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ABSTRACT: Assessing quality of medical images is critical because the subsequent course of actions depend on it.
Extensive use of clinical magnetic resonance (MR) imaging warrants a study in image indices used for MR images.
The quality of MR images assumes particular significance in the determination of their reliability for diagnostics,
response to therapies, synchronization across different imaging cycles, optimization of interventional imaging, and
image restoration. In this paper, we review various techniques developed for the assessment of MR image quality.
The reported quality indices can be broadly classified as subjective/objective, automatic/semi-automatic, region-of-
interest/non-region-of-interest-based, full-reference/no-reference and HV'S incorporated/non-HVS incorporated. The
trade-off across the various indices lies in the computational complexity, assumptions, repeatability, and resemblance
to human perception. Because images are eventually viewed by the human eye, it is found that it is important to
incorporate aspects of human visual response, sensitivity, and characteristics in computing quality indices. Addition-
ally, no-reference metrics are the most relevant due to the lack of availability of a golden standard against which
images could be compared. Techniques that are objective and automatic are preferred for their repeatability and to
eliminate avoidable errors due to factors like stress, which arise in human intervention.

KEY WORDS: MR image, quality metric, subjective image quality, objective image quality, HVS-based metric, full

reference metric, no-reference metric

I. INTRODUCTION

Assessment of image quality has been a very big
challenge for the computer-vision community. It is
especially true for medical images because they are
generally monochromatic and noisy (e.g., ultrasound,
computed tomography [CT], X-ray, and magnetic
resonance [MR] images). Typically, each imaging
modality consists of an electromechanical system,
with its own acquisition characteristics, that manifest
in the images generated. In MR imaging, data are
acquired in the spatial frequency domain, which is
Fourier transformed to obtain the desired image.

ABBREVIATIONS

The clinical popularity of MR imaging is due to
its rich contrast for soft tissues and the availability
of arbitrary imaging planes, which make it suitable
for various applications in musculoskeletal imaging
and neuroimaging. Additionally, unlike X-ray and
CT, this imaging modality does not use any harm-
ful, ionizing radiation. The most desired feature in
medical images is to be able to clearly distinguish
each structure based on its chemical and physical
properties. This feature is available in MR imag-
ing because the modality allows great flexibility to
control the contrast among the various soft tissues
by appropriately setting imaging parameters such as

AF, autofocusing; CNR, contrast to noise ratio; CSF, contrast sensitivity function; DCE-MRI, dynamic
contrast enhanced mri; fMRI, functional mri; FOV, field of view; FWHM, full width half maximum,;
HVS, human visual system; INU, image non-uniformity; JND, just noticeable differences; MOS, mean
opinion score; NSA, null space analysis; PD, percentage distortion; PDM, perceptual difference model;
PSF, point spread function; QILYV, quality index based on local variance; RF, radio frequency; RMSE,
root mean square error; ROI, region of interest; SNR, signal to noise ratio; SSIM, structural similarity
index; TE, time to echo; T1, inversion time; TR, repetition time




repetition time (TR), time to echo (TE), flip angle,
and inversion time (TI). However, it also has its
unique set of artifacts that could potentially distort
the image, leading to false conclusions. Hence, it is
important to assess the quality of the images gen-
erated and penalize the presenting artifacts before
utilizing it to draw conclusions.

IIl. SIGNIFICANCE OF QUALITY ASSESSMENT

'The importance of quality metrics in medical imaging
has been emphasized by Boone.! Image quality varies
not only with changes in acquisition parameters but
also across different sites, where they are acquired.
This could be due to the differences in ambience,
unintended coupling of the receiver coils with any
other miscellaneous object in the neighborhood,
variations in hardware (such as radiofrequency [RF]
coil, Q-factor, passive shims, and center frequency)
and RF transceiver variations. Hence, the quality
of images obtained at one site may not match that
acquired elsewhere. Thus, it is important to establish
acceptable standards that can be applied across imag-
ing systems. Because the MR acquisition system has
been well studied, the imaging parameters and the
procedures to evaluate the performance of clinical
scanners are well established. The research on quality
assurance reported by Price et al.2 describes standard
procedures to evaluate clinical scanners. In this paper,
recommendations are made for acceptable phantom
designs, materials, and analysis techniques. Imaging
parameters such as resonance frequency, signal-to-
noise ratio, image uniformity, spatial linearity, spatial
resolution, slice thickness, and contrast-to-noise ratio
are also described.

Assessment of image quality is important for
several reasons, such as confidence in subsequent
diagnostics,”® determining the quality of motion
correction in functional MR imaging (fMRI) time
series analysis,” quantitative morphometric studies of
brain images,® optimal phantom design for enhanced
lesion detectability,’ assessment of brain tumor
response to therapies,'? determining synchronization
of cardiac cycles in cardiac imaging,!! optimization
of interventional MR imaging,'? quality of image

reconstruction in parallel imaging,!* improvement
of acquisition design,'*!* and evaluating the quality
of image fusion.!6

lil. IMPORTANT IMAGING PARAMETERS

Some of the important parameters defined in the
standard MR literature!’!8 that directly affect the
image quality are outlined below. They can be clas-
sified into those that are determined by the given
imaging system and those that can be controlled by
the operator. Parameters that are determined by the
imaging system are as follows:

1. Resonance frequency: Resonance frequency
is defined as that RF £ which matches the
static B-field (B,), according to the Larmor
equation f'= (y/2n)B,.

2. Image uniformity: This refers to the ability of
the MR imaging system to produce a con-
stant signal response throughout the scanned
volume when the object being imaged has
homogeneous MR characteristics.

3. Signal-to-noise ratio (SNR): Signal is defined
as the mean pixel intensity within a user-
marked region of interest. Noise is defined as
the standard deviation of the pixel intensity
in the background region. SNR is the ratio
of signal-to-noise energy.

4. Spatial linearity: This is used to describe the
degree of geometrical distortion present in
images obtained.

5. Distortion: This quantifies the error in
the measured value of a distance between
any two points in the image. Percentage
distortion (PD) is defined as: PD = (Per-
ceived Dimension - True Dimension)/
True Dimension expressed as 2 percentage.
Distortion measurement may be performed
between any two points within the field of
view (FOV). For reliable measurements, it
is recommended that the true dimension be
greater than 10 pixels.

The parameters that are controlled by the opera-
tor are as follows:
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1. Acquisition matrix: Acquisition matrix
(N, IV,) is the ordered pair of the number of
data points acquired along £, and the number
of phase encodes acquired along . The time
needed for scan increases as the size of the
acquisition matrix increases.

2. FOV:This s defined as the image area within
the object to be scanned that is spatially
encoded by the imaging system.

3. Spatial resolution: This is a measure of the
capacity to clearly distinguish between
objects when there is no significant noise
contribution. Spatial resolution for MRI
systems is typically limited by the pixel size
of the acquisition matrix (resolution along
X or Y=FOV along X or Y divided by the
number of sampling points along X or Y).

4. Slice thickness: This is defined as the thick-
ness of an imaged slice and is measured as
the distance between the points at half the
sensitivity of the maximum or full width at
half maximum (FWHM) of a slice profile.

5. Contrast-to-noise ratio (CNR): The ability to
distinguish between various soft tissues is

called CNR, which is defined as:
CNR = abs(Signal, — Signal,)/standard

deviation of noise

where Signal; and Signal, are the intensi-
ties of pixels (or voxels) from the two dif-
ferent regions being compared. The CNR
depends on the contrast mechanism used
and the spatial resolution. It is influenced
by operator-dependent settings for imaging
parameters, such as TR, TE, flip angle, TT,
or the use of preparatory pulses.

lILA. Quantifying Imaging Characteristics

The most popular method of quantifying the inher-
ent characteristics of an imaging system is through
measures such as point spread function (PSF)
and FWHM. Also, standard phantoms have been
designed to study the geometrical accuracy and
spatial resolution obtained through the imaging
process.

PSF is the response of the imaging system when
the input stimulus is a single point. The hypothetical
point generally results in an extended image, char-
acterizing the limitation of the imaging process.
Knowledge of the PSF helps in predicting how
any given object would be imaged by the imaging
system, under assumptions of linearity. It is used in
understanding and measuring the spatial resolution
of the imaging system. The degree of spreading of the
point object is the measure of the spatial resolution
that can be achieved with the imaging system.

FWHM is commonly used to measure the quality
of an imaging system and its spatial resolution, by
denoting the significant width of a nonrectangular
process. It is the width at half the maximum value
of the peak and is commonly used for spectral lines
and slice profiles. FWHM is measured by identifying
the points on the signal curve, which are half the
maximum value. The horizontal distance between
these two points is called the FWHM.

Several standard phantoms are designed, each
dedicated to test a certain aspect of the performance
of the imaging system. Although the final goal
is to image the human body, phantoms are used
because the resulting images can be assessed. Also,
if any drawback of the specific imaging technique is
revealed, then it can be worked on. Phantoms can be
repeatedly imaged, unlike human subjects. Phantoms
can easily be standardized, and various imaging sites
could concur on the quality of the expected image.
Phantoms have to be designed with materials that
constitute the human body in order to mimic the MR
signal expected while imaging a human subject. Some
of the constituent materials are aqueous paramagnetic
solutions, pure gels of gelatin, agar, polyvinyl alcohol,
silicone, polyacrylamide, and agarose.

Geometrically accurate phantoms include spheres
and cylinders, some with grid-like structures and yet
others with different symbols in different quadrants.
The fidelity of reproduction is checked along with
sizes, positions of the grid, and symbols. Corrective
coefficients are determined to enable correction of
subsequent patient images.
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FIGURE 1. lllustration of artifacts.?! (a) Nonuniform coil
sensitivity and (b) Gibbs ringing.

IV. ARTIFACTS IN MR IMAGES

Research reported by Ruan' and Patton et al.?
extensively deals with the commonly encountered
artifacts in MR images. The objective of their work
was to develop consistent image quality and appro-
priate selection of imaging parameters. Addition-
ally, both reports have outlined typical artifacts and
corresponding remedial actions. Incorporation of
such awareness in clinical practice leads to better
imaging quality and assessment. These authors have
also grouped MR imaging artifacts into two general
categories, namely, hardware related and operator/
patient related.

IV.A. Artifacts Caused by MR Imaging
Hardware

Hardware-related artifacts are difficult to correct and
may require the assistance of service personnel. The
most common of these artifacts are as follows:

1. RF noise: Improper RF shielding could result
in external noise being acquired along with
the RF signal. This form of artifact could
lead to structures such as a bright spot in
the image.

2. By inhomogeneity: Intensity distortions result
from B, inhomogeneity. This is because
the strength of B, affects the value of the
parameter T2¥ which dictates the decay rate
of the signal.

3. Coil sensitivity: The image might look
brighter in regions with greater coil sensi-

tivity and vice versa, if the coil sensitivity
profile is not uniform across the entire object
being imaged.

4. Gradient linearity: If the object occupies
a region outside the area where gradient
linearity holds, then geometric distortion
could occur.

5. RF inhomogeneity: An RF inhomogeneity
leads to the presence of an undesired varia-
tion in signal intensity across the obtained
image. The cause is either a nonuniform
B1 field or a nonuniform sensitivity in a
receive-only coil.

IV.B. Operator-/Subject-Related Artifacts in
MR Images

'The second category of artifacts consists of those that
arise out of an undesired action by the operator or
subject, which can be easily corrected with the right
course of action.

Gibbs ringing: These artifacts manifest at regions
of sudden discontinuities, as single-dimensional
ripples. Gibbs ringing is seen in images when an
insufficient acquisition matrix is used (Fig. 1). It
means that adequate data are not acquired at high
spatial frequencies. Solutions include use of a higher
resolution imaging matrix and filtration methods.

Patient positioning: Appropriate positioning of
the patient in the RF coil is important in order to
obtain good image quality. The region of interest
should always be positioned in the center of the
coil because systems are optimized for imaging in
this region.

Motion: Motion is the most prevalent source of
MR imaging artifacts. Motion artifacts, also called
ghosting, could be caused by the motion of the
imaged object as a whole or a part of it during the
imaging sequence, leading to blur. Figure 2 shows the
degradation caused by motion artifact. To minimize
artifacts due to respiratory motion, gated imaging is
carried out for anatomies such as the abdomen. For
cardiac imaging, electrocardiographic triggering is
used, in which data collection is synchronized with
the cardiac phase. Such synchronization enables
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FIGURE 2. lllustration of motion artifact.?? (a) Image with
no motion compensation and (b) motion-compensated
image.

cardiac tissue to be located in a consistent position
as each successive phase-encoding step is acquired,
resulting in increased tissue signal intensity and
decreased phase errors.

Chemical shift: Chemical shift artifacts are caused
by the difference in Larmor frequency of fat and water.
The artifact manifests itself as a mis-registration
between fat and water pixels in an image. The effect is
that fat and water spins in the same voxel are encoded
as being located in different voxels. The magnitude of
the effect is proportional to the magnitude of the B,
field and inversely proportional to the sampling rate
in the frequency-encoding direction. Fat suppression
methods often eliminate visible artifacts.

Wrap-around artifacts: Wrap-around artifacts
occur when the effective field of view is smaller than
the region of interest. This implies that the sampling
rate is less than the range of frequencies in the RF
signal. An illustration of the artifact is shown in
Figure 3a. The solution is to choose a larger field
of view.

Susceptibility artifacts: These occur as the result of
variations in the magnetic field strength at interfaces
of tissues with different magnetic susceptibilities,
such as air-tissue boundaries in nasal cavities. These
artifacts manifest as bright and dark regions with
spatial distortion of the surrounding anatomy, as
shown in Figure 3b.

Partial volume artifacts: Partial volume artifacts
are caused by the size of the image voxel. These occur
when multiple tissue types are encompassed within
a single voxel. For example, if a small voxel contains

(a) (b)

FIGURE 3. lllustration of (a) a wrap-around artifact?' and
(b) a susceptibility artifact.2

only fat or water signal, and a larger voxel might
contain a combination of the two, the larger voxel
possesses a signal intensity equal to the sum of those
of water and fat, weighted by their relative amounts,
present in the voxel. An illustration of the artifact is
shown in Figure 4. It also occurs when structures are
oriented obliquely to the imaging plane and when
structures move in and out of a given section during
image acquisition.

Zebra stripes: These can be observed along the
periphery of gradient-echo images where there is an
abrupt transition in magnetization at the air-tissue
interface (Fig. 5). They are accentuated by aliasing
that results from the use of a relatively small field of
view. Solutions include expanding the field of view,
using spin-echo pulse sequences or oversampling
techniques to reduce aliasing.

RF overflow: These artifacts impart a nonuniform,
washed-out appearance to an image. This artifact
occurs when the signal received by the scanner is
too intense to be accurately digitized by the analog-
to-digital converter. Auto-prescanning is usually
performed before the actual scan in order to adjust
the receiver gain to prevent this.

Flowing spin artifacts: This occurs when unsatu-
rated spins in the blood enter the excited slice. It is
characterized by bright signal in a blood vessel (artery
or vein) in the particular slice. Usually, the signal is
seen on more than one slice, fading with distance.
This artifact can be confused with thrombosis, and
with disastrous results.
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FIGURE 4. lllustration of partial volume artifact.’® Image
with (a) 10-mm resolution along Y and (b) 3-mm resolu-
tion along Y.

Zipper artifacts: These manifest as high-intensity
lines across the MR image. The zipper artifacts that
can be controlled easily are those due to RF entering
the scanning room, when its door is open during
acquisition of images. Solutions include identifying
and removing external RF sources, ensuring that
the door to the imaging room remains closed and
verifying the integrity of the magnet room enclosure
and associated seals.

Cross-excitation: This is caused by the imperfect
shape of RF slice excitation profiles,leading to unin-
tended excitation of adjacent tissues. This excitation
might result in the saturation of such tissues and
manifest as decreased signal intensity and contrast.
One way to avoid this artifact is to introduce an
intersection gap that is 10-50% of the prescribed
section thickness. Another method is to acquire slices
in interleaved manner.

Shading artifacts: These manifest as relatively
reduced signal intensity across a portion of the image.
Abnormalities contained in the shaded portion of
the MR image may be obscured.

V. QUALITY METRICS IN MEDICAL IMAGING

As pointed out by Woodard and Carley-Spencer?*
and Video Experts Quality Group,? desirable proper-
ties of quality measures are that they accurately predict
human judgments of distortion, be monotonically
related to the level of distortion, and provide reason-
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FIGURE 5. lllustration of (a) a zebra stripes artifact?® and
(b) an overflow artifact.z

ably consistent results across a wide variety of images,
along with mathematical tractability, simplicity, and
computational efhiciency.

Boone! states that although image interpretation
is subjective, clinical applications such as tumor imag-
ing require quantitative indexing. He predicts that
the subjective interpretive environment will evolve
toward the increased use of quantitative metrics for
evaluating patient’s health from images. He also
comments that for the quantitative imaging envi-
ronment to expand, medical physicists, physicians,
researchers, and equipment vendors need to work
collaboratively to develop quantitative protocols for
imaging, scanner calibrations, and robust analytical
software. Such a collaboration would lead to the rou-
tine inclusion of quantitative parameters in diagnosis -
and therapeutic assessment of human health. Most
importantly, the report emphasizes that developing
quantitative metrics would have a great impact on
patient diagnosis.

Most publications that propose new techniques
for improved image quality’4%%?” evaluate it by visual
inspection. In most cases, the lack of visible artifacts is
seen as a requisite to consider the quality of the image
“good.” Although there is no concurrence on what
constitutes a good quality image, it is implicit that
occurrences of artifacts must be penalized. Increasing
advancement for acquisition of good quality images,
with higher spatial/temporal resolution, makes it
important to quantify the goodness of an image.

In the following section, we outline different
categories of quality metrics, with their subdivisions



and instances of their reported applications on MR
images. Each category is based on consideration for
one of the important attributes of a quality metric.
They are not mutually exclusive and a given quality
metric could fit into each of these categories. How-
ever, each chosen quality metric is elaborated in only
_ one of these categories to emphasize a particular
attribute of the metric.

V.A. Subjective and Objective Measures

This classification of indices arises out of consider-
ation or lack of it by human observers.

1. Objective Measures

Objective measures are most preferred because they
are reproducible. They are generally the result of a
well-thought-out algorithm that should incorporate
rewards for fidelity in image reproduction and penal-
ize artifacts. Such indices render computer-aided
diagnosis easy because the model is well represented
and results are predictable. However, the disadvan-
tage is that outliers and/or special instances may be
misinterpreted to be erroneous.

McGee et al.8 propose several objective metrics
from the gradient of the image, based on a model
postulating that the ideal image should have areas
of uniform brightness separated by sharp edges.
The gradient of a good uniform image would be
zero or very small over large areas and large in a
relatively small number of pixels. Metrics developed
by these investigators are based on image resolution,
characteristics of the gray-scale histogram, contrast,
and autocorrelation, which are derived from the
pixel intensities and their statistical characteristics.
They include gradient, Laplacian, entropy, cube of
normalized intensities, fourth power of normalized
intensities, normalized gradient squared, normal-
ized gradient to fourth power, squared intensities,
squared gradient, fourth power of gradient, gradient
entropy, histogram mean, histogram standard devia-
tion, histogram skewness, histogram kurtosis, histo-
gram energy, histogram entropy, standard deviation,
standard deviation of gradient and autocorrelation.

The intensity-based metrics at position (4, 7), with
intensity g(, 7) are defined as follows:
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McGee et al.?® evaluate the above metrics by
autocorrecting MR images of the rotator cuff. MR
imaging of the shoulder requires high spatial and
contrast resolution and, thereby, long acquisition
times, predisposing the images to degradation due
to motion. The evaluated quality metrics are used
to autocorrect any motion that might have occurred
during imaging. The objective is to deduce motion
during imaging by calculating a metric that reflects
the image quality and searching for motion values
that optimize this metric. Raw data from 164 clinical
coronal rotator cuff exams acquired with interleaved
navigator echoes are used. Changes in values of the
metric before and after navigator-based adaptive
motion correction are correlated with changes in the
observer score using a least-squares linear regression
model. On the basis of their analysis, the metric that
exhibits the strongest relationship with observer
ratings of MR shoulder images turns out to be the
entropy of the one-dimensional gradient along the
phase-encoding direction.

Lin et al.?30 have reported an autofocusing (AF)
motion correction technique in high-resolution tra-
becular bone imaging, where image SNR is limited.
Here, image sharpness and structural parameters
are computed and compared after correction to
determine the efficacy of the AF method. Image
sharpness is computed as the opposite of image

nonuniformity (INU) or blur. Sharpness is modeled
as a high-pass process like the gradient. Raw data
from 26 clinical three-dimensional wrist exams are
motion corrected using AF for both in-plane rota-
tion and translation. Changes in image metrics and
subsequently computed structural parameters are
used to gauge the performance of the AF algorithm,
which is compared with translation-only navigator-
corrected results. Results show that AF-generated
images have higher image sharpness compared to the
navigator echo technique. The average normalized
gradient squared metric improves by 0.40%, 0.73%,
and 0.84%, respectively, following translation-only
navigator, translation-only AF, and combined rota-
tion/translation AF. For all structural parameters, the
rotation/translation AF results in an approximately
two-fold greater change compared to the navigator
technique.

2. Subjective Measures

Subjective measures typically involve human inspec-
tion. These measures, such as mean opinion score
(MOS), have been in use for a long time and are
often used as the benchmark in validating novel met-
rics. 243132 However, visual inspection and the extent
of details captured depend on the level of experience
of the observer. Hence, the result may not only be
nonreproducible but could also depend on factors -
such as the stress level of the observer. However, one
great advantage is that because HVS characteristics
are implicitly considered, it is likely to agree to a
great extent with the radiologist’s perception.
Prieto et al.3! have proposed a subjective measure
based on just noticeable differences (JND), called
JND scanning (JNDS). The JND33 is defined as the
maximum threshold below which distortions are not
perceived in a given pixel. Hence, the JND profile
is a binary image that gives the locations of pixels,
where the difference between the two images exceeds
a given threshold (where the difference becomes
noticeable). The plot in Figure 6a shows the thresh-
old for a given contrast. In their paper, the authors
propose utilizing JND to measure how the image
differences disappear as the contrast between the two



Invisible Visible

Detgcﬁoncapacity

Detection capacity

Distortion intensi{y

(a)

&
Distortion intensity

(b)

x2,12)

Distortion level

(x1,r1)

/

Distortion intensfty

(o)

FIGURE 6. Plots related to JND.3' (a) The JND threshold is a step function. (b) The JND threshold moves when the
contrast changes. (c) Integration of all possible thresholds is depicted.

images decreases. Initially, the intensity differences
that disappear correspond to the least distorted pixels,
and as the process proceeds, the intensity differences
corresponding to the most distorted pixels disap-
pear. The JND threshold is a step function for each
pixel. As the image contrast changes, the threshold
moves horizontally. The plot in Figure 6b shows the
varying thresholds for changing levels of contrast.
The integration of all of the possible thresholds is
a ramp, which is illustrated in Figure 6c. This ramp
should be interpreted as the probability with which
the distortion in a pixel is observed for all possible
levels of contrast.

The probability of distortion for each pixel is
assigned as the ratio of number of pixels with prob-
ability one to the number of pixels with probability
zero, obtaining the JNDS index. To validate the
metric, the authors compare it against MOS obtained
from five volunteers on a data set of 150 brain images.
The correlation with human perception was graded
on a scale of 1 (worst) to 5 (best). The results are

shown as plots in which the proposed metric showed
better correlation with human perception compared
to root mean square error (RMSE).

Gardner et al.*? utilize human observers to detect
significant errors in the images obtained, compared
against the sensitivity of an automated test. The
automated image analysis system for MR imaging
with the sensitivity of trained human observers is used
to evaluate images that were intentionally degraded.
Degradation involved decreased SNR, which caused
distortion, and increased slice thickness and separa-
tion. It was found that the human observers were able
to detect a 6~13% reduction in SNR and distortions of
>15% in human images. They were unable to identify
40% increases in the slice thickness. On the other
hand, automated analysis of test object images was
able to detect all image degradations at the minimum
levels applied. Hence, it was concluded that visual
analysis of clinical images is not sufficient to decide
on the image quality. Quantitative image-quality
analysis that reliably predict the degraded image



quality are necessary 1o deeet subile dnotmalities
in clinical images.

V.B. Region-of-Interest (ROl)-Based Versus
Non-ROI-Based Indices

This categorization is based on the image area con-
sidered in declaring the quality of the image.

1. ROI-Based Measures

SNR and CNR are the most popular ROI-based
image metrics. This class of metrics is useful in
compression because the area of interest needs to
be compressed without incurring any loss in qual-
ity, while the rest of the image can undergo lossy
compression, without affecting the diagnostic qual-
ity of the image. In applications such as dynamic
contrast-enhanced MRI (DCE-MRI), ROI-based
measures are important because the enhancement
curves are obtained from a very specific region. Hill
et al.** have proposed improvement in the quality
of breast images by reducing the variability of the
enhancement curves at the pixel level yielding more
reliable uptake and washout phases.

2. Non-ROI-Based Measures

'The non-ROI-based measures take the entire image
into account while deciding on the quality. This is
especially true in cases with supervised classifiers
such as those that train neural networks in decid-
ing “good” quality against “bad.”S Also, metrics that
consider global statistical characteristics fall into the
same category. Aja-Fernandez et al.% have proposed
a new index based on the assumption that critical
structural information of an image is coded in its
local variance distribution. Quality index based on
local variance (QILV) between images I and J is
computed as

2”“/1 b, 20V1 ovy; Oy,

2 2 2 2 °
by, + By, oy, + 0y, ov,0vy,

QILV(I,J) =

where 3, 1s the mean of the local variance and o,
is the standard deviation of the local variance. They
claim that the stationary properties of the images
are considered in this metric. The first term in the
expression compares the mean of the local variance
distributions of the two images, while the second term
compares the standard deviation of local variances.
Spatial coherence is introduced in the third term.
'The authors claim that the above metric represents
global statistics of local variances of images. In order
to validate the performance of the proposed metric,
the authors tested it with MR images corrupted
with Rician noise and found that the metric not
only detects noise but also the associated blur when
the images were de-noised using Wiener filtering.
The popular clinical measure RMSE and several
statistical metrics developed by McGee et al.2® are
also non-ROI-based measures.

V.C. Full-Reference/No-Reference Metrics

'This categorization is based on the availability of the
gold standard with respect to which the quality of

the image in question can be compared.

1. Full-Reference Metrics

These metrics assume the availability of the golden
standard image against which a test image is to be -
compared. Although in principle this approach is
not suitable for medical images, it is extensively used
because typical characteristics of medical images
remain broadly constant, among large masses of
the population. :

The most popular, clinical full-reference metric
is perhaps RMSE. It is computationally simple and
gives a fair idea of the deviation from the ideal.
However, as pointed out by Prieto et al.3! two
images with the same RMSE can be perceptually
very dissimilar as shown in Figure 7.

Prieto et al.3* have proposed a technique called
null space analysis to quantify degradation of an
image. The objective is to measure loss in the per-
ceptually relevant information while transforming
the reference image A, into another image D. This
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FIGURE 7. Perceptually different images with the same
RMSE (RMSE = 11).2

isaccomplished by finding a linear transformation 7,
from A to D that maximizes its null space dimension.
Because T is a linear transformation with N2V - 1)
degrees of freedom (XV is the number of pixels), T
is selected such that its null space has the maximum
allowable dimension of (V- 1). Thus, T = Dé*/<e, A>,
where ¢ is a reference image that determines a space
that is orthogonal to the null space of 7. Here, ¢ is
taken as the average of 4 and D. 4 can be split as
A=Ay + A, where Ay and A, are the lost and preserved
information of the image after the transformation 7,
respectively. 4, is weighted by the contrast sensitivity
function (CSF)*” to match the perceptual significance
of the lost information ¢ = W.CSEW where W is
the Fourier transform. Finally, the index null-space
analysis (NSA) is computed as the energy of ¢. To
validate the metric, the authors compared it against
MOS obtained from five volunteers on a data set
of 150 brain images. The correlation with human
perception was graded on a scale of 1 (worst) to
5 (best). The results were shown as plots in which
the proposed metric showed better correlation with
human perception compared to RMSE.

2. No-Reference Metrics

These metrics do not assume the availability of the
gold standard with respect to which a given image
can be assessed. They quantify quality inherent in
the single image. This is especially relevant in the
medical imaging scenario because each subject is

unique. Also, for the same subject, the same anatomy
imaged once might look drastically different when
imaged at another point in time.

Woodard and Carley-Spencer? assess the effec-
tiveness of no-reference image quality measures. They
artificially distorted images with two levels of either
additive Gaussian noise or intensity nonuniformity
created from a linear model. A total of 239 different
quality measures were defined and used to discrimi-
nate images for the type and level of distortion. A data
set of 1001 MR images recorded from 143 subjects
was used for their evaluation. Statistical analysis
was carried out. No-reference quality measures that
characterize the spread of energy and informa-
tion in spatial and/or spatial-frequency domains,
the localization, flatness, and Tsallis entropy-based
measures were used. It was found that analysis of
variance (ANOVA) identified two families of qual-
ity measures that were most effective: one based on
natural scene statistics®® and the other, the JPEG
quality measure,* originally developed to measure
distortion caused by image compression. Woodard
and Carley-Spencer?* report that measures from both
of the families reliably discriminated between undis-
torted images, noisy images, and images distorted
by intensity nonuniformity. According to Woodard
and Carley-Spencer,? the best quality measures were
sensitive only to the distortion category and were not
significantly affected by other factors. The authors
report that the results were encouraging enough that
several quality measures were being incorporated in
clinical scenarios.

Neuroinformatics researchers at MITRE* have
added varied types of distortion, such as radio fre-
quency irregularities of the scanner, electromagnetic
interference from other equipment, artifacts due to
patient head movement, and inherent properties of
the tissue being scanned. A variety of metrics that
measure an array of properties, including entropy,
energy localization, and underlying image structure,
are utilized. They claim that their experiments have
shown that a subset of the metrics and combinations
thereof can discriminate distorted from nondistorted
images and even discriminate between levels of
distortion. They found that undistorted, noisy, and



(a) (b)

FIGURE 8. Image with no degradation.?' (a) Structural
brain image and (b) segmented air background.

INU distorted images evidently cluster into differ-
ent regions.

V.D. Automated/Semi-Automated Methods

‘This classification is based on whether manual inter-
vention is needed.

1. Automated Methods

These methods are typically designed to suit a cer-
tain class of images. They exploit the characteristics
of images within the class and also incorporate
a priori knowledge about them. An example is the
method reported by Mortamet et al.*! to determine
the quality of structural brain images. This method
exploits the fact that the air background occupies
above 30% of the total image area in structural brain
images. The image quality is determined by examin-
ing the air-background region. The air-background
region is assumed to provide sufficient information to
detect image degradation from several sources, such
as patient head movement, residual magnetization
from incomplete spoiling, blurring, and ghosting, an
illustration of which is shown in Figures 8 and 9.
Mortamet et al.*! propose two quality indices.
The first quality metric uses an atlas-based algorithm
to extract the air-background region. In the air-
background region, artifacts are isolated by means
of morphological operations. One quality index is
computed as the proportion of artifactual voxels

(a)

FIGURE 9. Degraded image. (a) Structural brain image
and (b) segmented air background showing visible deg-
radation.

relative to the background size. This quality measure
reflects the presence of artifacts and relies on artifact
delineation and clustered property of artifactual vox-
els. The second quality metric is based on the noise
distribution analysis. The measure of goodness of fit
of Rayleigh distribution to the noise histogram is
chosen as a quality metric because the presence of
artifacts enlarges the right tail of the noise intensity
distribution to higher intensity values, and hence
increases its skewness. The data used for validating
the indices comprised 749 T1-weighted structural
head MRI images from 188 subjects, which are
obtained from the ADNI database.®? As per the
report, ANOVA could capture significant differ-
ences between the low- and high-quality groups.
The discriminative performances of the proposed
indices appeared to be independent of magnetic field
strength or software-hardware combinations used by

the MRI systems.

2. Semi-Automated Metrics

In semi-automated metrics, manual intervention is
not completely eliminated. It may be needed for pur-
poses such as marking a region of interest or giving
intensity bounds or to determine sizes of smoothening
masks. The most clinically popular among these is
SNR, in which the user needs to select the region
of interest and the background.



V.E. HVS-Based Versus Non-HVS-Based
Methods

1. HVS-Based Methods

Methods based on the characteristics and limitations
of the human visual system are highly relevant in any
scenario, more so for medical images because they
are finally inspected and interpreted by the human
eye. The human visual system is very complex and
although it has been well studied, it has not been
adequately modeled analytically. However, attempts
to emulate human visual perception continue to
dominate computer vision-based applications.
Sinha et al.®* utilize a HVS-based metric called
the Structural SIMilarity (SSIM) index* to assess
the quality of rapid MR imaging. The authors use
the SSIM index to compare the closeness of the
reconstructed image to the original. The SSIM index
penalizes loss in structural correlation, intensity, and
contrast. SSIM at location (p, ¢) is given by

SSIM(p,q) = [i(p, 9))*[c(p, 9))°[s(p, q)]”

where /, ¢, and s reward similarities in intensity, con-
trast, and structure, respectively. In circumstances in
which luminance, contrast, and structure are given the
same weight, a, 8,and y are chosen to be equal to 1;
else they are customized based on the application. A
small local neighborhood is chosen to determine the
corresponding point-wise attributes. Here, intensity
factor is given by

2Uiphiq
/J'p2 + »u‘q2
where p, and p, are the average intensities in the

neighborhoods of the two points being compared.
The contrast comparison function is given by

l(p,q) =

c(p,q) = -%2?—03—2
op* + 0y

where 0, and o, are the respective standard deviations.

Standard deviation O is the square root of variance

and is an unbiased estimate of the signal contrast.

The structural comparison function is given by

a.
8(p,q) = _J—%,q‘
p¥q

which turns out to be the correlation (inner product)
between the structures being compared. The struc-
tural comparison is carried out only after intensity
subtraction and variance normalization. The SSIM
score ranges from O to 1, where O represents the
worst and 1 stands for the best quality. The index
is developed based on the assumption that the
structural information of the image is most critical
in determining the perceived quality of the image.
This metric is generally used for image/video quality
assessment. The SSIM index was used on five MR
data sets comprising reduced data undersampled
along Cartesian, spiral, and radial trajectories. The
authors claim that the performance of the metric
correlates well with visual inspection.

Salem and Wilsof'? propose a perceptual dif-
ference model (PDM) that incorporates various
components of the human visual system. Properties
such as maximum and minimum luminance values,
physical pixel size, and viewing conditions (e.g.,
viewing distance and nonlinear gray-level percep-
tion) are incorporated in the model. To assess the
frequency domain properties, the images are filtered
by the human spatial frequency CSF. This is fol-
lowed by processing using Cortex transform and
contrast calculation, thus covering multiple facets
of human visual perception. The PDM attempts to
quantitatively describe the visual differences between
two images when viewed by a human observer. The
PDM model processes two inputs, a reference image
and a degraded “test” image. The output is a pixel-
by-pixel map showing the magnitude of perceived
image differences. These differences are then com-
bined over the entire image or a region of interest
to give a scalar PDM score. To validate their model
for clinical utility, a panel of two board-certified
interventional radiologists were asked to evaluate a
series of keyhole MR images, a £-space subsampling
technique that introduces image blur. Seventy-two
images were randomly selected from a number of
simulated keyhole sequences; these images covered a
broad range of image quality. The first eight images
were used as training images. Each keyhole image
was shown beside the corresponding “gold standard”
full £-space image. Without any knowledge of the
PDM or MSE scores, the two radiologists reached



a consensus and classified the keyhole images as
acceptable, marginally acceptable, or unacceptable
for clinical use. The results have validated the usage
of PDM as a quality metric that mimics human
perception satisfactorily.

2. Non-HVS-Based Methods

Most techniques that are still clinically popular, such
as SNR, CNR, RMSE, and PSNR, are all non-HVS
based because they do not incorporate characteris-
tics of the human visual system. Most of these are
computationally simple and give a fair idea of how
good an image is. However, these techniques can
easily be deceiving because they do not reward or
penalize images holistically. They, however, have the
advantage of being objective and reproducible.

VI. CONCLUSION

In this review, we have examined the necessity of
developing quantitative metrics for MR imaging.
This study deals with the various classes of image
quality metrics used for assessing MR images. Various
applications, advantages, and disadvantages of quality
metrics of MR images have been evaluated under
subjective/objective, automatic/semi-automatic,
region-of-interest/non-region-of-interest—based,
full-reference/no-reference, and HVS-incorporated/
non-HVS classes. Results from various laboratories
have been summarized, and it is concluded that
automated, objective indices that incorporate HVS
and are no-reference metrics are most preferred.

REFERENCES

1.  Boone JM. Radiological interpretation 2020: Toward
quantitative image assessment. Med Phys. 2007;34(11):
4173-9.

2. Price RR, Axel L, Morgan T, Newman R, Perman W,
Schneiders N, Selikson M, Wood M, Thomas SR. Quality
assurance methods and phantoms for magnetic resonance
imaging. Med Phys. 1990;17(2):287-95.

3. Akella NS, Twieg DB, Mikkelsen T, Hochberg FH,
Grossman S, Cloud GA, Nabors LB. Assessment of brain

10.

11.

12.

13.

14,

15.

16.

17.

tumor angiogenesis inhibitors using perfusion magnetic
resonance imaging: quality and analysis results of a phase
I trial. ] Magn Reson Imaging. 2004;20:913-22.
Morris E. Breast cancer imaging with MRI. Radiol Clin
North Am. 2002;40(3):443-66.

Hermier M, Nighoghossian N, Derex L, Berthezéne Y,
Blanc-Lasserre K, Trouillas P, Froment JC. MRI of acute
post-ischemic cerebral hemorrhage in stroke patients:
diagnosis with T2*-weighted gradient-echo sequences.
Neuroradiology. 2001;43(10):809-15.

Beyersdorff D, Taymoorian K, Knésel T, Schnorr D, Felix
R, Hamm B, Bruhn H. MRI of prostate cancer at 1.5
and 3.0 T: comparison of image quality in tumor detec-
tion and staging. AJR Am ] Roentgenol. 2005;185(5):
1214-20.

Freire AR, Mangin JF. What is the best similarity measure
for motion correction in fMRI time series? IEEE Trans
Med Imaging. 2002;21(5):108-21.

Fennema-Notestine C, Ozyurt IB, Clark CP, Morris S,
Bischoff-Grethe A, Bondi MW, Jernigan TL, Fischl B,
Segonne F, Shattuck DW, Leahy RM, Rex DE, Toga AW,
Zou KH, Brown GG. Quantitative evaluation of auto-
mated skull-stripping methods applied to contemporary
and legacy images: effects of diagnosis, bias correction,
and slice location. Hum Brain Mapp. 2006;27:99-113.
Chen BSHH. Quality assessment of high spatial resolution
for MRI. http://ric.uthscsa.edu/personalpages/lancaster/
DI2Projects2003/QAMRI.pdf. Accessed 2010 Feb 9.
Mulkern RV, Forbes P, Dewey K, Osganian S, Clark
M, Wong S, Ramamurthy U, Kun L, Poussaint TY.
Establishment and results of a magnetic resonance
quality assurance program for the pediatric brain tumor
consortium. Acad Radiol. 2008;15(9):1099-110.

Nijm GM, Swiryn S, Larson AC, Sahakian AV. Evaluation
of image quality metrics for comparison of synchroniza-
tion algorithms for cardiac cine MRI. Proc IEEE ICIP.
2008 Oct 12-15; San Diego, California. p. 2260-3.
Salem KA, Wilsof DL. A human vision model for the objec-
tive evaluation of perceived image quality applied to MRI
and image restoration. Proc SPIE. 2002;4791:180-91.
Jiang Y, Huo D, Wilson DL. Methods for quantitative
image quality evaluation of MRI parallel reconstructions:
detection and perceptual difference model. Magn Reson
Imaging. 2007;25(5):712-21.

Duyn JH, van Gelderen P,Li TQ, de Zwart JA, Koretsky
AP, Fukunaga M. High-field MRI of brain cortical
substructure based on signal phase. Proc Natl Acad Sci
USA. 2007;104(28):11796-801.

Rutt BK, Lee DH. The impact of field strength on image
quality in MRI. ] Magn Reson Imaging. 1996;1:57-62.
Piella G, Heijmans H. A new quality metric for image
fusion. Proc IEEE ICIP. 2003;3:173-6.

Nishimura D. Principles of magnetic resonance imaging.
Palo Alto (CA): Stanford University; 1996.



18.

19.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

Hornak JP.The basics of mri, interactive learning software
[textbook on the Internet]. 2010. http://www.cis.rit.edu/
htbooks/mri/. Accessed 2010 Feb 9.

Ruan C. MR1 artifacts: mechanism and control [mono-
graph on the Internet]. http://ric.uthscsa.edu/personal-
pages/lancaster/DI2Projects2003/MRIArtifacts.pdf.
Accessed 2010 Feb 9.

Patton JA, Kulkarni MV, Craig JK, Wolfe OH, Price
RR, Partain CL, James AE Jr. Techniques, pitfalls and
artifacts in magnetic resonance imaging. Radiographics.
1987;7(3):505-19.

PULSAR [homepage on the Internet]. Parallel imaging
utilizing localized surface-coil acquisition and recon-
struction. http://www.ece.tamu.edu/~jimji/pulsarweb/
downloads.htm. Accessed 2010 Aug 19.

Southern MRI [homepage on the Internet]. Motion
artifact image. http://www.southernmri.org. Accessed
2010 Feb 9

MRITUTOR [website on the Internet]. MRI arti-
facts. http://www.mritutor.org/lectures/artifacts508.ppt.
Accessed 2010 Feb 9

Woodard JP, Carley-Spencer MP. No-reference image
quality metrics for structural MRI. Neuroinformatics.
2006;4(3):243-62.

VPEG [homepage on the Internet]. The Video Experts
Quality Group. http://www.its.bldrdoc.gov/vqeg/.
Accessed 2010 Aug 19.

Forbes KP, Pipe JG, Karis JP, Heiserman JE. Improved
image quality and detection of acute cerebral infarction
with PROPELLER diffusion-weighted MR imaging.
Radiology. 2002;225(2):551-5.

Yeh EN. Advanced image reconstruction in parallel
magnetic resonance imaging: constraints and solutions
[dissertation]. Cambridge, MA: Massachusetts Institute
of Technology; 2005.

McGee KP, Manduca A, Felmlee JP, Riederer SJ, Ehman
RL. Image metric-based correction (autocorrection) of
motion effects: analysis of image metrics. ] Magn Reson
Imaging. 2000;11(2):174-81.

Lin W, Ladinsky GA, Wehtli FW, Song HK. Image
metric-based correction (autofocusing) of motion artifacts
in high-resolution trabecular bone imaging.] Magn Reson
Imaging. 2007;26(1):191-7.

Lin W, Ladinsky GA, Wehrli FW, Song HK. Combined
rotational/translational motion correction using auto-
focusing for high-resolution trabecular bone images.
Proceedings of the 14th Annual Meeting of ISMRM,;
6-12 May 2006; Seattle, Washingon; 2006. p. 1702.
Prieto F, Guarini M, Tejos C, Irarrazaval P. Metrics for
quantifying the quality of MR images. Proceedings of

32.

33.

34.

35.

36.

37.

38.

39.

41.

42.

43.

45.

the 17th Annual Meeting of ISMRM; 2009 Apr 18-24.
2009. Honolulu, Hawaii: 2009. p. 4696.

Gardner EA, Ellis JH, Hyde R]J, Aisen AM, Quint
DJ, Carson PL. Detection of degradation of magnetic
resonance (MR) images: comparison of an automated
MR image-quality analysis system with trained human
observers. Acad Radiol. 1995;2(4):277-81.

Chou CH, Li YC. A perceptually tuned subband image
coder based on the measure of just-noticeable-distortion
profile. IEEE Trans Circuits Syst. 1995;5(6):467-76.
Hill A, Mehnert A, Crozier S, Leung C, Wilson S,
McMahon K, Kennedy D. Dynamic breast MRI:
Image registration and its impact on enhancement
curve estimation. Conf Proc IEEE Eng Med Biol Sci.
2006;1:3049-52.

Babu RV, Suresh §, Perkis A. No-reference JPEG-image
quality assessment using GAP-RBF. Signal Processing.
2007;87(6):1493-503.

Aja-Fernandez S, Estepar RSJ, Alberola-Lopez C, Westin
CF. Image quality assessment based on local variance.
Conf Proc IEEE Eng Med Biol Sci. 2006;1:4815-8.
Peli J. Test of a model of foveal vision by using simula-
tions. J Opt Soc Am A Opt Image Sci Vis. 1996;13(6):
1131-8.

Srivastava A, Lee B, Simoncelli E, Zhu S. On advances
in statistical modeling of natural images. ] Math Imag
Vis. 2003;18(1):17-33.

Wang Z, Sheikh H, Bovik A. No-reference perceptual
quality assessment of JPEG compressed images. Proc
IEEE ICIP. 2002;1:477-80.

MITRE [homepage on the Internet]. http://neurcinformat-
ics.mitre.org/imagequality.html. Accessed 2010 Feb 9.
Mortamet B, Bernstein MA, Jack CR Jr, Gunter JL,
Ward C, Britson PJ, Meuli R, Thiran JP, Krueger ‘G;
Alzheimer’s Disease Neuroimaging Initiative. Automatic
quality assessment in structural brain magnetic resonance
imaging. Magn Reson Med. 2009;62(2):365-72.

ADNI [database on the Internet]. Alzheimers Disease
Neuroimaging Initiative ADNI database. http://www
.adni-info.org. Accessed 2010 Feb 9.

Sinha N, Saranathan M, Ramakrishnan KR, Suresh S.
Automatic quality assessment in structural brain magnetic
resonance imaging. Proc IEEE ICIP. 2007;3:149-52.
Sinha N. Strategies for rapid MR imaging [dissertation].
Bangalore, India: Indian Institute of Science; 2008.
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image
quality assessment: from error visibility to structural simi-
larity. IEEE Trans Image Process. 2004;13(4):600-12.



