Polarization-rich continuous wave direct imaging:

»+ Modeling and visualization
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We report a study and comparison of continuous-wave, optical polarization difference imaging (PDI) and
polarization modulation imaging (PMI) for imaging through scattering media. The problem is cast in the
framework of a theoretical estimation, and the comparison is based on three visualization parameters,
namely, the magnitude, the degree, and the orientation of the polanization. We show that PDI is superior
in estimating the first two parameters in active imaging under specific conditions, while the PMI is
suitable for passive imaging and is the only way to estimate polarization orientation. We also propose new
schemes for rendering polarization information as a color image and for applying the newly introduced
polarization-orientation imaging for segmentation. Simulation and experimental results verify the the-
oretical conclusions. © 2006 Optical Society of America
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1. Introduction

In direct optical imaging, the sole aim is to use only
unscattered light for imaging.! The criteria for re-
jecting and accepting different parts of the radia-
tion as scattered and unscattered vary and give rise
to different imaging schemes. In this study we con-
sider only continuous-wave, direct imaging schemes
that use linear polarization of the received radia-
tion to discriminate the unscattered from the scat-
tered part of the radiation. Part of this study was
reported earlier.2 Here we extend our earlier study
and report new imaging and visualization schemes
and applications. From this study, parallels can be
drawn with the case of circular polarization.

In many schemes one subtracts sets of copolarized
and cross-polarized images or their scaled versions to
obtain the image that corresponds to the unscattered
component of light34 and hence belong to the class of
polarization difference imaging (PDI). There are other
schemes that use polarization modulation followed by
sinusoidal estimation®® and achieve the same goal.
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These schemes belong to the category of polarization
modulation imaging (PMI). These schemes are used to
measure either the intensity of polarized light [polar-
ization intensity imaging (PID} 3¢ or the degree of lin-
ear polarization” (DOLP) of the received radiation.34
PDI has been shown to be capable of measuring these
parameters.3* PMI has been used only for PII, al-
though, as we show, it can also be used for estimating
the DOLP and for estimating the orientation of a lin-
early polarized source. Further, PDI is useful for both
active and passive imaging, whereas PMI, described in
Refs. 5 and 6, is useful only for active imaging.
However, we can make PMI suitable for both active
and passive imaging by keeping the plane of polariza-
tion of the incident light fixed and allowing the ana-
lyzer to rotate. Then we can observe that PDI becomes
a particular case of this modified PMI scheme if images
are captured at angular displacements of ©/2 of the
analyzer. The frequency of the sinuscid that results
from unscattered light will be half the sampling rate;
i.e., only two points of the sinusoid will be sampled
per period. If one of the sampled points (images) is
chosen to be at the maximum of the sinusoid (the
copolarized image), the next sample will be at the
minimum of the sinusoid (the cross-polarized image).
Thus we can get PDI data by properly choosing the
sampling point in the modified PMI scheme. Hence
PDI is a particular case of the more versatile PMI.
Heneeforth, all references to PMI will essentially re-
fer to this modified PMI scheme. Using PMI schemes
we can estimate polarization orientation (PO) infor-
mation by estimating the phase of the received sinu-
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soid, which can be achieved with PII data. This
visualization parameter is useful for isolating various
linearly polarized sources that may exist in a scene.
We identify the corresponding imaging as polariza-
tion orientation imaging (POI).

2. Signal Modeling
As we observed, it is sufficient to model the data
obtained by PMI because we can easily obtain PDI
data from the same data. We model the observed
data (images obtained) by using the Stokes vectors
(SVs).7-? In general, the SVs recorded at a pixel loca-
tion of a CCD camera by use of any polarization-
based optical imaging can be represented as }(I,)
QXUNY, H where () represents the spatiotempo-
ral averaging over the CCD pixel area for a period
equal to the integration time of the CCD. We make a
realistic assumption that the CCD integration times
are usually large compared with the coherence times
of the sources,!® and hence, by virtue of the central
limit theorem, the spatiotemporally averaged SVs re-
corded during different subintervals can be assumed
to be Gaussian independent and identically distrib-
uted (iid) random variables.10

Though this assumption seems reasonable for most
of the experimental data collected, in some cases data
revealed an underlying colored noise that could be
adequately modeled by an autoregressive noise, AR1.
Hence in our model we do not assume that the
noise is white. By Malus’s law? if light with SV
S, = [LQU.V.J' is incident onto a linear polarizer
whose polarization axis subtends an angle 6 from the
horizontal, the intensity of the output SV is related to
the input parameters by

I, = Y(I, + Q, cos 20 + U, sin 29). 1)

Thus the intensity recorded at an arbitrary pixel lo-
cation at the nth step of acquisition of PMI can be
represented as

ILny=Y2(l, + Q, cos 20, + U, sin 26,) + v(n),

n=0, ,N-1, (2)
where 0, is the angle made by the analyzer with
respect to the horizontal at the nth step and v(n), in
general, represents colored noise. Assuming that the
rotating polamid takes M steps to complete exactly
one rotation, 0, is incremented by 2wc/M with each
step of the polarond. Suppose that we start grabbing
images with an arbitrary orientation & of the rotating
polaroid. Then the intensity recorded at the nth step
can be represented as

1[ ———  (4mn
Liny=3 [I, +1Q,2+ U} sm(—M—- +20+ a)]

+v(n), @
where a = arctan(Q,/U,).
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We observe from Egq. (3) that the component of the
intensity that is independent of the orientation of
the analyzer is I,/2, which corresponds to the diffuse
part of the scattered light. The amplitude of the si-
nusoidal part, i.e., (Q,2 + U,%)"*/2, corresponds to the
unscattered component that would be polarized and
hence is a measure of the magnitude of the polarized
light in the received radiation. We denote the former
L., and the latter I,,;. Using this representation we
find that

4mn
L(ny=Ileut+ha Sin(Tl— + B) +u(n),

n=0, ,N—-1, (4)
where we have replaced the term 2¢ + « by a single
variab}&, B. The discrete frequency f of I, is given by
f=2/M.

In all our comparisons of the imaging schemes,
we assume that there are N images (N even and
>>M) available for analysis; i.e., for PDI there would
be N/2 images each, corresponding to the copolarized
and the cross-polarized data. In PMI schemes there
would be N images constituting a time series at every
pixel location, which would be analyzed for estimat-
ing the sinusoidal component. We further assume
that N is an integral multiple of M (however, this
condition is not strict for N large). A comparison of
the analysis schemes needs knowledge of the noise
statistics at each pixel location, which are seldom
known a priori. Still, weassmethatthenonse
characteristics are known and analyze the various
schemes because we get an idea of the performance of
the various estimators given a particular noise con-
dition. We do not explicitly estimate the noise vari-
ance terms, as the quantity of interest to us is the
unscattered component of light and noise is a nui-
sance parameter. We now compare PDI and PMI,
based on this model.

The comparative studies of all the imaging
schemes have been separated into two cases. First we
treat white noise and then, colored noise. More often
than not, when the noise is white we get simple
closed-form solutions for the bounds on the perfor-
mance of imaging schemes, thereby allowing an easy
comparison to be made across schemes. This simplic-
ity is seldom found when the noise is colored because
then we have to resort to numerical simulations.
Thus we are encouraged to have a separate study
when the noise is white, We have maintained this
pattern throughout this study.

3. Polarization Intensity imaging
A.  White Noise

1. " PDI Estimator

We denote the copolarized intensity recorded in a
general PDI scheme Jj and the cross-polarized inten-
sity I,. As the plane of polarization of the incident
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light is not known in general, these intensities need
not correspond to the exact copolarization and cross-
polarization locations. We assume that the intensity
recorded with the analyzer at an angle ¢ with respect
to the horizontal is Iy Thus the recorded copolarized
and cross-polarized intensities will be [from Eq. (4)]

Iy(n) = Icae + L Sin(B) + w(n), %)
I(ny=Leu + LasinB+w)+tw'(n), (6)

where w(n) and w'(n) are zero mean iid Gaussian
random variables and 8 = (24 + «). Using PDI, we
can obtain the estimate of the unscattered component
in the recorded data as

. 1 Np
Ibal.PDl = ﬁ ’gl [Iu(n) - Il(n)]. (7

In some implementations of PDI, the scaling factor is
an arbitrary constant.3!* However, the correct
theoretical estimate of the unscattered component is
given only by Eq. (7). Now, by substituting the ex-
pressions for Ij and I, from Egs. (5) and (6) into
Eq. (7), and by simplifying the resultant expression,
we obtain

jb,u,m = Iy, sin B + w*(n), (8)

where w*(n) is a zero mean, Gaussian iid noise, with
variance ¢*/N, where o” is the variance of w(n) and
w'(n). We can observe from Eq. (8) that

E{iwm[} = I],d Siﬂ B, (9)
Val’{im} = UZ/N.

Clearly, the estimate I, pp; is biased because the es-
timated value depends on B. This is a big disadvan-
tage of PDL Only when B = w/2 do we get the true
estimate of the unscattered component. The estima-
tor has a variance of °/N, irrespective of the value of
B. Next we analyze the performance of the PMI po-
larization intensity estimator.

(10)

2. PMI Estimator

Suppose that N data values from PMI are available
for analysis. It can be observed from Eq. (4) that the
2N/Mth component of the N-point discrete fourier
transform would contain information on the sinusoid.

The estimate of I, is given by

. 2] {2N

Lo = 35 ﬂ(ﬁ)l an
where I1 is the discrete Fourier transform of 1.(n) of
Eq. (4).

Here again, some PMI schemes use a different scal-
ing factor.® The analysis of the bias and variance of

this estimator is quite complex, and hence we have
resorted to numerical simulations. We compare the
results of the simulation with that of the PDI inten-
sity estimator below. Next we analyze what best can
be done to estimate I, from PMI data, from the basic
principles of estimation theory.

The best estimator, with the optimality criteria be-
ing that the estimator should be unbiased and should
possess minimum variance, is known to be the min-
imum variance, unbiased (MVU) estimator.!2 To de-
termine whether a MVU estimator exists, we need to
see whether some estimator satisfies the Cramer—
Rao lower bound (CRLB). Here the quantity that we
wish to estimate is I, of Eq. (4). However, it can
easily be found that a MVU estimator does not exist
for I, using PMI. Hence we resort to estimating the
maximum-likelihood estimator (MLE) of I, as the
MLE is known to be asymptotically efficient and op-
timal. Moreover, if an efficient estimator exists, it will
be achieved by the MLE.??

The problem on hand is similar to estimating the
amplitude of a single sinusoid, except for the constant
term I,.,,. We explore whether we can extend the
analysis of the case of a single sinusoid!? to that of
ours. It is clear that by modifying Eq. (4) as given
below we can modeled the data linearly as

41n
Ln)y=I+ L, cos B sin(-y)

4mn
+ I, sin B m(ﬁ_) +w(n),
n=0, ... N-1L (12)

With this modification, we can express Eq. (12) as

L0y 1 0 1
Iy {1 sin(4w/M) cos(4n/M)] Lea
L2)| {1 sin(8nw/M) cos(8n/M){l,.cos
: : : : Iyysin B
L H o
w(0)
w(1)
+ w)l (13)
w
or, with matrix notation, as
L=HO+W. (14)

If we can estimate I, cos 8 and I, sin B, we can
estimate I,,;. It has been proved that, for data repre-
sented in a linear form as above, the MLE of O is!?

6 = (H'C'H)"'H’C'L, (15)

where C is the noise covariance matrix.
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@ is also an efficient estimator, in that it attains
the CRLB and hence is the MVU estimator. Thus we
have efficient estimators for I cos B and I, sin 8,
and thus the MLE for I,; (Ref. 12) is given by

Toutpie = + [(Tont €08 B)2 + (I 5in B)?J2.  (16)

Although I, is biased if data points are few, it is
asymptotically unbiased.1* Moreover, as the estimate
is obtained by a nonlinear transformation of the MVU
estimates, the estimator cannot be efficient.!? From
Eq. (15), the MLE O for various components can be
shown to be

. 1§
Iscat,MVlJ = I—V % I,(n), an
. 2 N-1 . [4mn
T cos By = 3 I,(n)sm(—ﬂ—), (18)
.. 2 N1 4mn
Tpq sin Byvy = N go I,(n)cos(-ﬂ—-), (19)
. s
var{T v = 7. (20)
. ; 20°
var{l,.; cos Byvu} = var{ly, sin Byvy} = ~ @V

From Eq. (18) and Egq. (19) it can be inferred that the
right-hand side of Eq. (16) is the same as that of Eq.
(11). Hence we arrive at the important result that the
MLE estimate of I, can be obtained by PML It is
worth observing that, if B = %/2, we can obtain the
MVU estimates of 1,,;,. Hence, if we know the exact
orientation of the plane of polarization of the source,
we can obtain the MVU estimates of I,,, by PML. We
end our search for better estimators of I, here, be-
cause the MLE almost always does the best job when
the MVU estimator does not exist.

The exact phase relations can usually be known in
the case of active imaging. Hence, for active imaging,
PDI schemes are more useful than PMI. For passive
imaging, PMI seems to be more suitable. However,
there are applications for which the parameter of
interest is not the exact value of the sinusoidal am-

plitude but its relative value across the scene. Be-"

cause PDI gives uniformly scaled values of the
sinusoidal amplitude across the scene, it may be bet-
ter to use PDI in such circumstances, as its variance
is lower than that of PMI. With this, we conclude our
analysis of the estimators for 1,; in white noise.

B. Colored Noise

The theoretical analysis of the estimators in colored
noise is a formidable task, and hence we have re-
sorted to Monte Carlo simulations with which to
compare the estimators. However, a few important
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observations can be made before we procede to the
results. For the same reasons as for white noise, it
has been found that we cannot obtain a MVU esti-
mate of I3 by PMI, and we have to be satisfied with
the MLE given by Eq. (15). However, what makes
colored noise different is that noise covariance matrix
C in this case will not be ¢”I, and hence the estimates
depend explicitly on the terms of the covariance ma-
trix. On the other hand, if the noise is white, we can
obtain the MLEs of the amplitude without having to
know the noise variance per se. Usually, we do not get
the noise samples alone because the data contain
signal plus noise information. This makes the esti-
mation of the noise covariance matrix difficult. Hence
numerous estimators have been designed to tackle
this problem.13 )

Among the matched-filter based estimation tech-
niques,!? for our application the amplitude and phase
estimator for sinusoids (APES) algorithm seems to be
the best suited, because we need to estimate the am-
plitude of one sinuscid only. We now compare the
estimation results obtained from the PDI and PMI
estimates and the APES, as used for the data gener-
ated by use of Monte Carlo simulations.

C. Resuits from Monte Cario Simulations

Simulations to test the PMI and MLE estimators and
the APES used 200 instances of 64 data peints gen-
erated according to Eq. (4), with signal frequency f
assumed to be 0.125. For testing the PDI estimator
we used 32 data points each, with B = 7/2, 3w/2,
corresponding to the copolarized and the cross-
polarized data, respectively. The values of I, and I
are chosen to be 4 and 1, respectively, so the DOLP
corresponds to 0.25. We observed that the perfor-
mance of the estimators does not depend on the ac-

tual values of I, or I,,, but on the signal-to-noise

ratio (SNR).

We studied various characteristics of the estima-
tors by varying the SNR through the variance of the
iid Gaussian random variable that governs noise.13
For deciding the range of SNR values to be considered
we calculated the average SNR of a 10 X 20 region of
eight data sets that we obtained experimentally.
Such an analysis showed the actual SNR to vary from
approximately —14dB to 9 dB. Hence we have
considered a SNR range from —25 to +25 dB for our
analysis. Though we found that the noise in the ac-
tual data could be adequately represented by autore-
gressive noise AR1. We tested the algorithms with
AR2 noise too, so the performance of the estimators in
unknown noise conditions could be better under-
stood. For studying the performance of the estimators
during AR1 noise, we chose AR coefficient a to be 0.50
in all the simulations. To study the performance of
the estimators in AR2 noise we chose the AR coeffi-
cients to be @, = 0.50 and a, = —0.125. The pole
frequency for this choice of AR coefficients corre-
sponds to a discrete frequency of 0.125 and coincides
with the frequency of the sinusoid, thus creating a
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Fig. 1. Performance of Pl estimators. (a) Variance of Pl estima-
tors in white noise. (b) Variance of PII estimators in AR1 noise.

relatively difficult situation in which to estimate the
sinusoidal amplitude.

The performance of all the estimators was similar
in AR1 and AR2 noise conditions. Hence we do not
report our observations of the performance of the
estimators in AR2 noise. Moreover, the bias of the
estimators has not been reported because g was cho-
sen to be w/2, so all the estimators were unbiased and
behaved in the expected manner. Further, given that
the relative values of the parameters, and net the
absolute values, are what are usually sought, the
variance becomes a more important criterion in
choosing an estimator than its bias. Hence in all fur-
ther comparisons (including other imaging schemes
and noise characteristics), we report only the vari-
ance of the various estimators and not their bias.

Figures 1(a) and 1(b) show the performance of the
various estimators in white and colored noise, respec-
tively. We can observe that PDI and PMI perform
consistently better than the APES estimator. Though

PMI and the MLE are one and the same in this case
{and hence are not distinctly shown), the high com-
putational cost of implementing the MLE favors the
use of PMI implementation. As can be observed, to
implement the MLE we need to wait to store data
until the last data sample is obtained, unlike in the
PMI, which can be implemented in place sequentially
by use of Goertzel’'s and similar algorithms. PDI ex-
hibits less bias and variance (at B = w/2), verifying
our theoretical observations. It can be observed that
the variance of the PDI estimator for both white and
AR1 noise and the PMI estimator in AR1 noise are
below the CRLB. These results are not unexpected,
because the estimators will be biased under these
circumstances.

4. Degree of Polarization Imaging

An imaging scheme that uses the DOLP as the
visualization parameter is reported;® the DOLP is
defined as

(22)

Iy and I, refer to the copolarized and cross-polarized
intensities, respectively. Substituting B = =/2 into
Eqgs. (5) and Eq. (6) and in the absence of noise, we
obtain

I ‘2+ U‘Z 1/2

7 (23)

t

Two estimators that represent the extreme cases of
the general estimator described above are

200 Im) ~ 1 (n)]

DOLPppy, = TRy + L)) 29
—— 2 w-i[hn)—1,(n)
A e

Here, we have assumed that N is even, for math-
ematical convenience, though this is not a necessary
condition. If is clear that all the estimators derived
from Egq. (24) will be biased, because the numerator
corresponds to scaled versions of the polarization in-
tensity data, which were shown to be biased. How-
ever, if B = w/2 in Eq. (5) and Eq. (6), or if the relative
(rather than the actual) values of the DOLP in a
scene are of interest, then DOLPpyy; can be used. How-
ever, if B — 0, the noise may completely obscure the
DOLP information. Henceforth we shall assume that
B = /2, so the numerator is an unbiased estimate of
L.t The form of DOLPpy; is that of a ratio estimator,
with both the numerator and the denominator being
Gaussian random variables that are uncorrelated if
the noise is white but correlated for colored noise. A
comparative study of these estimafors has been re-
ported in Ref. 14. It has been found that the DOLPpp;,
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estimator is biased and that DOLPyry, is asymptoti-
cally unbiased. The variances of the estimators are
equal and diminish to zero asymptotically. Hence
both esﬁmatorgg_re; consistent. For these reasons it is
better to use DOLPpy;,. It can _ﬂs& be observed that
the memmquirements of DOLPgypy, are less than
those of DOLPppy,.

A. PMI Estimator of the DOLP

In our analysis of PII we found that, for B # n/2, we
can obtain only the MLE of I,,; and not its MVU
estimate. We can show that the MLE of I, also
corresponds to its MVU estimate in both colored and
white noise. Hence we can obtain the MLE of the
DOLP by using the invariance property of the MLE. 12
As the transformation DOLP = I /1., is noninvert-
ible, the MLE maximizes a modified likelihood fune-
tion, as explained in Ref. 12. From the theorem on the
asymptotic behavior of the MLE 12 we conclude that
the MLE achieves the CRLB asymptotically.

B. Resuits from Monte Carlo Simulations

Figures 2(a) and 2(b) show the performance of the
various estimators in white and AR1 noise, respec-
tively. We can observe that PDI and PMI estimators
seem to be the best for estimating the DOLP too, with
PDI performing better than PMI (with 8 = w/2). It
can be observed that, for AR1 noise, meaningful con-
clusions about the behavior of the estimators can be
arrived at only at values of the SNR above 5 dB.
Hence, in general, the performance of the estimators
is poor for colored noise. As can be observed, the
variance of the PDI estimator is lower than the
CRLB, as is not unexpected, given that the estimator
is biased if g # =/2.

5. Polarization Orientation Imaging

The received radiation can contain different states of
linear polarization for various reasons. It could be
due to extraneous polarized sources deployed for
other imaging purposes. It could also be due to
changes in the polarization state induced by reflec-
tion. The latter case is more commonly encountered
in passive imaging situations, for which specular sur-
faces can change the orientation of the plane of po-
larization of incident linearly polarized light or can
even induce polarization in the incident unpolarized
light. In any case, the ability to distinguish different
states of linear polarization adds value to the imaging
methodology. Further, as we show below, this can be
obtained with the data obtained with the existing
PMI schemes.

Assume that a PMI experiment is conducted with
arbitrary orientation of the plane of polarization of
the source, yielding data that follow Eq. (4). With all
the parameters the same, we study the effect on the
recorded data of a change in the orientation of the
plane of polarization of the source by an angle v.

For Eq. (3) we assumed that angle ¢ represents the
orientation of the rotating polaroid with respect to
the horizontal. Now we need to replace ¢ by ¢ + .
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Fig 2. Performance of DOLP estimators. (a) Variance of DOLP
estimators in white noise. (b) Variance of DOLP estimators in AR1
noise.

This change essentially leads to a change in the value
of 8, which corresponds to the change in phase of the
recorded sinusoids; i.e., a change in the orientation of
the plane of polarization manifests itself as a change
in the phase of the recorded sinusoids and does not
affect the sinusoidal and dc amplitudes.

PI and DOLP imaging cannot capture this infor-
mation, as they ignore the estimated phase of the
sinusoids, even though all the estimators except the
PDI estimator can give this information. Thus we can
use the same estimators to obtain all three visualiza-
tion paramefers, namely, polarization intensity,
DOLP, and the PO, which give distinct information
about the scene being imaged.

We next study the performance of the various PO
estimators in white and colored noise.

A. Polarization Orientation Imaging in White Noise
The CRLB for estimation of B in white Gaussian
noise can be shown to be



2 1

var{ﬁ} = sz = I\T’q’ (26)

where 7 represents the SNR; i.e., n = I,,°/20”, where
o is the noise variance.

However, it has been found that there does not
exist a MVU phase estimator that attains the CRLB
for this case in white Gaussian noise.2 This result is
applicable to our problem too. But the MLE of phase
exists because of the invariance property and is given
approximately by?2 {from Egs. (18) and (19)]

- jbal sin Buwu
Pae = arctan(jw cos BMVU)

B Vs I(n)cos(4wn/M)
B arctan[ o L(n)sin(4mn/M)

], 27

where M is the periodicity of the rotating polaroid
and N is the number of data points available for
analysis.

Bae also corresponds to the phase of the complex
DFT coefficient that corresponds to the frequency of
the sinusoid. Because the PMI estimator obtains the
DFT coefficient from which we can estimate the phase
of the sinusoid, we conclude that the PMI phase esti-
mator obtains the MLE of phase. The asymptotic vari-
ance of the PMI phase estimator has been shown to
reach the CRLB given by Eq. (26).22 The transforma-
tion function used to estimate the phase is noninvert-
ible; thus Byge actually maximizes a modified
likelihood function.12

B. Polarization Orientation Imaging in Colored Noise

The CRLB for estimating B in colored noise can be
shown to be

erties of the MLE, the estimator achieves the bound
given in Eq. (28) when a large number of data points
are available for analysis. Once again, By actually
maximizes a modified likelihood function, as in the
case of white noise. -

C. Results from Monte Carlo Simulations

Figures 3(a) and 3(b) show the performance of the
PMI estimator and the APES in white and AR1 noise,
respectively. As was mentioned above, the PDI esti-
mator is incapable of estimating this parameter. We
can observe that the PMI estimator performs better
than the APES in both white Gaussian noise and AR1
noise. It should also be observed that the PO esti-
mates for colored noise seem meaningful only at val-
ues of SNR above 5 dB. Hence it should be kept in
mind that the PO imaging is useful only when SNRs
are relatively high.

Here we conclude our analysis of the estimators
used for estimating the various visualization param-
eters.

6. Novel Color-Based Rendition Scheme

In previous sections we introduced three visualiza-
tion parameters for polarization-based direct imag-
ing schemes. We studied the various estimators for
each of these parameters and their characteristics.
In all the schemes discussed, the visualization pa-
rameters are finally rendered as gray-scale images.
If we want to study all the visualization parameters
of a scene, we need to study three different images.
In this section we propose a new scheme for ren-
dering the polarization information whereby the vi-
sualization parameters are intuitively mapped to
various aspects of a color image, giving a holistic
view of the scene.

The information on polarization magnitude inher-
ently has the notion of intensity, i.e., the intensity of
polarized light. The DOLP signifies the purity of the

>~ Gl + (@l — Q1) Sin 2B —ay,” cos’ B~ a,,’ sin’ B

varf§ =

I* det(A) ’

(28)

where A = H'C'H [see Eq. (15) for the meaning of
H and Cl.

It can be observed that the CRLB for 8 depends not
only on the amplitude of the sinusoid 7, ,; (or the SNR)
as in the case of white noise but also on § itself.
However, the dependence on 8 was found to be weak,
essentially making the CRLB invariant to 8.

As in the case of white noise, the PMI estimate of
phase is given by the argument of the complex dis-
crete Fourier transform coefficient that corresponds
to the frequency of the sinusoid. For the MLE, we
need to use Eq. (27). Because of the asymptotic prop-

polarized radiation and parallels the idea of satura-
tion in color images. In color images, the greater the
purity of a color, the higher will be the saturation.
The polarization-orientation parameter distinguishes
different states of linear polarization and is akin to
different hues in a scene. Thus the three visualization
parameters correspond intuitively to the parameters of
anormal color image and hence can be rendered so. We
next show some illustrative simulation results.

We synthesized 32 images of size 160 X 100 pixels
to study the suitability of fusing the visualization
parameters. The data at each pixel location were syn-
thesized according to Eq. (4). We considered the noise

20 June 2006 / Vol. 45, No. 18 / APPLIED OPTICS 7
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Fig. 3. Performance of PO estimators. (a) Variance of PO estima-
tors in white noise. (b) Variance of PO estimators in AR1 noise.

to be white Gaussian for these simulations, but the
results for colored noise will be no different.

The synthesized images were divided into four
quadrants, as shown in Fig. 4(a). The value of I,
was chosen to be 170 in quadrants 1 and 4, and 240
in quadrants 2 and 3. Within each quadrant we chose
rectangular subregions of size 40 X 30, as shown in
Fig. 4(a). The value of 1,,; was chosen fo be 0 at all
locations, except in the subregions. It was chosen fo
be 0.2 in the subregions of every quadrant, thus giv-
ing a DOLP of 0.0011 in the subregions of quadrants
1 and 4 and of 0.0008 in the subregions of quadrants
2 and 3. Before the addition of noise, the images were
blurred by use of a Gaussian mask of size 9 X 9 to
simulate blurring that is due to the optical elements.
Though we have not analyzed the nature of the blur
in an actual experimental setup, we use the Gaussian
blur only to study the probable effect of blurring.

To the blurred data we added white Gaussian noise
at every pixel location across images. The noise at
each pixel location had a variance of 0.05, leading to

8 APPUED OPTICS / Vol. 45, No. 18 / 20 June 2006

Fig. 4. Result of fusing the visualization parameters. (a)
Break-up of synthetic images. (b) A representative of the 32 images
in the series. {c) Result of histogram equalizing (b). (d) PMI N
magnitude estimation result. (¢) PMI N DOLP estimation results.
(f) PMI N PO estimation result. (g) Result of fusing (d), (e) and (f).

a SNR of nearly —4dB in all the subregions. The
reason for choosing such small values for I, and the
DOLP is to show the robustness of the polarization-
based imaging techniques even at relatively low
SNRs, when the individual images in the series do
not convey any visual information about polarization
by themselves. The information becomes evident only
after processing.

The phases of the sinusoids in the subregions were
chosen to be 2w/9, 0, 57/18, and 15%/9. The phases
were chosen arbitrarily to illustrate the feasibility of
rendering the polarization information as color im-
ages and are not related to the processing itself. We
used the PMI estimator to estimate the various visu-
alization parameters, as the PDI scheme is incapable
of estimating the phase information. The parameters
can also be obtained with the APES.

Figure 4(b) shows a representative image of the set
of 32 images that looked nearly alike. Figure 4(c)



Table 1. El

ts of Experimental Setup Shown in Fig. 5

Scattering medium Polystyrene spheres of 2.97 pm
diameter dispersed in distilled
water

Source 10 mW, 632.8 nm He—Ne laser
source

Detector Intensified CCD

Images Gray scale (256 levels); size,
240 x 320

Scattering mean free 334.7 pm

path length, [,

Transport mean free 1760 pm

path length, /*

Optical thickness, 1 5.68

Average SNR of a -12dB

time series

Periodicity of the 16

analyzer, M
Initial phase, g ~%f2

shows the histogram equalized version of the repre-
sentative image. As we can observe, we do not find
any discernible difference among the subregions, but
we find a difference in the gray scales of the four
quadrants. The same was true for other images in the
series too. Figure 4(d) shows the result of analyzing
the magnitude of polarization. It can be observed that
the four subregions have the same information on
magnitude of polarization. Figure 4(e) shows the re-
sult of DOLP analysis wherein we can observe a
slightly higher DOLP in the subregions of quadrants
1 and 4 compared with those of quadrants 2 and 3. As
the magnitude of the DOLP is small, perhaps we
could not have expected a drastically different result.
Figure 4(f) shows the result of PO analysis. The sub-
regions are clearly distinguishable from the back-
ground. However, only the subregion of the first
quadrant stands apart uniquely from the others.
Thus, though it is attractive to use POI to differenti-
ate regions with polarization information, it is not
easy to differentiate the PO from these results.

Figure 4(g) shows the result of fusing all the visu-
alization parameters into a color image, as explained
above. The color image clearly shows the POs of the
subregions. Keen observation also shows the lower
saturation levels of the colors in quadrants 2 and 3
compared with the colors of quadrants 1 and 4. This
corresponds to the difference in the DOLP of these
subregions. It is clear that rendering the parameters
as a color image can provide better insight into the
various polarization parameters than can rendering
them as gray-scale images.

7. Experimental Results

We conducted experiments to obtain shadowgrams of
an opaque object immersed in calibrated solutions
containing polystyrene microspheres dispersed in
water. The experimental setup used was similar to
the one described in Ref. 5. The parameters of the
experiment from which the data were obtained are
given in Table 1. We observed that with microspheres

Fig. 5. Experimental results. Details of the experimental setup
are given in Table 1. (a) Actual object. (b) Unprocessed image. (¢)
PDI result. (d) PMI result. (e} PES result.

of 2.97 pm diameter we could image an optical thick-
ness of as much as 6.77, whereas we could image an
optical thickness of as much as of 40 in samples con-
taining polystyrene beads of 0.11 pm diameter. A re-
sult obtained from one of the data sets is shown in
Fig. 5. Figure 5(a) shows the shadow of the object
without scattering. Figure 5(b) shows a representa-
tive image in the series of images acquired. Figures
5(c), 5(d), and 5(e) show the polarization intensity
imaging results obtained by processing 16 images
recorded by use of the PDI, PMI, and APES schemes,
respectively. One can easily observe the superiority of
the PDI scheme by comparing the results, which en-
dorse our theoretical observations.

8. Potential Application of Polarization

Orientation Imaging

We now show a potential application of POI, using
the estimates obtained by the PMI estimator from
one of our experiments. As we saw above, POI is
useful only if the SNR is relatively high or if a large
number of data points are available for analysis.
However, for illustrating the advantages of POI, we
report positive results from an experiment that used

20 June 2006 / Vol. 45, No. 18 / APPLIED OPTICS 9
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Fig. 6. Segmentation of a POI result. (a) Image without scatter-
ing. (b) Result of PMI POL; N = 512. (¢} 9 X 9 block processing
result. (d) 15 X 15 block processing result. () Histogram of (d). ()
Result of segmenting (e).

512 images of a data set, albeit with a relatively low
SNR (=-8dB).

If a single linearly polarized source is used, then
ideally the region not blocked by the object should
yield the same phase information at every pixel loca-
tion. Depending on the SNR, the values of estimated
phase will fluctuate only slightly about the mean
value. However, wherever the object blocks the bal-
listic light, the phase estimation should yield random
results. Thus the correlation in the resultant POI
estimates of neighboring pixels in regions receiving
the ballistic component should be much higher than
those of regions blocked by the object. As we show,
this information can be exploited in segmenting the
image into target and background regions. This sort
of segmentation and, hence, POI is useful in defense-
related applications. Moreover, the analogy can be
extended to regions that contain different POs also.

For testing the validity of our hypothesis, we con-
sidered rectangular blocks of sizes 9 X 9and 15 X 15
centered about every pixel location excluding the
boundary pixels. We cross correlated the data in
every block with blocks around the adjacent eight
neighbors and took the maximum of the cross-
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correlation values as the result for that pixel. We
finally plotted these results as an image. Figure 6
gives these results. Instead of taking the maximum of
the correlation values, we also took the average of the
correlation values and observed similar results. We
found that the resultant images had histograms that
clearly showed two modes, compared with the PII and
DOLP results that could not clearly distinguish the
object and the background. This information can be
used to segment the images into regions that corre-
spond to the hidden object and the background.

Figure 6(a) shows the image of the object without
scattering. Figure 6(b) shows the POI result obtained
from 512 images of a data set. Figure 6(c) shows the
result obtained from the cross-correlation technique
described above when the block size was 9 X' 9. Fig-
ure 6(d) shows the result with blocks of size 15 X 15.
Figure 6(e) shows a histogram of the image in
Fig. 6(d). Figure 6(f) shows the result of thresholding
Fig. 6(d) at a value lying in the valley between the two
modes of the histogram. As we can observe, though
the exact boundary of the object is not visible we can
get an idea of the presence of a hidden object in the
medium. This sort of information is useful in many
defense-related applications. The processing de-
scribed above can be followed by morphological op-
erations to get better results.

Though we can segment polarization intensity and
DOLP images, the POI segmentation is robust when
the variation in the estimates of phase is smaller
than the variation in I, and I, Unlike phase, I,
and I, can have larger distributions. This is the
advantage of using POI results for segmentation. The
segmentation scheme discussed above is fairly rudi-
mentary. We can perhaps develop many more such
algorithms, using PII, DOLP, and POI results.

9, Conclusions

We have detailed the framework for analyzing
continuous-wave, direct, polarization-based imaging
schemes. With small modifications, mest of the anal-
ysis can be extended to include circular polarization
based imaging schemes. We have derived bounds on
the performance of most of the imaging schemes and
have compared them by using the framework devel-
oped. We have brought into this framework the var-
ious visualization parameters, thus being able to
show the commonalities and differences among
the imaging schemes. A novel color based rendition
scheme and application of the newly introduced po-
larization orientation imaging for segmentation have
been introduced, showing the possible enhancements
and applications of these imaging schemes.

An experiment was conducted with an incoherent
whitelight source to study the feasibility of using
ordinary sources for polarization-based imaging. The
experiment verified such a possibility by yielding en-
ocouraging results. Some enhancements were incorpo-
rated into the analysis part of the imaging schemes
by bootstrapping and data chunking.!® These meth-
ods provided a marginal improvement over the exist-
ing schemes and hence have not ber... reported in this
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study. In short, we have been able to leverage the
strength of estimation-theoretic concepts in studying
polarization-based imaging schemes.
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