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ABSTRACT 
This paper presents an algorithm that performs 
lossless compression of 3D magnetic resonance (MR) 
images and is capable of performing user selectable 
region of interest decoding together with spatial and 
signal-to-noise ratio (SNR) scalability. Selective 
decoding is achieved by segmenting the 3D MR 
image into blocks of size 16x16x2 in spatial domain 
and by separately coding each of the blocks. Spatial 
and SNR scalability are achieved by scanning of the 
wavelet coefficients in proper order, together with 
storing the markers for the bit stream generated. The 
encoding operation is performed only once for a 
given image; the quality parameters, such as spatial 
resolution, SNR resolution and the region of interest, 
can be defined at the time of decoding. 

 
Index terms: MR image compression, spatial 
scalability, SNR scalability, region of interest, integer 
wavelet transform. 
 

1.  INTRODUCTION 
Medical imaging modalities such as Magnetic 
Resonance (MR) imaging generate a large amount of 
data. The data is increasing exponentially as the 
imaging modalities are playing a vital role in medical 
diagnosis. In this scenario, data compression and 
storage become important issues. Further, quick 
access of the compressed data and transfer of the 
same over the network are also critical. It is quite 
helpful to the radiologists if tools are available so that 
they can preview (in the form of thumb nails) the data 
quickly and access only the region of interest without 
the need for getting the other parts of the image. 
When encoding medical images, it is important to 
remember that medical professionals do not prefer 
lossy compression due to possible loss of vital 
information. Hence, ideally the images should be 
coded losslessly. It is advantageous, if the lossless 
encoder is designed in such a way that it enables 
progressive decoding, together with user selectable 
decoding area and resolution scalability. This paper 
presents an algorithm to accomplish the same. 
 
Usage of integer wavelet transform together with bit 
plane coding has become a well established approach 
to medical image compression. Several techniques 
have been developed and a few of them are even 
accepted as standard references. Notable among them 

are, Set Partitioning in Hierarchical Trees (SPIHT) 
[1], Embedded Zero tree Wavelet (EZW) [2] and 
Embedded Bit Coder with Optimal Truncation 
(EBCOT) [3].  Adaptations of these works to 3D 
volume data compression are also being carried out. 
Another technique that is adapted in this work is [4], 
wherein the intraband correlation is exploited and bit 
plane coding is carried out. Srikanth et. al. [5] extend 
the algorithm in [4] to carry out object based coding, 
wherein the background part of the MRI (air 
component) is not coded. In a somewhat similar 
fashion, object based coding of only the brain part of 
MRI is carried out in [6] by using a modified version 
of Layered Zero Tree coding. All these works focus 
on efficient coding of the MR images, striving for 
maximum compression with progressive coding as 
the useful bi-product. 
 
Providing random access decoding or selective 
decoding is attempted by several researchers [7 – 10]. 
In [7] and [8], lossy compression is implemented 
using vector quantization and the technique of zero 
bit coding is employed. A good analysis of various 
transforms and coding schemes with respect to coding 
efficiency and accessibility attributes is given in [9], 
with main emphasis on the Lifting-based Invertible 
Motion Adaptive Transform (LIMAT) framework 
[11] and the EBCOT [3]. Leung [10] adapts the 
SPIHT algorithm [1] to provide random accessibility, 
spatial scalability and SNR scalability. Both [9] and 
[10] provide lossless reconstruction capability. These 
algorithms attempt to identify the wavelet coefficient 
tree corresponding to the image pixels and encode the 
tree individually. For lossless reconstruction, the 
wavelet trees include coefficients associated with 
adjacent trees. This overlapping of coefficients 
increases with the number of wavelet decomposition 
levels. This results in more number of coefficients to 
be encoded than present in a given image segment. 

 
2.  OESD ALGORITHM 

This paper presents an algorithm that achieves 
selective region-of-interest (ROI) decoding, spatial 
scalability and SNR scalability. The algorithm 
modifies the ideas presented in [4] and [5]. To 
overcome the coding overhead associated with the 
aforesaid approach of encoding wavelet coefficient 
trees, we segment the image in the spatial domain, 
and encode the segments individually. As there is no 
overlap, each wavelet coefficient is encoded only 
once. When a user defines a ROI, only those bit 



streams corresponding to the segments that fall (even 
partially) within the ROI are sent to the decoder. This 
results in perfect reconstruction of the ROI with few 
additional pixels in the border area also being 
decoded. In case the ROI coincides with the borders 
of the segments, only the needed pixels are decoded. 
It may seem that using the concept of tiling in spatial 
domain and encoding, rather than working in the 
wavelet domain to achieve random access, is counter-
productive since the wavelet decomposition of a 
small segment may not help decorrelating the image, 
thus drastically reducing the compression 
performance. However, the results show that this is 
not really so, and even though the compression ratio 
does come down, it is only marginal. The advantage 
of having random access capability far outweighs this 
small decrease in performance. 
 
Spatial scalability is the ability to present the original 
image at lower spatial resolutions. 2D wavelet 
decomposition provides spatial scalability with the 
low-low (LL) band representing the lower resolution 
image. SNR scalability is the ability to decode only a 
selected set of bit planes so that the approximate 
image representation can be provided at full spatial 
resolution. In general, in progressive lossy to lossless 
coding, the bit stream is ordered to achieve 
progressive decoding and hence to provide SNR 
scalability. If the order is changed to achieve spatial 
scalability, SNR scalability cannot be achieved. We 
solve this by ordering the encoded bit stream to 
provide SNR scalability, but storing pointers to the bit 
stream that helps to provide spatial scalability also. 
 
The bit plane coding is performed individually for 
each sub-band, starting from the lowest LL band, 
with each subsequent band being scanned in a zig-zag 
manner. When scanning of all the sub-bands for a 
given wavelet resolution is completed, the end of bit 
stream list is remembered, which, on requirement, is 
passed on to the decoder.   
 
Encoder in the algorithm in [5] generates four lists, 
namely lattice significance list, magnitude list, sign 
list and refinement list. Because of grouping, the 
advantage it provides is that the entropy of the bit 
stream would be slightly lower resulting in 
marginally lower bits per pixel. However, if we adopt 
the same, due to the additional requirement of 
sending the pointer list for SNR scalability, the cost 
of maintaining four pointer lists would be high. It is 
seen that the encoder generates the bit stream in such 
an order that the four lists can be merged into one. 
With this, only one pointer list is generated and this 
adds a marginal overhead to the overall bit rate. 
 
We call our algorithm Once Encoding and Selective 
Decoding (OESD), since the encoding is performed 
once that provides for selective decoding of either a 

given region of interest, or for a given spatial 
resolution, or for a given SNR resolution. 
 
2.1. Encoder 
1. In 3D MR image set, mask for each of the 2D 

images is generated by identifying the respective 
foreground and the background.  For all the 2D 
images, the background is marked zero and is not 
coded. 

2. The masked 3D image is divided into 3D segments 
of defined size. The 3D image mask is also divided 
into segments of same size. 

3. Each segment is coded using the following 
algorithm, to which the corresponding segment of 
the mask is also fed. 
3.1. 3D integer wavelet transform is applied to 

each 3D image segment. 3D mask segment is 
also wavelet transformed. 

3.2. Wavelet transform of the mask segment is 
applied to the wavelet transformed image 
segment to mark the coefficients 
corresponding to the background as Do Not 
Care. 

3.3. The wavelet transformed image segment is 
divided into a 3D lattice of size v by v by t.   
Here v is the lattice dimension in the spatial 
direction (2D) and t is the lattice dimension in 
the temporal direction.  

3.4. For each 3D lattice k, the maximum of the 
wavelet coefficients, Wmax, is found. 
Threshold Tk for the lattice is computed as Tk 
= floor(log10(Wmax)). 

3.5. The maximum of all the thresholds is stored as 
the global threshold, Tg. 

3.6. The wavelet transformed image is scanned 
starting from the lowest resolution.  Within 
each resolution level, the wavelet bands are 
scanned in zigzag manner, starting from the 
LLL band. Within each band, the 3D lattices 
are scanned in raster scan order first in spatial 
direction and then in temporal direction. The 
3D lattices with all the coefficients marked as 
Do Not Care are skipped. 

3.7. For every wavelet resolution, all the bit planes 
are scanned starting from the bit plane 
represented by the maximum of the threshold. 

3.8. SIGNIFICANT PASS :  
3.8.1.Check for the significance of the 3D 

lattice;  it is significant, if at least one of 
its coefficients is greater than or equal to 
2Tg. If it is not significant, store 0 in list 
'lis' (indicating lattice insignificance). If 
the 3D lattice is first time significant, 
store 1 in the list 'lis'. Else, if the lattice is 
already significant, do not store anything, 
since the information regarding the 
significance is already stored. 

3.8.2.If the 3D Lattice is significant, check for 
the significance of each of the 



coefficients. A coefficient is significant, 
if its magnitude is greater than or equal 
to 2Tg. 

3.8.3.If the coefficient is significant, store 1 in 
the list 'lis'. Also, if the coefficient is 
positive significant, store 0 in 'lis'; 
otherwise store 1. 

3.9. REFINEMENT PASS: Store the current bit of 
all the significant coefficients (at the previous 
threshold) in the list 'lis'. 

3.10. If Tg is 0, go to next step; otherwise, set Tg = 
Tg-1 and go to step 3.7 above. 

3.11. After completing all the bands of the current 
wavelet resolution, store the next index of the 
list 'lis' in index_list. Repeat steps from 3.7 for 
the next resolution. 

4. The output obtained is arithmetic coded. 
5. Along with the list 'lis', the threshold array, image 

size, and the chain coded image mask are 
required to be sent to the decoder. 

 
2.2. Decoder 
 1. Decoding can be performed by simply reversing 

the operations corresponding to encoding. 
 2. Identify and list the 3D segments that fall within 

the ROI selected. The segments that partially fall 
within the ROI are also listed. 

 3. Decode each of the segments.   
 3.1. If spatial scalability is asked for, then decode 

only up to the desired wavelet resolution. 
 3.2. If SNR scalability is asked for, then, starting 

from the lowest wavelet resolution, for each 
level, decode only up to the required bit plane.  
Then skip rest of the bit planes, and go to the 
next wavelet resolution. 

 3.3. If both scalabilities are asked for, then, 
combination of steps 3.1 and 3.2 are 
performed. 

 4. If lossy decoding of the image area outside the 
ROI and lossless decoding of the ROI are needed, 
then, the segments within the ROI are decoded 
lossless; for the other segments, step 3 is followed 
with desired scalability parameters. 

 
3. RESULTS 

Experiments are conducted on MR images obtained 
from NIMHANS, Bangalore. The data consists of a 
set of 32 sagittal MR images of head, each of size 
256x256 pixels, with 8-bit resolution. For all the 
experiments, the (2,2) bi-orthogonal integer wavelet 
transform is used.  Number of wavelet decomposition 
levels is 2 in the spatial direction and 1 in the 
temporal direction. A pair of adjacent slices is 
considered for a group.  Size of the 3D lattice used is 
4x4x1. Lossless encoding is performed. 
 
The 3D algorithm in [5] is applied on all the 32 
images. The compression obtained is 2.08 bpp. 

Table I – Encoder Performance of Srikahth’s 
algorithm [5] for four different cases. 
OA = Original Algorithm, SLE = Single list encoder, 

OA-EC = Original Algorithm with entropy coding 
after entire bit plane encoding, SLE-EC = Single list 
encoder with entropy coding after bit plane coding. 

 OA SLE OA-EC SLE-EC 

Average bpp 2.08 2.12 2.17 2.20 
 

Table II –Performance of OESD Encoder as a 
function of the size of the segment. 

OA = Original Algorithm, SLE = Single list encoder, 
IH = Including Overhead due to storing Markers, 

EH = Excluding Overhead due to storing Markers.   
Segment size in temporal direction is 2.  

Segment size 16x16 32x32 64x64 128x128 256x256

Avg bpp of  OA 
– IH 2.59 2.38 2.31 2.31 2.17 

Avg bpp of  OA 
– EH 2.31 2.30 2.29 2.30 2.17 

Avg bpp of  SLE 
– IH 2.43 2.36 2.34 2.33 2.20 

Avg bpp of  SLE 
– EH 2.35 2.34 2.33 2.33 2.20 

 
Table III – SNR Scalability results : Performance 

of OESD algorithm for different SNRs. 
SNR Scale 0 1 2 3 4 5 

# Bit Planes 8 7 6 5 4 3

Avg MSE 0 0.7 3.1 13.3 51.1 165.2

Avg PSNR, dB  - 49.9 43.4 36.9 31.1 26.0 
 
Here the lists generated at the end of every bit plane 
scanning are entropy coded. Instead, if the lists are 
entropy coded after complete scanning, the average 
bits per pixel increases to 2.17 bpp. When the 
algorithm is modified to generate a single list and 
entropy is estimated at the end of every bit plane 
coding, the bit rate obtained is 2.12 bpp. This is 
attributed to the slight increase in the entropy in both 
the cases. When both of these modifications are 
combined, the rate increases to 2.20 bits per pixel. 
 
In our case, the entropy is calculated at the end of 
complete coding of each segment. Table II lists the 
performance achieved in bits per pixel for different 
sizes of the segment. Note that with respect to the 
implementation in [5], for 16x16x2 segment size, the 
average bit rate increased slightly to 2.59 bpp. This is 
attributed to the limited area of image that we have 
chosen for each segment, and overhead due to the 
requirement of storing the markers. Contrary to the 
general thinking that increasing the segment size 
should reduce the bits per pixel, Table II shows that 
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Figure 1. Spatial Scalability of OESD : Output images for different scales. 
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Figure 2. SNR Scalability of OESD: Output images for different SNR scales. 
 



it remains fairly constant (excluding the overhead due to 
markers), coming down only for the segment size of 
256x256x2 corresponding to entire image considered as a 
single segment (same as that of Table I). 
 
It can be noted that if the implementation of [5] is used, 
the index list would consist of 2 rows and 4 columns for 
each of the 256 segments. The maximum value for any of 
the index is seen to be around 300; so a minimum of 9 bits 
are needed to represent the index. This amounts to a total 
of 18432 bits for an image, resulting in 0.28 bpp per 
image. Instead, if the single list algorithm is used, index 
array for each segment would be only 2 elements (for each 
wavelet resolution). As the maximum value of index is 
observed to be 550, 10 bits are needed to represent the 
index. This amounts to a total of 5120 bits or 0.08 bpp. 
Hence, the single list approach compensates for the 
increase in the bpp that is associated with the choice of the 
segment size. 
 
One can argue that the choice of 32x32x2 segment size 
would reduce the number of bits to be allocated for index 
representation. However, this would provide a coarser 
ROI selection at the time of decoding, with only a 
marginal reduction in bpp. So the optimal segment size is 
16x16x2. This results in an overall overhead of around 
0.35 bpp when compared to the original algorithm 
(including the 0.08 bpp overhead of storing the index 
values); this is the price that needs to be paid for the user 
selectable features that the algorithm provides. It can be 
noted that this cost affects the decoder only when it 
attempts complete lossless decoding of the image. 
 
With a segment size of 16x16x2, the possible number of 
levels of wavelet decomposition is 2. With this, the 
available spatial scales are 1:1, 1:0.5 and 1:0.25. Figure 1 
shows the results of decoding a sample image for all the 
three available spatial scales. The average performance 
with respect to SNR scalability for 32 images in terms of 
mean square error and peak signal to noise ratio (PSNR) 
are shown in Table III. Figure 2 illustrates the SNR 
scalability results for a sample image. It can be seen that, 
for SNR scales of 1 to 3, the decoded image is visually 
indistinguishable from the original image (the decoded 
image with scale 0). Even with SNR scale of 4, only very 
small blocking artifacts are visible, which become distinct 
only with SNR scale of 5. The image quality worsens 
beyond acceptable limits for SNR scales of 6 and 7, which 
is akin to representing the image with only one/two bit 
planes. Note that these blocking artifacts are due to spatial 
domain segmentation and large approximation due to 
ignoring the bit planes. 
 

4.  CONCLUSION 
We propose a wavelet based algorithm called Once 
Encoding with Selective Decoding, which features Region 
of Interest selection, SNR scalability and spatial 
scalability at the decoding time. The algorithm encodes 
the image only once. At the time of decoding, user can 
select the ROI or the amount of scalability desired and 
decode only what is required. Experiments on real MRI 
data from National Institute of Mental Health and 
Neurosciences, Bangalore show that the algorithm 

provides these features with a marginal encoding 
overhead of around 0.35 bpp. 
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