseudorandom sequence generator.469

2. Compute the network output for the given input features U.470

3. Let P be the target output for a given input U. Calculate the deviation471

of network output P̂ from the target value472

E =
1

2

∑

∀U

(
P̂ − P

)2

(8)

4. Compute the negative gradient of error to update the network weights473

∆wij = − ∂E

∂wij

(9)
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5. Update the weights using negative gradient of error E until convergence474

of weights, i.e., the present error E must be equal to or smaller than475

the prescribed value.476

The criterion for convergence is set as477

|E| <= δ (10)

Here δ is chosen to be 10−3.478

7.3. Architecture of the neural network479

The neural network architecture used here is a single hidden layer feed-480

forward network with radial basis functions. The input layer consists of481

18 nodes (since the input feature vector is made of 18 components), while482

the output layer consists of a single node (since the output is real). The483

hidden layer consists of 98 nodes, based on the standard procedure carried484

out for determination of the number of hidden neurons. The neural network485

is designed to output a real number for every feature vector presented. Hence486

the number of nodes at the output layer should be 1.487

7.3.1. Neural network parameters488

The activation functions used are all sigmoidal functions. The learning489

rate is chosen such that the error between iterations reduces rapidly enough490

for quicker convergence, but does not get trapped at local minima. Experi-491

mentally it was found that setting the learning rate below 10−6 reduced error492

between iterations too slowly, while setting the learning rate greater than493

10−6 resulted in oscillatory behavior between iterations. Hence, the learning494

rate was set to 10−6. The choice of the number of hidden neurons decides495
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how smoothly the target function can be modeled. In practical situations,496

the appropriate number is chosen across several trials, where initialization is497

done with a fixed number greater than at least four times the length of the498

feature vector, as a rule of thumb. As seen in the plot in Fig. 18, the number499

is increased gradually and the corresponding training error is observed. The500

training error hits a minimum at a point, and thereafter gradually increases.501

The number of hidden neurons is clamped at the value where the training502

error is measured to be the least. Here it turns out to be 98.503
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Figure 18: Plot showing variation of training error against number of hidden neurons

7.3.2. Input Features504

The input layer of the neural network is fed with features extracted from505

the aliased coil images. The features used here are the complex pixel intensi-506

ties of the coil images and their spatial co-ordinates. Here 8-coil data is used507

and hence 8 complex coil images are available. At a fixed location (x,y), for508

all the 8 coils, 8 complex numbers are obtained, which are split into their real509

and imaginary parts (2 x 8 = 16). The spatial co-ordinates ((x co-ordinate,510

y co-ordinate) = 2) for that location, are concatenated, making the feature511
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vector length 18. It must be noted that inclusion of spatial co-ordinates in512

the feature vector, facilitates the transformation to be spatially varying.513

7.3.3. CRAUNN algorithm514

Training phase :515

• The input feature vector Ut for the location (x,y) derived from the516

aliased coil images of low-frequency acquisitions, SAL
1 , . . . SAL

8 , given517

by518

Ut =
[
Re(SAL

1 (x, y)), Im(SAL
1 (x, y)), . . . Re(SAL

8 (x, y)), Im(SAL
8 (x, y)), x, y

]
(11)

• The output of the hidden layer, a vector of 98-dimensions (Vt) com-519

prises of elements computed as520

vti = f

(
18∑

j=1

wijutj

)
i = 1, 2, · · · , 98 (12)

• At the output layer, the output P̂ is computed as521

P̂ = f

(
98∑

j=1

w̃jvtj

)
(13)

• The target output P is the corresponding value of the composite un-522

aliased image obtained using low-frequency acquisitions. The training523

error E is computed using the difference between the target and the524

computed output, as given by Eq. (8). When the training error |E|525

reaches the pre-defined δ, in this case 10−3, the weights W and W̃ are526

frozen.527
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Reconstruction phase :528

• The input feature vector Ur for the location (x,y) derived from the529

aliased coil images of acquisitions containing the entire range of k-space530

frequencies as531

Ur =
[
Re(SAH

1 (x, y)), Im(SAH
1 (x, y)), . . . Re(SAH

8 (x, y)), Im(SAH
8 (x, y)), x, y

]
(14)

• The output of the hidden layer, a vector of 98-dimensions (Vr) com-532

prises of elements computed as533

vri = f

(
18∑

j=1

wijurj

)
i = 1, 2, · · · , 98 (15)

• The output of the trained neural network Ŝ is computed as534

Ŝ = f

(
98∑

j=1

w̃jvrj

)
(16)

• The outputs put together from each and every location, form the re-535

constructed image, which is an estimate of the true image S.536
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