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Abstract—We describe a method for identifying and classifying 

acid-fast bacilli (AFB) and their associated morphotypes in the 

microscope-images of Ziehl-Neelsen stained sputum smears, in the 

context of tuberculosis (TB) screening by image processing. The 

importance of our work stems from the fact that the 

transformation of the classical rod-shaped AFB into certain other 

shapes is said to be related to TB drug-resistance. The first stage 

of processing involves color-segmentation in the HSV space by 

using Neural Networks and RUS-Boosted Decision Trees. The 

latter is used to alleviate the effects of class-imbalance between the 

pixels belonging to the AFB and the background. The second stage 

involves categorizing the bacilli into regular rod-shaped ones 

(possibly beaded), their morphotypes (“V-shaped” or “Y-shaped” 

bacilli), and clumps. The main, and novel contribution in this 

paper involves identifying and classifying the bacterial 

morphotypes. For that purpose, we propose and investigate three 

different methods: The first involves assuming the morphotypes to 

be letters of the English alphabet, and using a letter-recognition 

technique based on the Hotelling Transform and the Discrete 

Cosine Transform on the color-segmented bacilli. The second 

method uses moment-based invariants on the silhouettes, 

boundaries and skeletons, respectively. We use Support Vector 

Machine and Weighted K-NN classifiers in both the cases. In 

addition, we describe a new method based on the ends of the 

skeleton. Experiments on 72 images of sputum-smears revealed 

that the skeleton-based approach performed better than the other 

methods.  
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I.  INTRODUCTION 

Tuberculosis (TB) is a highly infectious disease that affects 
the lungs or other parts of the body, and is a significant cause of 
death. In the recent past, drug-resistant TB forms – Multi-Drug 
resistant TB (MDR-TB) and Extensively-Drug resistant TB 
(XDR-TB) have been a major bottleneck in the progress made 
by TB-health care professionals. In 2014, an estimated 9.6 
million TB cases were incident and 1.5 million people died from 
the disease. India alone accounts for about 2.2 million incident 
cases (2.2% MDR-TB) and 220,000 deaths [1].  

Sputum smear microscopy – in particular, the low cost and 
highly-specific ZN-stained screening technique is still preferred 
in “high-burdened” countries to detect the presence of tubercle 

bacilli. In the recent times, Xpert MTB/RIF – an automated and 
non-invasive molecular diagnostic test is being adopted to detect 
MDR and XDR-TB. However, only 121 Xpert MTB/RIF 
equipped centers are currently operating in India [1], which is 
insufficient to serve the large volume of cases in the country. 
Consequently, sputum smear microscopy is still widely used 
towards speedy examination. 

Several groups have worked extensively on automated 
detection of AFB in the context of ZN-stained sputum smear 
microscopy. A comprehensive literature review may be found in 
our previous work [2]. While many of them are limited to the 
detection of the classical rod-shaped AFB, [2] and [3] were the 
first to handle beaded appearance of tubercle bacilli. Note that 
the beaded appearance of AFB is due to changes in the levels of 
Mycolic acid present in the cell walls, and is linked to the 
virulence of the organism [4]. Another factor indicating the 
degree of virulence, is the presence of clumps (aggregates of 
bacilli that overlap or are close to each other), and were handled 
by the methods outlined in [2] and [5]; clumps occur due to the 
hydrophobic property of Mycobacterium tuberculosis [6]. More 
recently, our research group proposed a method of 
differentiating clumps and staining artefacts through texture-
measures [7].  

Typically, AFB are either rod-shaped (or slightly curved) 
with an average length and width of 4 μm and 0.4 μm, 
respectively [8]. Contrary to popular belief, variations in the 
shape of tubercle bacilli have been documented by 
Microbiologists, as early as in 1883 [9], [10]. However at that 
time, the claims were severely criticized and dismissed as 
‘Staining artefacts’ [11]. Today, with the help of advanced 
imaging techniques such as Transmission Electron Microscopy 
(TEM) and Atomic Force Microscopy (AFM), it has come to be 
known that the tubercle bacilli do not always appear in the rod 
form [12]. In particular, [8] have shown the changes in the shape 
and size of AFB through TEM and AFM, and grouped them into 
various form factors including, “V-shaped”, “Y-shaped”, 
“Ultra-virus like” and “Spore-like” bacilli. Specifically, they 
report that the “V-shaped” bacilli occur due to snapping post-
fission movements, wherein one or both the daughter cells 
abruptly swing around subsequent to the cell-division, thereby 
causing the distal arms to come closer while still remaining 
attached at the proximal end. Tubercle bacillus is also known to 
take on a “Y” shape with branches of greater length produced 
along its cylinder in XDR-TB [13]. Few people have actually 



acknowledged the presence of these morphotypes in the context 
of automated detection of tubercle bacilli through light 
microscopy – [2] and [14] reported the presence of “V”, “Y” and 
“T” shaped bacilli but did not categorize them explicitly, and the 
method in [15] labels them as ‘Non-bacilli’. More recently, [16] 
reported on the morphological characterization of AFB, though 
based on Microscopic Observation Drug Susceptibility (MODS) 
assay – a culture method that takes about 7-10 days to obtain a 
result.  

In this paper, we propose a method that not only identifies 
tubercle bacilli and counts them, but also that categorizes its 
morphotypes i.e. “V” or “Y” shaped bacilli. The benefits of such 
a method are two-fold: Automatic counting of AFB is useful to 
evaluate the grade of TB, and identification of morphotypes 
highlights possible drug-resistance. Our scheme involves color-
pixel classification in the HSV space through a neural network. 
In addition, we recognize the problem of ‘Class Imbalance’ 
associated with the pixels belonging to the bacilli and the 
background, and alleviate the effects of the same by using 
Random Undersampling (RUS) Boosted Decision Trees. 
Subsequently, we use the methods [2] to handle beadedness and 
clumps. The results of colour segmentation and subsequent 
counting of AFB are evaluated and compared with the results in 
[2] through appropriate measures. Further, we propose and 
compare three different methods of identifying the TB-
morphotypes. The first method involves the Hotelling 
Transform, followed by the retention of significant DCT 
coefficients as features. The next method utilizes moment-based 
invariants on the silhouettes, boundaries and skeletons of the 
binary version of bacterial morphotypes. In both the cases, we 
use SVM techniques and a weighted K-NN classifier to 
categorize the shapes. Finally, we propose a skeletonization of 
the aforementioned shapes followed by counting the number of 
end-points, to characterize the morphology of AFB. A flowchart 
of the methodology is provided in Fig. 1.  

The rest of the paper is organized as follows: Section II 
describes color-pixel classification, and the subsequent 
procedures to handle beadedness and clumps. Section III 
describes categorization of bacterial morphotypes. Section IV 
presents the results of our methods on real data. Section V 
highlights the important contributions and future work.  

II. MATERIALS AND METHODS 

A. The Dataset 

The dataset comprises of images of size 1550 x 2088 (with a 
pixel size of 3.45 μm x 3.45 μm) captured from a Leica DFC 320 
camera-attached microscope. The microscope has a 100x 
objective with a magnification of 10x for the lens. The images 
are standardized by keeping the exposure time, color saturation 
and gain fixed at 6.44 ms, 1.55x and 1.3x, respectively. We have 
used 36 images of smears associated with more than 12 patients 
to build our database for color-pixel classification. The results 
of color segmentation and counts of AFB, are generated on 20 
separate images.  Furthermore, we have acquired 72 new images 
with the aforementioned specifications, containing 72 “V-
shaped” and 46 “Y-shaped” bacilli for the purpose of identifying 
and classifying TB morphotypes. 

 

Fig. 1. Flowchart of the proposed methodology 

B. Color-Pixel Classification 

We perform color-segmentation in the HSV color space, 
since this model is close to the way humans perceive color. 
Moreover, the distribution of pixels (in terms of H, S and V) of 
the bacilli and those of the background were found to be fairly 
separate in this space. The HSV parameters can be obtained 
from RGB images through well-known formulae. Subsequently, 
we view the color segmentation of the candidate AFB as a non-
linear binary classification problem and propose two methods 
for addressing the same: 

1)  Artificial Neural Networks (ANN): ANNs are 

particularly suited to handling non-linear classification 

problems, since they comprise various non-linear functions. 

Specifically, we use a supervised 1-hidden layer Back 

Propagation Network that utilizes the hyperbolic tangent 

function at all layers, and the Scaled Conjugate Gradient 

technique as the optimization criterion. The hyperbolic tangent 

function is chosen due to its asymmetric shape (useful for faster 

training) and its ability to output negative values (useful in data-

normalization) [17].  

 

2) Random Undersampling (RUS)-Boosted Decision Trees: 

RUS-Boost was first designed in [18] to handle ‘Class 

Imbalance’ i.e. when, in a training set, samples associated with 

one class greatly outnumber samples available in the other 

class(es). The logic behind the technique lies in the fact that the 

data points belonging to the minority class are most likely to be 

wrongly classified and consequently deserve greater chances of 

being selected for training in the following iterations. The data 

used in this paper happens to be a good example of class-

imbalance. The training data set associated with the TB-Objects 

consists of 50,000 pixels, whereas that of the background 

contains roughly 1 million pixels. This motivated us to perform 

boosting on Decision Trees, through resampling of the training 

set. Not surprisingly, RUS Boosted Decision Trees performed 

the best among all the other classifiers on our dataset.  

 

We have also implemented the minimum Mahalanobis 

distance classifier and the Decision Trees in order to compare 



the results with our prior work [2,7], which handle beadedness 

and clumps. We assess the efficacy of our color-pixel 

classification through Common/Difference Rates [19] after 

using the reference image created with the help of an 

experienced microbiologist.  

C. Post-Color Segmentation Procedures 

The output of the aforementioned color-pixel classifiers is a 

binary image consisting of many AFB regions including 

misclassified pixels (result of classification-error or debris). We 

use our criteria in [2] to reject noisy blobs (blobs with area ≤ 30 

pixels). Moreover, in [2] we had proposed an algorithm, named 

as “Proximity Test” to handle Beadedness and “Proximity-

Grouping” – a method using information on the proximity of 

parts of a bacillus, and area constraints – to categorize AFB into 

Individual, Beaded and Clumped Bacilli. We had specified the 

following ranges for area (in number of pixels): Individual 

Bacilli (say R1) = [150, 900], Beaded Bacilli (R2) = [400, 900], 

Clumps (R3) = [>900]. However, we found R1 = [150, 1120], R2 

= [350, 1120], R3 = [>1120] to be more accurate. At this stage, 

we are able to produce the counts of AFB, useful in evaluating 

the grade of the disease. We use the measure “percent-correct” 

proposed by us in [2], to evaluate the efficacy of the algorithm 

in terms of AFB-counts. 

III. CATEGORIZATION OF TB-MORPHOTYPES 

The classification of TB-Morphotypes into being “V-
shaped” and “Y-shaped” bacilli is new, and forms a major 
contribution of this paper. We were able to identify 118 samples 
of Morphotypes – 72 “V-shaped” and 46 “Y-shaped” bacilli of 
which, we keep 50 of the former and 32 of the latter for training 
(70%), and the rest for testing (30%) purposes. We propose three 
methods for classifying the same, and compare them at the end.  

A. A Handwriting Recognition Technique 

The bacterial morphotypes resemble the English alphabets 
“V” and “Y”, respectively. Consequently, one may exploit 
handwriting-recognition techniques to classify the morphotypes. 
First, the binary image, obtained after color-pixel classification, 
is subject to procedures outlined in Section II-C. The 
components of each of the beaded bacilli are clubbed together 
by morphological closing. Next, the blobs are subject to 
connected-component labeling and the Eccentricity for each 
blob is found. The method in [14] specified the lower-limit of 
Eccentricity for the classical rod-shaped AFB as 0.9. Hence, we 
exclude rod-shaped bacteria from further analysis by 
considering only those blobs having eccentricity below 0.9. 
Subsequently, the following steps are executed: 

1) Find the bounding-box associated with each of the 

connected components (blobs). Rescale the blobs to fit a square 

box of size 32 x 32 – as suggested in [20] in an effort to produce 

the best classification. Bilinear interpolation is used for the 

purposes.   

2) Perform Morphological ‘hole-filling’ to fill any possible 

holes in the rescaled binary image.  

3) Apply the Hotelling Transform on the locations of the 

pixels in the ‘letter’ under consideration, to align them spatially 

in the direction of the principal-data-spread. The Hotelling 

Transform is given by: 

 y = A(x − mx) (1) 

where y is the transformed data and A is the transformation 

matrix whose rows are the normalized eigenvectors of the 

Covariance matrix formed from the pixel locations of the 

morphotype. The data is mean-centered before transformation 

and the eigen-vectors are used to construct the principal-

components transformation matrix.  

4) Subsequently, use the Discrete Cosine Transformation 

(DCT) coefficients as features for classification of the 

‘character’. Specifically, [20] suggest to retain only 15% 

(roughly 154) of the DCT coefficients obtained through the zig-

zag method used in the well-known JPEG compression 

technique [20]. 

5) Finally, store the features obtained from Step 4 as 

training vectors for subsequent classification. Therefore, each 

morphotype is now represented by a 1 x 154 vector.  

Steps 1-5 are performed for both the ‘V’ and the ‘Y’ shaped 

bacilli. The SVM classifier with a Linear Kernel (LK), 

Quadratic Kernel (QK), Radial Basis Function (RBF) Kernel  

and an inverse-squared Mahalanobis distance weighted K-NN 

classifier  – are used for classification.  

B. Moment-based Invariants 

 Moment-based invariants are well-established features for 
classifying objects in images. In this paper, we first follow Steps 
1-2 outlined in the preceding section to obtain the binary image 
(Silhouette) of the morphotype and store it for further 
processing. In addition, we trace the boundary of the blob using 
the Moore-Neighbor tracing algorithm modified by Jacob’s 
stopping criteria [21]. Finally, we also extract the skeleton of 
each of the blobs [21], since it sufficiently represents the shapes 
“V” and “Y” under consideration. Subsequently, we compute 
moment-based features invariant to translation, rotation and 
scaling [22], on each of these three image sets to obtain the 
Silhouette Moments, Boundary Moments and the Skeleton 
Moments, respectively. These form the features for 
classification through the SVM-LK, SVM-QK, SVM-RBF and 
the weighted K-NN classifiers.  

C. Skeleton-end-points 

 In this method, we use the topology of the morphotype as a 
distinguishing shape descriptor. We first follow Steps 1-2 
outlined in Section III-A, and then perform skeletonization [21] 
on the rescaled version of the morphotype. Note that, the 
skeleton may contain ‘spurious’ branches due to intra-variations 
in the shape of the morphotype. These branches can be pruned 
to reveal the underlying topology of the morphotype. The steps 
in the method are: 

1) Skeletonize the rescaled version of the morphotype. 

2) Locate the end-points and the nodes of the skeleton by 

counting the number of 8-connected neighbors for each point in 

the skeleton. The points along the skeleton have precisely 2 

neighbors, and the nodes have more than 2 neighbors whereas 

the end-points have only one neighboring pixel.  



3) Prune the spurious branches of the skeleton by starting at 

the end-points and removing touching pixels until a node is hit. 

In our case, we remove 6 touching pixels from the end-points. 

The value was found empirically for a size of 32 x 32.  

4) Finally, locate and count the number of end-points in the 

pruned skeleton. If the number of end-points are 2, then the 

morphotype is classified as a “V-shaped” bacilli, and if the 

number of end-points are 3, then it is categorized as a “Y-

shaped” bacilli. Morphotypes having more than 3 end-points 

are categorized as “Ambiguous” bacilli.  

 

The method is based on the way humans identify the 

alphabets “V” and “Y” i.e. by counting the number of its end-

points. Moreover, the method does not depend on the position 

or rotation of the morphotypes.  

IV. RESULTS 

A. Color-Pixel Classification 

Each pixel within a candidate AFB is characterized by 3 
features i.e., the values of H, S, and V. A pixel is classified as 
belonging to a bacillus or the background through Neural 
Networks and RUS-boosted Decision Trees. Note that, we have 
also used the Minimum Mahalanobis distance (MMD) classifier 
and Decision trees (DT), towards comparing the performance 
with our prior work [2,7]. All the classification models were 
optimized using the 10-fold cross-validation technique. A 
manual count of the AFB under the supervision of a 
microbiologist provided the ground truth for validation.    

Two samples of ZN-stained sputum smear images and the 
corresponding results after color-pixel-classification, are shown 
in Fig. 2. The color-pixel classifiers are evaluated by the 
Common & Difference Rates (X-axis) as shown in Fig. 3. The 
Minimum Mahalanobis distance classifier had the lowest 
Common Rate (fewest number of pixels correctly identified). 
However, it did not produce too many false positives (low 
Difference Rate). The Neural network was better than the MMD 
and DT in terms of Common Rate, but produced a few false 
positives – as indicated by the Difference Rate. RUS-Boosted 
DT not only had the highest Common Rate, but also had the 
highest Difference Rate – an indication that it was very sensitive 
to any object similar in colour to AFB. Nevertheless, it had the 
highest Delta-Rate among the classifiers and therefore, is 
adjudged to be the best colour pixel classifier. Note that, we 
subsequently eliminate any noisy pixels as mentioned in Section 
II-C.  

RUS-Boosted DT also performed the best in detecting AFB 
as shown in Table I using the Percent-Correctness formula 
introduced in [2]. A plot of the AFB counts, associated with 
different images, is shown in Fig. 4.  

B. Categorization of TB-Morphotypes 

Two samples of the “V-shaped” and the “Y-shaped” bacilli 

are shown in Fig. 5, along with their aligned-versions after 

having applied the Hotelling transform. Subsequently, methods 

mentioned in Section III-A and III-B are followed. The results 

are shown in Table II. The method based on moment-based 

invariants of the morphotype skeleton performed the best. A 

sample of “V-shaped” and “Y-shaped” bacilli along with their 

pruned skeletons are shown in Fig. 6. The counts of the 

morphotypes after counting the end-points of the pruned 

skeleton are shown in Table III.  

 

   
 

   
 

   
Fig. 2. (Top): The original images. (Middle): Color-pixel classification: Neural 

Network. (Bottom): Color-pixel classification: RUS-Boosted Decision Trees 

 
Fig. 3. Common/Difference Rate for different Color pixel classifiers 

 
TABLE I.  Percent-Correctness of the detection of AFB 

Colour-Pixel 

Classifiers 

AFB (Beaded and 

Unbeaded) 

Beaded AFB 

RUS-Boosted DT 96 92.3 

Decision Trees 95.5 76.4 

Neural Networks 93 72.2 

MMD 81 92.8 

 

Fig. 4. AFB counts across different images.  

X-Axis 

Y-Axis 



TABLE II.  PERFORMANCE OF THE CLASSIFIERS ON THE TB 

MORPHOTYPES 

Features 
CLASSIFIERS 

Accuracy (%) 

Sensitivity (%) 

Specificity (%) 

Linear 

SVM 

Quadratic 

SVM 

RBF-

SVM 

Weighted-

KNN 

Handwriting 

Technique 

75 

66.6 

81.8 

60.8 

51.2 
65.8 

65.8 

68,4 
65.3 

NAa 

Silhouette 

Moments 

66.9 

65.2 
67.4 

59.3 

47.6 
65.8 

63.6 

57.9 
64.6 

73.7 

71.4 

74.7 

Boundary 

Moments 

70.3 

62.8 
74.7 

80.5 

73.5 

85.5 

69.5 

63.2 
72.5 

72.9 

65.2 
77.8 

Skeleton 

Moments 

76.3 

72.5 
78.2 

82.2 

80.5 

83.1 

81.4 

90 

78.4 

78 

76.3 
78.8 

a. The covariance matrix associated with the Mahalanobis distance could not be inverted.   

      

      

Fig. 5. (Left & Right): 2 samples of “V-shaped” and “Y-shaped” bacilli & 

their corresponding aligned versions after the Hotelling Transform. 

   

   
Fig. 6. (Left): The original morphotypes. (Middle): After skeletonization. 

(Right): After removing spurious branches 

TABLE III.  COUNTS OF TB-MORPHOTYPES USING METHOD III-C 

TB-Morphotype Manual Count Computer 

Estimate 

Accuracy 

(%) 

V 72 68 94.4 

Y 46 43 93.4 

 

V. CONCLUSION AND FUTURE SCOPE 

An automated algorithm has been developed to detect AFB 

and their associated morphotypes in images of ZN-sputum 

smears. The results of color-pixel classification and subsequent 

AFB counts, were compared and evaluated quantitatively. 

Subsequently, the morphotypes were handled using three 

different methods, and the method based on counting the ends 

of the skeleton gave the best results. In the future, we intend to 

work on images containing other morphotypes such as “Ultra-

virus like” and “Spore-shaped” bacilli – which we have not 

encountered so far.  
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