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ABSTRACT

We report a maiden study and comparison of two important classes
of polarization based continuous-wave optical imaging schemes
for imaging through scattering media, namely, the polarization dif-
ference Imaging (PDI) and the Polarization Modulation Imaging
(PMI). We cast the problem in an estimation theoretic framework
and base the comparison on two visualization parameters, the po-
larization magnitude and the degree of polarization. We show that
PDI is superior in estimating these two parameters in active imag-
ing. However, we show that PMI is suitable for passive imaging
and that the PDI is a specific implementation of PMI.

1. INTRODUCTION

In direct optical imaging, the sole aim is to use only unscattered
light for imaging [1]. The criteria for rejecting and accepting dif-
ferent parts of the radiation as scattered and unscattered varies, and
gives rise to different imaging schemes. In this study, we consider
only continuous-wave, direct imaging schemes which use linear
polarization of the received radiation to discriminate the unscat-
tered from the scattered part. From this study, parallels can be
drawn to the case of circular polarization.

Many schemes subtract sets of co-polarized and cross-
polarized images or their scaled versions, to obtain the image cor-
responding to the unscattered component of light [2, 3] and hence
belong to the class of PDI. There are other schemes which use po-
larization modulation followed by sinusoidal estimation [4, 5] and
achieve the same goal. These belong to the category of PMI. These
schemes are used to measure either the intensity of polarized light
(Polarization intensity imaging - PII) [4, 5], or the degree of linear
polarization (DOLP [6]) of the received radiation [2, 3]. PDI has
been shown to be capable of measuring these parameters [2, 3].
However, PMI has been used only for PII, though, as we show, it
can also be used for measuring DOLP. Besides, PDI is useful for
both active and passive imaging, whereas PMI described in [4, 5]
is useful only for active imaging.

However, PMI can be made suitable for both active and pas-
sive imaging by keeping the plane of polarization of the incident
light fixed and allowing the analyzer to rotate. Then, we can ob-
serve that PDI becomes a particular case of this modified PMI
scheme if images are captured at angular displacements ofπ/2 of
the analyzer. The frequency of the resulting sinusoid due to un-
scattered light will be half the sampling rate, i.e., only two points
of the sinusoid will be sampled per period. If one of the sampled
points (images) is chosen to be at the maximum of the sinusoid
(the co-polarized image), the next sample will naturally be that of

the minimum of the sinusoid (the cross-polarized image). Thus,
we can get the PDI data by properly choosing the sampling point
in the modified PMI scheme. Hence, PDI is a particular case of the
more versatile PMI. Henceforth, all references to PMI essentially
refer to this modified PMI scheme.

We now build a framework to study these imaging schemes,
wherein we treat them as different estimators of polarization in-
tensity and DOLP.

2. SIGNAL MODELING

As we observed, it is sufficient to model the data obtained by PMI,
since we can easily obtain PDI data from the same. We model
the observed data (images obtained), by using the Stokes vectors
(SV) [6, 7, 8]. In general, the SV recorded at a pixel location of a
CCD camera can be represented as[〈Is〉 〈Qs〉 〈Us〉 〈Vs〉]′ where,
〈·〉 represents time averaging. Though, due to finite detector area,
there is spatial averaging also, we are more interested in time av-
eraging, since the areas involved are small and the dominant factor
affecting the recorded SV turns out to be time. We assume that the
integration times are usually large compared to the coherence time
of the sources [9], and hence, by virtue of the central-limit theo-
rem, the time averaged SV recorded during different sub-intervals
can be assumed to be Gaussian iid random variables [9].

Though this assumption seems reasonable for most of the data
collected, in some cases, data revealed an underlying coloured
noise process, which could be modeled by an AR1 process. Hence,
in our model, we do not assume the noise to be white. By Malu’s
law [8], if light with input SV Sin = (Ii Qi Ui Vi)

T is incident
on a linear polarizer, the intensity of the output SV is related to the
input parameters by the relation

Io =
1

2
(Ii + Qi cos 2θ + Ui sin 2θ)

Thus, the intensity recorded at an arbitrary pixel location at the
nth step of acquisition of PMI can be represented as

Ir(n) =
1

2
(Is+Qs cos 2θn+Us sin 2θn)+v(n), n = 0, · · · , N−1

whereθn is the angle made by the analyzer with respect to the hor-
izontal at thenth step andv(n) in general, represents a coloured
noise process. Assuming that the rotating polaroid takesM steps
to complete exactly one rotation,θn increments by2π

M

c with each
step of the polaroid. Suppose we start grabbing images with an ar-
bitrary orientationφ of the rotating polaroid, the intensity recorded
at thenth step can be represented as

Ir(n) =
1

2

(
Is +

√
Q2

s + U2
s sin

(
4πn

M
+ 2φ + α

))
+ v(n) (1)



where,α = arctan (Qs/Us). We observe from eqn 1 that the com-
ponent of the intensity that is independent of the orientation of the
analyzer isIs/2, which corresponds to the diffuse part of the scat-
tered light. The amplitude of the sinusoidal part, i.e.,

√
Q2

s + U2
s /2

corresponds to the unscattered component which would be polar-
ized, and hence, is a measure of the magnitude of the polarized
light in the received radiation. We denote the former byIscat and
the latter byIbal. Using this representation,

Ir(n) = Iscat+Ibal sin

(
4πn

M
+ β

)
+v(n) n = 0, · · · , N−1 (2)

where we have replaced the term2φ + α by a single variable,β.
The discrete frequencyf of Ibal is given byf = 2/M . In all
our comparisons of the imaging schemes, we assume that there
are N images available for analysis. i.e., in case of PDI, there
would beN/2 images each, corresponding to the co-polarized and
cross-polarized data. In PMI schemes, there would beN images
constituting a time series at every pixel location, which would be
analyzed for estimating the sinusoidal component. We further as-
sume thatN is an integral multiple ofM (however, this condition
is not strict forN large).

The comparison of the analysis schemes needs the knowledge
of the noise statistics at each pixel location, which is seldom known
a priori. Still, we assume that the noise characteristics are known
and analyze the various schemes, since we get an idea of the per-
formance of the various estimators given a particular noise condi-
tion. We do not explicitly estimate the noise variance terms, since
the quantity of interest to us is the unscattered component of light
and noise is a nuisance parameter. We now compare the PDI and
PMI, based on this model.

3. POLARIZATION INTENSITY IMAGING -
COMPARISON OF PDI AND PMI SCHEMES

3.1. The case of white noise

3.1.1. The PDI estimator

We denote the co-polarized intensity recorded in a general PDI
scheme byI‖ and the cross-polarized intensity byI⊥. Since the
plane of polarization of the incident light is not known in general,
these intensities need not correspond to the exact co-polarization
and cross-polarization locations. We assume that the intensity
recorded with the analyzer at an angleφ with respect to the hori-
zontal asI‖. Thus the recorded co-polarized and cross-polarized
intensities will be (from eqn 2)

I‖(n) = Iscat + Ibal sin (β) + w(n) (3)

I⊥(n) = Iscat + Ibal sin (β + π) + w′(n) (4)
wherew(n) andw′(n) are zero mean iid Gaussian random vari-
ables andβ = (2φ+α). Using PDI, the estimate of the unscattered
component in the recorded data can be obtained as

Îbal,PDI =
1

N

N
2∑

n=1

(
I‖(n)− I⊥(n)

)
(5)

In some implementations of PDI, the scaling factor is an arbitrary
constant [10, 2]. However, the correct theoretical estimate of the
unscattered component is given only by eqn 5. Now, by substitut-
ing the expressions forI‖ andI⊥ from eqns 3 and 4 into eqn 5,
and by simplifying the resulting expression, we obtain,

Îbal,PDI = Ibal sin β + w∗(n) (6)

wherew∗(n) is a zero-mean, Gaussian iid noise, with variance
σ2/N , whereσ2 is the variance ofw(n) andw′(n). We can observe
from eqn 6 that

E{Îbal,PDI} = Ibal sin β

var{Îbal,PDI} = σ2/N

Clearly, the estimatêIbal,PDI is biased, since the estimated value
depends uponβ. This is a big disadvantage of PDI. Only when
β = π/2, we get the true estimate of the unscattered component.
The estimator has a variance ofσ2/N , irrespective of the value
of β. Next, we analyze the performance of the PMI polarization
intensity estimator.

3.1.2. The PMI estimator

SupposeN data values from PMI are available for analysis. It can
be observed from eqn 2 that the2N

M

th component of the N-point
DFT would contain the information of the sinusoid. The estimate
of Ibal, is given by

Îbal,PMI =
2

N

∣∣∣∣Ir (2N

M

)∣∣∣∣ (7)

Here again, some PMI schemes use a different scaling factor [4].
The analysis of the bias and variance of this estimator is quite
formidable, and hence we have resorted to numerical simulations.
We compare the results of the simulation with that of the PDI in-
tensity estimator in a later section. Next, we analyze as to what
best can be done to estimateIbal, from the basic principles of esti-
mation theory.

The best estimator, with the optimality criterion being the min-
imum variance of the estimated quantity, is known to be the min-
imum variance, unbiased (MVU) estimator [11]. To determine
whether an MVU estimator exists, we have to see if some esti-
mator satisfies the Cramer-Rao Lower bound (CRLB). Here, the
quantity that we wish to estimate isIbal of eqn 2. However, it can
be easily found that an MVU estimator does not exist for the esti-
mation ofIbal using PMI. Hence, we resort to estimate the Maxi-
mum Likelihood Estimator (MLE) ofIbal, since MLE is known to
be asymptotically efficient and optimal. Moreover, if an efficient
estimator exists, it will be achieved by the MLE [11].

The problem on hand is similar to estimating the amplitude of
a single sinusoid, except for the constant termIscat. We explore
whether we can extend the analysis of the case of a single sinusoid,
detailed in [11] to that of ours. By modifying eqn 2 as given below,
it is clear that the data can be modeled linearly as

Ir(n) = Iscat + Ibal cos β sin

(
4πn

M

)
+ Ibal sin β cos

(
4πn

M

)
+w(n) n = 0, · · · , N − 1

With this modification, we can express the above equation as


Ir(0)
Ir(1)
Ir(2)

.

.

.


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Ir

=
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(
4π
M

)
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(
4π
M
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M
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M
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H
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+
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w(0)
w(1)
w(2)

.

.

.


︸ ︷︷ ︸

W

or, with matrix notation as

Ir = HΘ + W

If we can estimateIbal cos β andIbal sin β, we can estimateIbal.
It has been proved that, for data represented as a linear form as
above, the MLE ofΘ is [11]

Θ̂ =
(
HTC−1H

)−1
HTC−1X (8)

Θ̂ is also an efficient estimator, in that it attains the CRLB and
hence is the MVU estimator. Thus, we have efficient estimators for



Ibal cos β andIbal sin β and thus the MLE estimator forIbal [11]
is given by

Îbal,MLE = +

√
(Ibal cos β)2 + (Ibal sin β)2 (9)

AlthoughIbal is biased if data points are few; it is asymptotically
unbiased [12]. Moreover, since the estimate is obtained by a non-
linear transformation of the MVU estimates, the estimator cannot
be efficient [11]. The MLE estimatêΘ for various components
turns out to be

Îscat,MV U =
1

N

N−1∑
n=0

Ir(n) (10)

Îbal cos βMV U =
2

N

N−1∑
n=0

Ir(n) sin

(
4πn

M

)
(11)

Îbal sin βMV U =
2

N

N−1∑
n=0

Ir(n) cos

(
4πn

M

)
(12)

and

var{Îscat,MV U} =
σ2

N
(13)

var{Îbal cos βMV U} = var{Îbal sin βMV U} =
2σ2

N
(14)

From eqns 11 and 12, it is clear that the right hand side of eqn 9
is the same as that of eqn 7. Hence, we arrive at the important
result that the MLE estimate ofIbal can be obtained by PMI. It is
worth observing that ifβ = π

2
, we can obtain the MVU estimates

of Ibal. Hence, if we know the exact orientation of the plane of
polarization of the source, we can obtain the MVU estimates of
Ibal by PMI. We end our search for better estimators ofIbal here,
since the MLE estimator almost always does the best job, when
the MVU estimator does not exist.

The exact phase relations can usually be known in the case of
active imaging. Hence, for active imaging, PDI schemes are more
useful than PMI. For passive imaging, PMI seems to be more suit-
able. However, there are applications where the parameter of inter-
est is not the exact value of the sinusoidal amplitude, but its relative
value across the scene. Since PDI gives uniformly scaled values
of the sinusoidal amplitude across the scene, it may be better to
use PDI in such circumstances, since its variance is lower than that
of PMI. With this, we conclude our analysis of the estimators for
Ibal in white noise.

3.2. The case of coloured noise

The theoretical analysis of the estimators in coloured noise is a
formidable task and hence we have resorted to Monte-Carlo sim-
ulations to compare the estimators. However, a few important ob-
servations can be made before proceeding to the results.

Due to the same reasons as in the case of white noise, it has
been found that we cannot obtain an MVU estimate ofIbal by
PMI, and we have to be satisfied with the MLE estimate given by
eqn 8. However, what makes the coloured noise case different is,
the noise covariance matrixC in this case will not beσ2I, and
hence, the estimates depend explicitly on the covariance matrix
terms. On the other hand, if the noise is white, we can obtain the
MLE estimates of the amplitude, without having to know the noise
variance per se. Usually, we do not get the noise samples alone
since the data contains signal plus noise information. This makes
the estimation of the noise covariance matrix difficult. Hence, nu-
merous estimators have been designed to tackle this problem [12].
Among the matched-filter based estimation techniques mentioned
in [12], for our application, the Amplitude and Phase Estimator

Fig. 1. Variance of PII estimators in white noise.

for Sinusoids (APES) algorithm seems to be the best suited, since
we need to estimate the amplitude of one sinusoid only. We now
compare the estimation results obtained from the PDI, PMI and the
APES estimators, on the data generated using Monte-Carlo simu-
lations.

3.3. Results from Monte-Carlo simulations

Simulations to test the PMI, MLE and the APES estimators used
200 realizations of 64 data points generated according to eqn 2,
with the signal frequencyf assumed to be0.125. For testing the
PDI estimator, we used 32 data points each, withβ = π/2 and
3π/2, corresponding to the co-polarized and the cross-polarized
data, respectively. The values ofIscat andIbal are chosen to be
4 and1, respectively, so that the DOLP corresponds to0.25. As we
will observe, the performance of the estimators does not depend on
the values ofIscat or Ibal, but on the noise characteristics. Hence,
even if we choose any other value ofIscat andIbal, the bias and
variance of the estimators will remain the same.

Various characteristics of the estimators were studied by vary-
ing the SNR through the variance of the iid Gaussian random vari-
able governing the noise process [12]. For deciding the range of
SNR values to be considered, we calculated the average SNR of a
10 × 20 region of eight data sets that we obtained experimentally.
Such an analysis showed the actual SNR to vary from around -
14 dB to 9 dB. Hence, we have considered the SNR range from
-25 dB to +25 dB for our analysis. Though we found that the noise
process in the actual data could be adequately represented by an
AR1 process, we have tested the algorithms with AR2 noise pro-
cess too, so that the performance of the estimators in unknown
noise conditions could be better understood.

For studying the performance of the estimators under AR1
noise, we chose the AR coefficienta, to be 0.50, in all the sim-
ulations. To study the performance of the estimators in AR2 noise,
we chose the AR coefficients to bea1 = 0.50 anda2 = −0.125,
respectively. The pole frequency for this choice of AR coefficients
corresponds to a discrete frequency of0.125, and coincides with
the frequency of the sinusoid, thus creating a relatively difficult
situation to estimate the sinusoidal amplitude. The performance of
all the estimators were similar in AR1 and AR2 noise conditions.
Hence, we do not report our observations on the performance of
the estimators in AR2 noise.

Figs 1 and 2 show the performance of the various estimators



Fig. 2. Variance of PII estimators in AR1 noise.

in white and coloured noise, respectively. We can observe that the
PDI and PMI perform consistently better than the APES estimator.
Though the PMI and MLE perform equally well, the high com-
putational cost of the MLE favours the use of PMI. PDI exhibits
lower bias and variance (atβ = π/2), endorsing our theoretical
observations.

4. DEGREE OF POLARIZATION IMAGING -
COMPARISON OF PDI AND PMI SCHEMES

An imaging scheme that uses DOLP as the visualization parameter
is reported in [2], where, it is defined as

DOLP =
I‖ − I⊥

I‖ + I⊥
(15)

I‖ andI⊥ refer to the co-polarized and cross-polarized intensities.
By substitutingβ = π/2 into eqns 3 and 4, we obtain

DOLP =
Ibal

Iscat
=

√
Q2

s + U2
s

Is
(16)

Though DOLP has been explicitly defined for the PDI schemes,
there is no such mention of a measure of DOLP in the PMI schemes
given in [4, 5]. It can be observed that, in PMI, the DOLP informa-
tion can be obtained as the ratio of the amplitude of the sinusoidal
component to the DC component. Thus, we observe that both the
PDI and the PMI (and also, the APES) are capable of estimating
polarization intensity and DOLP.

4.0.1. The PDI estimators of DOLP

A general PDI DOLP estimator can be mathematically expressed
as,

̂DOLP PDI =
1

K

K∑
k=1

∑ N
2K

−1

n=0

(
I‖(n)− I⊥(n)

)
∑ N

2K
−1

n=0

(
I‖(n) + I⊥(n)

)


where,I‖(n) andI⊥(n) are given by eqns 3 and 4. Here, we have
assumedN to be even, for mathematical convenience, though this
is not a necessary condition. Two estimators which represent the
extreme cases of the above general estimator are

̂DOLP PDI1 =

∑N
2 −1

n=0

(
I‖(n)− I⊥(n)

)
∑N

2 −1

n=0

(
I‖(n) + I⊥(n)

) (17)

Fig. 3. Variance of estimators of DOLP in white noise.

and

̂DOLP PDI2 =
2

N

N
2 −1∑
n=0

(
I‖(n)− I⊥(n)

I‖(n) + I⊥(n)

)
(18)

It is clear that all the estimators derived from eqn 4.0.1 will be bi-
ased, since the numerator corresponds to scaled versions of the po-
larization intensity data, which was shown to be biased. However,
if β = π

2
in eqns 3 and 4, or if the relative (rather than the actual)

values of DOLP in a scene are of interest, then,̂DOLP PDI can
be used. However, ifβ → 0, the noise may completely obscure
the DOLP information. Henceforth, we assumeβ = π

2
, so that the

numerator is an unbiased estimate ofIbal.
The form of ̂DOLP PDI is that of a ratio estimator, with both

the numerator and the denominator being Gaussian random vari-
ables which are uncorrelated in case the noise is white, but cor-
related in case of coloured noise. A comparative study of these
estimators has been reported in [13]. It has been found that̂DOLP PDI2 estimator is biased and̂DOLP PDI1 is asymptoti-
cally unbiased. The variances of the estimators are equal and di-
minish to zero asymptotically. Hence, both the estimators are con-
sistent. For these reasons, it is better to usêDOLP PDI1. It can
also be observed that the memory requirements of̂DOLP PDI1 is
less than that of ̂DOLP PDI2.

4.0.2. The PMI estimator of DOLP

In our analysis of the PII, we found that, forβ 6= π
2

, we can obtain
only MLE of Ibal and not its MVU estimate. We can show that
the MLE of Iscat also corresponds to its MVU estimate in both
coloured and white noise. Hence, we can obtain MLE of DOLP
using the invariance property of the MLE [11]. The transformation̂DOLP = Îbal

Îscat
being non-invertible, the MLE maximizes a mod-

ified likelihood function, as explained in [11]. By the theorem on
the asymptotic behaviour of the MLE [11], we conclude that the
MLE achieves the CRLB asymptotically.

4.1. Results from Monte-Carlo simulations

Figs. 3, 4 show the performance of the various estimators in white
and AR1 noise, respectively. We can observe that PDI and PMI
estimators seem to be the best for estimating DOLP too, with the
PDI performing better than the PMI (withβ = π/2). Though MLE
and APES estimators also perform as good as PMI estimator, their



Fig. 4. Variance of estimators of DOLP in AR1 noise.

computational costs are much higher. Hence, PDI or PMI should
be preferred over them.

5. EXPERIMENTAL RESULTS

Experiments were conducted to obtain shadowgrams of an opaque
object immersed in calibrated solutions containing polystyrene mi-
crospheres dispersed in water. We observed that with microsphere
of diameter2.97µ, we could image up to an optical thickness of
around6.77, while we could image up to an optical thickness of
40 in samples containing polystyrene beads of diameter0.11µ. A
result obtained from one of the data sets is shown in Fig.5. Fig 5(a)
shows the shadow of the object without scattering. Fig 5(b) shows
a representative image in the series of images acquired. Figs 5(c), 5(d)
and 5(e) show the polarization intensity imaging result obtained by
processing 16 images recorded using the PDI, PMI and the APES
schemes, respectively. The experimental setup used, was similar to
the one given in [4].β was nearlyπ/2 in the experiment reported
here. The superiority of the PDI scheme can be easily observed by
comparing the results, thereby endorsing our theoretical observa-
tions.
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