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Abstract. Functional Magnetic Resonance Imaging (fMRI) requires ultra-
fast imaging in order to capture the on-going spatio-temporal dynamics
of the cognitive task. We make use of correlations in both k-space and
time, and thereby reconstruct the time series by acquiring only a frac-
tion of the data, using an improved form of the well-known dynamic
imaging technique k-t BLAST (Broad-use Linear Acquisition Speed-up
Technique). k-t BLAST (k-tB) works by unwrapping the aliased Fourier
conjugate space of k-t ( y-f space). The unwrapping process makes use
of an estimate of the true y-f space, obtained by acquiring a blurred
unaliased version. In this paper, we propose two changes to the existing
algorithm. Firstly, we improve the map estimate using generalized series
reconstruction. The second change is to incorporate phase constraints
from the training map. The proposed technique is compared with ex-
isting k-tB on visual stimulation fMRI data obtained on 5 volunteers.
Results show that the proposed changes lead to gain in temporal resolu-
tion by as much as a factor of 6. Performance evaluation is carried out by
comparing activation maps obtained using reconstructed images, against
that obtained from the true images. We observe upto 10dB improvement
in PSNR of activation maps. Besides, RMSE reduction on fMRI images,
of about 10% averaged over the entire time series, with a peak improve-
ment of 35% compared to the existing k-tB, averaged over 5 data sets,
is also observed.

1 Introduction

Magnetic resonance imaging (MRI) has emerged as a powerful tool in medical
imaging and diagnosis in the last decade, due to its non-invasive nature and
excellent soft-tissue contrast. Although high spatial resolution images are essen-
tial in medical diagnosis and image analysis, high temporal resolution is critical
in applications like dynamic contrast-enhanced MRI or functional MRI (fMRI),
where dynamic events are monitored. Today, fMRI has the potential to probe
neurophysiological activation in the brain at a much higher spatial resolution
than that offered by other non-invasive neuroimaging techniques like PET. The



high sensitivity measurement of blood oxygenation level dependent (BOLD) sig-
nal modulation points to regions in the cortex responsible for the underlying
activity. Currently fMRI applications interrogate neural activity changes only
on the order of seconds, although neural activity happens on time scales of the
order of milliseconds. One way of increasing the temporal resolution is to recon-
struct high quality images from partial data. Parallel imaging methods can also
be used to achieve accelerated imaging, but they require customized hardware.
Parallel imaging involves utilizing an array of receiver coils with varying coil
sensitivities, instead of a single coil, with homogeneous sensitivity.

In MRI, data is sampled in the spatial frequency domain of the object being
imaged (called k space), directly leading to the well known trade-off between
temporal and spatial resolution. Parallel imaging techniques [1, 2] are gaining
popularity but they require customized hardware. However, partial data-based
reconstruction have no such requirements. Partial data acquisition involves ac-
quiring a pre-determined region in k-space. Many techniques like Keyhole [3],
Reduced encoding Imaging by Generalized series Reconstruction (RIGR) [4],
Two-reference Reduced encoding Imaging by Generalized series Reconstruction
(TRIGR) [5], Unaliasing by Fourier-Encoding the Overlaps Using the Temporal
Dimension (UNFOLD) [6], k-t BLAST [7], that reconstruct images from partial
data, have been reported. Some of the methods use direct replacement, while
others extrapolate the missing values using correlations in k-space and/or time.
Keyhole is the simplest known technique where during the course of dynamic
changes only low frequencies in k-space are acquired, while the unacquired high
frequencies are simply replaced by the corresponding values obtained from a
static high-resolution acquisition. However, discontinuities in reconstructed k-
space lead to artifacts in images, and hence higher acceleration factors cannot
be explored. Methods like RIGR and TRIGR use generalized-series modeling to
estimate the unacquired values in k-space. High resolution static images serve
as estimates to obtain the corresponding values at instants of dynamic changes.
Both these methods linearly fit the unacquired values in terms of the acquired
data, and basically solve a system of linear equations. Reported works using these
methods claim acceleration factors of 4-6. However, methods like UNFOLD and
k-tB are radically different from the above. They employ a sparse acquisition
scheme that results in a known form of aliasing that is eventually unwrapped
either using temporal filtering (UNFOLD) or using a low resolution, alias-free
training map (k-tB). In this paper, we propose changes to two aspects of the
existing k-tB algorithm. Firstly, the estimates obtained from the training map
are improved using generalized series modeling (labelled as RIGR in further ref-
erences). The second proposed change is the incorporation of phase constraints
obtained from the alias-free training map. These two changes together were
utilized for reconstruction of fMRI data sets obtained from a photic stimulation
experiment, and improvements in resulting images were quantified. The overview
of the proposed method is shown in Fig. 1. The paper is organised as follows.
The theory of k-tB is given in section 2, followed by the variations proposed
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Fig. 1. Overview of the proposed method

to the existing technique in section 3. The data used and results obtained are
discussed in section 4. Finally, section 5 concludes the paper.

2 k-t BLAST

k-t BLAST, was proposed by Tsao et. al [7], for reconstruction of dynamic images
using sparsely acquired data. The correlations in both k-space and time are
exploited for estimating the unacquired data. A missing data point is estimated
based on other available points, within its vicinity in both k-space and time. The
advantage of this approach is that it exploits more of the relevant correlations,
thus improving the estimation of missing data. This improvement could be used
to obtain better reconstructed images error or achieve higher reduction in data
acquisition leading to better temporal resolution.

Dynamic MRI can be seen as acquisition of a changing k-space signal at dif-
ferent time instants, which is essentially sampling in a higher dimensional k-t
space. Here, k stands for multi-dimensional k-space. Since we are dealing with
2D k-space, and it is known that all points along the read-out (kx) dimension
are available, we need to undersample only along phase-encode dimension (ky).
Hence, the mention of k-axis would refer to the actual ky axis, whose Fourier
conjugate axis would be the spatial dimension y. The lattice along which these
points are acquired in k-t space is referred to as the k-t sampling pattern. The
conjugate space obtained upon Fourier transformation of the k-t space is the



y-f space. It is observed that the signal distribution in y-f space is very sparse,
especially for fMRI with its temporal periodicity of activated pixels. This fea-
ture can be used to pack y-f space densely allowing higher acceleration factors.
Under-sampling in k-t space leads to an aliased signal distribution in y-f space.
For instance, at a given location (y0, f0) in the aliased y-f space obtained from
the sparsely acquired data, the signal value ρalias(y0, f0) is actually the sum of
the values at (y1, f1) . . . (yn, fn) on the true y-f space signal distribution. The
locations (y1, f1) . . . (yn, fn) in (1) are determined by the k-t sampling pattern.

ρalias(y0, f0) = ρ1(y1, f1) + . . . + ρn(yn, fn) (1)

where, n is acceleration factor.
Unaliasing the aliased y-f signal distribution becomes possible because the

aliasing pattern is completely known once the sampling pattern is fixed. This set
of under-determined system of equations given by (1) needs to be solved for every
set of aliased voxels. Since, infinite solutions exist, the most sensible way would
be to minimize a well-designed cost function. Here, weighted-minimum norm
solution is preferred. This solution makes use of prior information, wherein a
low resolution, alias-free signal distribution is obtained by acquiring the low k-
space frequencies, forming the “training map”. The values of the training map
form initial estimates in order to obtain the solution as given in (2). Note that
the acquisition of the training map data slightly reduces the speed-up effected
by the under-sampling pattern.

ρ = M2.1H(1.M2.1H)−1.ρalias (2)

where, M2 = diag(|m1|2, . . . |mn|2) , and |mi| is the magnitude of the training
y-f map at the ith aliasing location. Here, 1 is the row vector of all 1s, at n
positions. The DC-value however, is separately taken care of, since it is the most
important component. The temporal average of the sparse acquisitions forms the
DC-value of the estimated y-f map.

The new set of equations to be solved is now as in (3).

ρ = ρ + M2.1H(1.M2.1H + ψ)−1.(ρalias − 1ρ) (3)

where, ρ is the baseline estimate (DC-component) and ψ is the noise variance.

3 Proposed Method

3.1 Data acquisition schemes

In the original k-tB scheme [7], the training and actual data acquisitions are
done at disjoint instants of time, and follow different sampling schemes [8]. The
training data samples only low-frequency k-space data, while the actual data
acquisition is along a pre-designed sparsely sampled lattice, as shown in Fig.
2(a). A variation of data acquisition scheme that couples both the training and
actual scans is shown in Fig. 2(b). This is a variable density sampling lattice.
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Fig. 2. Data acquisition (a) Uniform density (Existing) (b)Variable density (Utilized)

This scheme was chosen in order to minimize the mismatch between training and
data scans. This scheme of acquisition reduces the acceleration factor achievable,
but eliminates possible artifacts due to mis-registration. In our trials, we utilized
this variable-density sampling scheme.

3.2 Training map

The reported work of Hansen et al [9], deals with how the quality of training
data influences the working of k-tB, in contexts where training and actual data
are acquired at disjoint instants of time. It reports that increasing the number of
time frames for which the training data is acquired, results in only a negligible
decrease of reconstruction error. It also reports that filtering of the training
data in order to reduce truncation artifacts had minor impact on reconstruction
errors. However, in a variable-density acquisition scheme like ours, training data
is available at all time frames of the experiment. We explored the impact of
including higher frequencies in the training data, on the working of k-tB. We
compared k-tB reconstructions that use low resolution training data against k-
tB reconstructions that use all the frequencies (ideal training) in the training
map. It is seen that the errors can be brought down using higher frequencies in
the training map, by a factor of 2. The disparity in the two reconstructions led
us to explore the possibility of obtaining an improved resolution training-map
using the acquired low frequencies. It must be observed that at locations in the
aliased y-f space, where the signal is dominated by noise, the values from the
training map that are chosen as estimates, can lead to meaningful results only
if the estimate is close to the truth.

3.3 Proposed variations to k-tB

The proposed method generates an improved-resolution training map, despite
acquiring only the lower spatial frequencies. This is done by extrapolation using
the generalized series model, which requires one full-resolution acquisition. The
high-resolution static acquisition serves to estimate the missing high-frequencies
in the training map. The working of the generalized series modeling is outlined
below.

Generalized series modeling : In generalized series modeling, the missing
high spatial frequencies is split into two components as shown in (4). The first



part comes from the apriori static information, whereas the second part comes
by adaptively adjusting the coefficients so that data consistency is maintained.

dGS(k) = dc(k) +
∑
m

cmdc(k −m.∆k) (4)

where, dGS is the Generalized series estimate, dc is the Fourier transform of
the static image, cm are the generalized series coefficients and ∆k refers to the
spatial-frequency resolution. A fast version of this algorithm outlined in [5] is
used for implementation. After this extrapolation, it follows that the deviation of
the training data from the ideal, full k-space training data decreases. We expect
better training data to translate to better training maps in y-f space.

Phase constraints : The second change proposed is the incorporation of phase
constraints from the training map. The training map, though not of best possible
resolution, however does contain unaliased signal distributions. In (3), as given
in the original k-t BLAST proposition, the phase of the aliased y-f map is used,
which would be erroneous. Hence, we use the phase information of the training
map in estimating the true y-f map.

Θ = 6 ρtrain (5)
ρ̃ = |ρ| exp(iΘ) (6)

where, ρ̃ is the final estimate of the signal distribution in y-f plane. ρtrain is the
training map.

4 Results and Discussion

4.1 Data description

fMRI data was obtained for experiments with “visual stimulus” While a sub-
ject performed the experiment, 3 two-dimensional T*2-weighted images, each
with 64 scans, were acquired using a gradient-echo FLASH sequence (TE/TR
40msec/80.5msec, matrix = 128 × 64; The image matrices were zero-filled to
obtain 128 × 128 images with a spatial resolution of 1.953 × 1.953 mm; slice
thickness = 5-mm and 2-mm gap). The corresponding two-dimensional anatom-
ical slices were also acquired with a T1-weighted IR RARE sequence (TI = 900
msec; TE/TR 3900msec/40msec, matrix = 512 × 512) in the same experiment
session. In all experiments, ON and OFF stimuli were presented at a rate of
5.162 sec/sample. Each stimulation period had four successive stimulation ON
states followed by four stimulation OFF states. The stimulations were repeated
for eight cycles (total experiment time = 5.5 min), and experiments were car-
ried out at different sessions with different subjects. The visual stimulation task
comprised an 8-Hz alternating checkerboard pattern with a central fixation point
projected on a LCD system. The subjects were asked to fixate on the point dur-
ing stimulations. Images were acquired at three axial levels of the brain at the
visual cortex.



4.2 Performance evaluation

fMRI images are mainly studied for the activation maps which interpret the in-
formation contained in the entire time series of images. Hence, to evaluate the
reconstruction performance, we compare the activation maps obtained against
the reference activation map. Statistical Parametric Mapping (SPM) is the most
widely used method for fMRI time-series analysis [10]. The software package
SPM2, that implements SPM, downloaded from [11], was used for analysis. The
primary objective is to detect activated voxels and the resulting statistical para-
metric maps represent the activation strength of each voxel. The scale of the
activation-strength obtained is important, since the activation maps are eventu-
ally thresholded to obtain truly activated regions. Hence when drastic changes
in the scales of activation-strength are observed, the activation maps are consid-
ered degraded. Root Mean square error (RMSE), correlation with reference, and
mean activation level of the activation maps are used to quantify the degradation
in activation. If we analyze the true image time series A and the reconstructed
series B, using same SPM method and parameters, we expect comparable scales
in activation strength at similar locations, in the resulting statistical parametric
maps SA and SB . fMRI time-series are first realigned to remove movement ef-
fects using least-squares minimization [10] and then smoothed with Full Width
at Half Maximum (FWHM) = 4.47mm, 3D Gaussian kernel to decrease spatial
noise. Canonical hemodynamic response function (HRF) plus time and disper-
sion derivatives is used as basis function and changes in BOLD signal associated
with the task were assessed on a pixel-by-pixel basis, using the general linear
model and the theory of Gaussian fields as implemented in SPM2. This method
takes advantage of multivariate regression analysis and corrects for temporal and
spatial autocorrelations in the fMRI data. Voxels in the statistical parametric
map based on F-contrast below a threshold of p ≤ 0.05 are identified as ac-
tivation, which was corrected for multiple comparisons using family-wise-error
(FWE).

4.3 Experimental results

MATLAB was used for all simulations. For our trials, the training and actual
acquisitions were generated from the full resolution true k-space, by using the
appropriate sub-sampling masks. The images of training as well as sparse y-f
maps are shown in Fig.3(a and b, respectively). As claimed earlier, it can be
seen that the signal distribution in y-f space is very compact, thus leading to
possibilities of achieving higher acceleration factors. In Fig.4 (a), the deviation
of the training data with respect to the ideal data is shown in 2 cases. In the first
case, the training data is simply zero-padded as in the existing (baseline) k-tB,
where as in the second case, the obtained low frequencies are RIGR-extrapolated
(proposed). Clearly, the RIGR-extrapolated data is seen to be closer to the truth.
In Fig.4 (b), we compare how the gains of Fig.4 (a), translate in the y-f space. It
can be observed that the RIGR-extrapolated training map is close to the training
map that would have been generated had all the frequencies been available for



(a) (b)

Fig. 3. Typical y-f maps obtained for acceleration factor 5 using (a) Training data (b)
Actual data

training (ideal/full training) and is more accurate than the zero-padded map that
the original k-tB algorithm uses. In Fig. 5 (a), we see errors in the reconstructed
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Fig. 4. Errors for acceleration factor 5 in (a) Training k-space data (b) y-f -Training
map

y-f plane as compared to the true y-f plane. The three cases compared are :
The training map being ideal (full training), zero-padded (baseline k-tB) and
RIGR-extrapolated (proposed). It can be seen that the RIGR-extrapolated case
results in lower errors compared to the zero-padded case, consistently for all
instants of the time series. In Fig. 5 (b) the time series of errors in RMSE,
incurred during image reconstruction in all the three cases outlined above, is
shown. It can be seen that the RIGR-extrapolated case and the ideal training
map case, are quite comparable, while both consistently outperform the baseline
k-tB reconstruction. Fig. 5(c) shows the decline in correlation of the obtained
activation map with the reference map, against acceleration factor.

In Fig.6, we observe the activation maps obtained using the two methods, for
a gain of factor 5 in temporal resolution. Clearly, the map obtained using Baseline
k-tB displays more artifacts than the proposed method. We also observe that
the gain in PSNR goes upto 10dB. The RMSE of the fMRI time series reduces
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Fig. 5. Reconstruction errors for acceleration factor 5 in (a) y-f map (b) Image series
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Fig. 6. Thresholded Activation maps obtained using SPM for acceleration factor 5 (a)
True Images (b) Proposed method (c) Baseline ktB

by about 10% averaged over all time points, with a peak improvement of 35%
compared to the existing k-tB for acceleration factors upto 6. For acceleration
factor of 6 we notice that the scales of activation maps obtained using baseline
k-tB are lower by a factor more than 10, and hence it is not possible to threshold
them to see activated regions. On the other hand, the proposed method results
in activation maps that are lower by a factor 2 and hence activated regions
can be seen at lower thresholds. At accelerations above 6 we notice significant
degradation in the strength scales of the activation maps, and hence do not
consider them.

We also carried out trials where only one of the two proposed changes were
made to the existing algorithm. We first chose to extrapolate training data and
skip the incorporation of phase constraints. It was observed that the resulting
reconstructions did not show much change when compared against the case where
zero-padded training data was used. In this case, we know that the best possible
reconstruction achievable is what results out of using the ideal training set. In the
next trial, we retained the zero-padded training map, and incorporated only the
phase constraint. It was seen that this worsens the performance of the baseline
k-tB, since the phase map imposed is a blurred version of the original. Hence, it is



observed that incorporating both changes leads better reconstruction compared
to the baseline k-tB.

5 Conclusion

In this paper, we have proposed an improved version of the existing dynamic
imaging technique k-tB. The changes include improvement in the training map
that serves as an estimate to obtain the true signal distribution. The other
proposed change is the utilization of the phase-constraints from the training map,
rather than the aliased map. Trials on real fMRI data have shown that these
2 changes together lead to improved reconstructions and acceleration factors
of upto 6. The reconstruction performance is evaluated using activation maps
obtained. We observe upto 10dB improvement in PSNR of activation maps. The
proposed technique results in more accurate activation maps and also the image
time series incurs mean RMSE of less than 10% averaged over the entire time
series, for acceleration factors upto 6.
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