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ECG Coding by Wavelet-Based Linear Prediction

A. G. Ramakrishnan,* Senior Member, IEEE, and Supratim Saha, Student Member, IEEE

Abstract— This paper presents a novel coding scheme for
electrocardiogram (ECG). Following beat delineation, the peri-
ods of the beats are normalized by multirate processing. After
amplitude normalization, discrete wavelet transform is applied
to each beat. Due to the period and amplitude normalization,
the wavelet transform coefficients bear a high correlation across
beats at identical locations. To increase the compression ratio,
the residual sequence obtained after linear prediction of the
significant wavelet coeflicicnts is transmitted to the decoder.
The difference between the actual period and the mean beat
period, and that between the actnal scale factor and the average
amplitude scale factor are also transmitted for each beat. At
the decoder, the inverse wavelet transform is computed from
the reconstructed wavelet transform coeflicients. The original
amplitude and period of each beat are ther recovered. The
approximation achieved, at an average rate of 180 bfs, is of high
quality. We have evaluated the normalized maximum amplitude
error aud its position in each cycle, in addition te the normalized
root méan square error. The significant feature of the proposed
technique is that, while the ervor is nearly uniform throughout

the cycle, the diagnostically crucial QRS region is kept free of
maximal reconstruction error.

Index Terms— Cyclostationarity, discrete wavelet transform,
ECG compression, multirate processing, period normalization.

I. INTRODUCTION

LECTROCARDIOGRAM (ECG) coding is required in

several applications such as ambulatory monitoring, pa-
tient data bases, medical education systems, and transmission
over telephone lines. ECG is oscillatory in nature, although
not periodic in the strict mathematical sease. Looking at the
time evolution of this signal, we can observe a concatenation
of similar events or periods, which almost never reproduce
themselves identically. For the same subject, the cycle-to-
cycle variation in the beat period is, in general, much higher
than the occasional variations in the amplitude, position, and
width of the constituent waves. However, most techniques of
ECG compression reported till now have not exploited this
correlation between cycles (interbeat correlation). There is also
some redundancy within each ECG cycle. Direct time-domain
techniques such as [1}-{3], and transform-domain techniques
such as [4]-{8] have considered only this intrabeat correlation
between successive samples. Whereas, long term prediction
[9] and average beat subtraction {10] techniques have used
only the beat to beat correlation, ignoring the redundancy
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within beat. Another limitation of [9] and {10] rises from
the fact that, since the period of a beat changes constantly,
points that are equidistant and farther from the R wave in two
different cycles are not always well correlated. Further, [9]
requires detection of the end points of each cycle, in addition
to QRS detection and the correlation of QRS complex of each
beat with a codebook of complexes. Similarly, the methods
based on modeling, such as {11} and [12] require component
identification for both model order selection and proper cycle
separation. Parametric techniques [12] have minimized only
the intrabeat redundancy and not the other. The technique in
[11] exploits both, but the authors clearly say that heart rate
variability makes it difficult to assign a fixed number of bits
to the differences in model parameters.

The technique proposed in this paper accounts for the
varigtions in the beat periods and then exploits both the
intercycle and the intracycle correlations. The method requires
the detection of no component other than the R-wave. We first
make the period of each beat constant by a nearly reversible
transformation, in which the original periods can be restored
without any loss. We perform amplitude normalization on
these period-normalized beats. On these “period and amplitude
normalized (PAN) beats,” discrete wavelet transform (DWT)
is applied. Linear prediction of selected wavelet coefficients
is then performed and only the prediction error sequence is
transmitted.

{I. PERIOD AND AMPLITUDE NORMALIZATION

For delineating cycles, we define a cycle as the signal from
one R-wave to the next. We used the technique reported in {13]
for QRS detection. We normalize the period of each isolated
beat by multirate techniques [14]. This involves sampling
rate change by different fractional factors for different cycles.
This converts the beats of differing periods into beats of
a constant period, thus eliminating the effect of heart rate
variability. The fixed length of the cycles is selected based
on the maximum possible period of any cardiac cycle and
the sampling frequency. The modified sampling rate must still
satisfy the Nyquist criterion. We have selected a length such
that the new sampling rate is always higher than the onginal
one, ensuring that there will be no distortion of the signal. The
mean beat period (MBP) is estimated from some initial cycles
of the data being coded. This value is initially sent to the
decoder. During encoding, the difference between the actual
period of a cycle and the MBP is transmnitted.

To perform period normalization, we first interpolate the
variable period beat vectors by a factor L, which is the fixed
period planned for. Then the signal is downsampled by the
appropriate factor for each cycle, so that the length of all cycles
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Fig. 1. Period normalization.

becomes uniform. In our case, only the interpolation filter and
downsampling are required. Since ECG is a highly correlated
signal, and since it has been interpolated by a sufficiently
high value, no error occurs in downsampling. The details of
implementation are given below.
if z(n)-is the input to an interpolation filter with an
upsampling factor L and an impulse response k(n), then the
output y(n) is given by
o0
y(n) = Z z(kYh(n — kL).

k=—o00

()

The upsampler simply inserts L-1 zeros beiween successive
samples. The filter h(r), which operates at a rate L times
higher than that of the input signal, replaces the inserted
zeros with interpolated values. Polyphase implementation of
this filter {14) ensures efficient interpolation. The output y(n)
of a decimation filter, with an impulse response h(n) and a
downsampling factor M, is given by
oo
yn)= ), z(k)h(nM ~k)

k=—o00

0}

where h(n) is a lowpass filter used to remove the aliasing
caused by the downsampling of the signal. In case the signal
does not contain frequencies above #/M, there is no need for
the decimation filter; downsampling alone will do. The change
of sampling rate thus achieved is a reversible process, provided
Nyquist condition is satisfied; if the resampled beat is brought
back to the original sampling rate by multirate processing,
there will be no distortion. The output of our system is given
by
Pi—1
Yi(n)= ) Xu(k)h(nM; - kL)
k=0

where X;(n), Yi(n) are the nth samples of the ith input
beat and output PAN beat, respectively, h(n) is the impulse
response of the filter, F; is the total number of samples in
ith original beat, and L, M; are, respectively, the upsampling
and downsampling factors for the ith beat vector. The block
schematic for this operation is shown in Fig. 1. The interpo-
lation is efficiently accomplished in multiple stages as shown
in Fig. 2. (cf,, [14]).

Amplitude normalization brings about further similarity
between the beat patterns. Each sample of a beat is divided by
the magnitude of the largest sample of that beat. This makes
the highest amplitude sample(s) of each beat equal to unity.
Thus, the variations between the magnitudes of different cycles
are minimized. Fig. 3 shows that PAN does not introduce any
distortion in the signal and also demonstrates its efficacy in
enhancing the interbeat correlation. To begin with, the average
amplitude scale factor (AASF) is obtained from a few initial
beats and is sent to the decoder. Subsequently, for each cycle

&)
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being coded, the difference between the maximum amplitude
of that cycle and the AASF is transmitted to the decoder.

Il. WAVELET-BASED LINEAR PREDICTION OF PAN BEATS

In any ECG waveform, the QRS complex is a well-
localized, high-frequency region. The P and T° waves are
low-frequency components, and the PQ and TP segments are
nearly isoelectric with limited information. The ST segment
is a very low-frequency, time-localized component. These
time-localized components affect the entire spectrum of the
ECG, and hence, the Fourier transform is not quite adequate
to characterize it. In fact, accurate representation of such
localized components would require a linear combination
of a large number of sine and cosine waves. Conventional
transforms [such as KarhunenLoeve transform (KLT),
discrete cosine transform (DCT), or DFT} can perform
well only when the signal is stationary, and the energy
is exclusively concentrated in certain bands. Thus, coding
schemes based on such transforms have not really performed
well. Reference [15] used discrete Legendre polynomials to
account for the nonstationarity of ECG beats and obtained
better results. However, wavelets have a lot of potential for
the representation of nonstationary signals. Thus, the ECG
signal, being highly nonstationary within each beat, lends
itself quite well to wavelet transform-based coding. Senhadji
et al. [16] first proposed the use of wavelets for the analysis
of ECG. Thakor {[17] and Bradie [18] applied DWT for
ECG compression, but neither attempted to make use of the
interbeat correlation.

A. Wavelet Transform for Signal Decomposition

In wavelet analysis, a mother function ¥(x) and a linear
combination of its dilated and/or shifted versions are used to
represent a given signal

J@) =) w¥5x(z)
k

j

Q)

where f(z) is the signal to be analyzed, ¥; r(x) is the dilated
and shified version of mother wavelet ¥(z), 7, k € Z, and
determine the dilation and shift factor, respectively, w; i are
the wavelet coefficients, and

W; 1(x) = U(2z - k). 5)

It is desired that the wavelet basis functions be orthonormal
[19] in order to simplify the computation of the coefficients.
From (4) and orthonormality of basis functions, we get the
wavelet coefficients w;z as

w;,x = (f(z), ¥j,1(z)) 6
or
+oo
wj, k= f(2)¥;,i(z) dz. M
From (4) and (5) we get
ity

f@)=)_) w2z -k).
i &
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Fig. 3. PAN: A nearly distortion-friee transformation: (a) Original beats, (b)

While setting up a discrete wavelet transform algorithm, it
is convenient to limit the range of the independent variable
z to one unit interval so that f(z) is defined only for 0 <
z < 1 [20]. Here, z is a nondimensional variable; so if the
independent variable is time ¢, and we are interested in a signal
over duration 7', then z = ¢/T.

Of the many available orthogonal basis functions ¥; x(z) €
L?(R), we have used Daubechies-4 (D4) functions [21] for
representing each PAN beat. The D4 wavelet ¥ o{x) occupies
three unit intervals 0 < = < 3. The expansion of f(z) in
0 < z < 1 can be written [20] as

®

f(z) = v d(z) + wi1 ¥(z) + [wn wﬂ]{'llq’(h)

(2c-1)
¥(4z)
Uz -1)|
U(dz - 2)
U(4z - 3)

+ [wa1 w3z w33 wad)

where ¢(z) = 1, 0 < z < 1 and wj;, refers to the wavelet
coefficient at scale j and location k. Let us form a vector X
by stacking the wavelet coefficients at scales 0, 1, 2, ---, 7
as defined below

X=[%1 Wi Wy W2 W3y Wiz W wae -~} (10)

PAN beats, and (c) reconstructed beats.

Then, from (9) and (10) we get

1(2) = X(O)6() + X()¥(z)
+ 1) XNy
¥(4z)
Y4z - 1)
B(dz - 2)
U(4z - 3)
+-+ X(2 + B)U(2z - k)

+{X(4) X(5) X(6) X(7)]

(i

where X(5) is the jth element of the vector X.

To compute the wavelet coefficients for the signal (sampled
at equally spaced intervals in 0 < z < 1) of each PAN beat, we
use Mallat’s pyramidal DWT algorithm [22], which requires
that the number of samples in the sequence be a power of 2.
The normalized beat is 256 samples long and therefore, DWT
entails an eight level dyadic decomposition. Here, each beat
is shifted to the origin before it is processed, since DWT is
not time-shift invariant. If the above transform is applied to
a PAN beat, owing to the nonstationary nature of the latter
and because of nonuniform distribution of energy across the
different scales, it tumns out that not all the wavelet coefficients
are required for a reasonable quality of reconstruction. It has
been observed that only the highest 20% of the coefficients
are necessary for reconstruction without loss of any significant
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rhythm or morphological information. Thus, an intermediate
compression of roughly 5:1 is achieved by retaining only
some (in fact, a chosen set as explained later) of the wavelet
coefficients and neglecting the rest.

B. Linear Prediction of DWT Coefficients

Since there is a definite correlation between the correspond-
ing wavelet coefficients of different normalized cycles, the
current one can be estimated from a certain number of past
coefficients, and only the residual need be transmitted. This,
precisely, is'the principle of linear prediction (LP), using linear
mean squared criterion. Ruttiman and Pipberger applied LP on
raw ECG samples without any preprocessing and obtained a
reduction in the variance {23]. However, we perform LP of
wavelet coefficients across beats, at corresponding scale and
location. The variance of the residuals obtained is less than that
of the original coefficients. Thus, we are able to allocate three
bits less to each residual than the number of bits required for
each wavelet coefficient.

The wavelet coefficient for the ith beat at scale j and
location n, w;,(%) is estimated by

Wjn(i) = a1, jnwjn(i — 1) + az, jawjn(i = 2) + -
+ ap, inWin(i = P) 12)
where p is the order of prediction and @, jn, -+, ap, jn are the
LP coefficients. The prediction error for scale j and focation
n is then given by
cjn(i) = wjn(i) - ﬁ’jn(i)' (13)
The LP parameters in (12) are chosen according to minimum
mean square error criteria, which is equivalent to the orthogo-
nality of the error with respect to the data used in the prediction
[24}.

We stack the wavelet coefficients at all the scales for each
PAN beat as a vector. These vectors concatenated together
form a near-cyclostationary sequence. This occurs despite the
fact that DWT is time-shift invariant, since the beats are shifted
to origin. Let X; be the vector formed by all the wavelet
coeflicients of the jth PAN beat [refer (10)]. i.e.,

X; =wor(3) win () wn (j) waa(Fwsi (5)

- w32(7) waa(7) wae(s) -} (14)

V=[X1X; - Xn,) (15)
is the near-cyclostationary sequence, where Ny is the total
number of beats being processed. Components of V nearly
satisfy the wide-sense cyclostationary conditions, viz., the
mean, ji,(n) = Elv(n)] ~ E[v(n+N)], where N is the period
and R,(n; + &N, na + kN) ~ Ry(n;, np) for any integer k.

From this sequence, independent linear predictions are per-
formed on the following data sets, each of which is formed by
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grouping the corresponding coefficients from all the beats
Up ={V(0), V(N), V(2N), ---, V[(N — 1)N}}
Uy ={V(1), V(N +1), V(2N +1), ---
V[(Ng - )N + 1]}

U~_1‘='{V(N -1), V@N-1),---
V[(Ng - 1)N+N -1]}.

Because of the near-wide sense stationary nature of these in-
dividual sets, the use of time-averaged autocorrelation, which
depends only on the lag, is justified. The above LP enables us
to transmit only the residual wavelet coefficients, and with a
smaller number of bits.

C. Choice of Significant Wavelet Coefficients

The fact that not all the wavelet coefficients are significant in
the reconstruction of any beat, is because of the high suitability
of time-localized basis functions for representing the locally
nonstationary ECG cycle. By choosing a fixed set of significant
coefficients to be transmitted from each beat, we can eliminate
the overhead of bits required to send the positions of the
coefficients retained in each beat. This, however, needs to
be done without losing important rhythm and morphological
information. PAN beats enable us to achieve this end. We
choose the N, highest amplitude wavelet coefficients from
each of the first K PAN beats, and keep their locations
in different sets P;,i = 1,2,---, K, in descending order
of significance. The algorithm used for deciding the set of
locations of significant wavelet coefficients to be retained in
each cycle follows.

1) B = {Pij},i =142,---,K;j=1,2,---,N;N. <
Np where Np is the final number of coefficients to be
retained in each beat.

2) Initialize N = N,,, < N_, where N,, is the minimum
number of highest amplitude wavelet coefficients to be
retained in each beat.

3) P¥ = {p}z—12 - K;7=1,2,---,N.
4) SN U:—l
5) If|Sx} = Nn, stop.

6) If |[Sn| < Ngp, N =N + 1 and go to Step 4.

7) If |[Sn} > Npg, then from the last set of locations
added, remove (|Sy| — Ng) entries corresponding to
coefficients of least magnitude.

8) Sy is the set of locations of wavelet coefficients to be
retained.

Thus, the selection ensures that at least the first N-1
highest-amplitude coefficients are retained in each cycle,
N, £ N -1 < Np. The results reported in this paper
have been obtained using N,,, = 30, Ng = 50, and K = 15.
Thus LP needs to be performed only for the sets U;, i € Sy.
The block schematic for the encoder is shown in Fig. 4.

D. Beat Reconstruction

The block schematic of the decoder is shown in Fig, 5. The
received residual coefficients are processed by independent
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Fig. 5. Block schematic of the decoder.

inverse filters, whose impulse response depends only on the
respective forward LP filters. The reconstructed coefficients
across the PAN ECG beats are reordered to get the DWT
coefficients for each beat. Inverse DWT of these coefficients
is computed to obtain the reconstructed PAN beats. The actual
period of each cycle is obtained from the period difference
and the MBP. The original period beat is then recovered
from the reconstructed cycle by the method discussed in
Section Il with appropriate parameter changes. The original
scale factor is obtained from the scale factor difference and
the AASF. The period-recovered beats are then multiplied by
the corresponding scale factors to get the reconstructed beats,
and consequently, the reconstructed ECG.

IV. RESULTS AND DISCUSSION

The proposed method was tested on ECG data obtained from
a hospital. The signal was sampled at 250 Hz and quantized
with 12-b resolution. During period normalization, the length
of each cycle was changed to 256 samples. The technique was
also applied on some abnormal data from the Massachusetts
Institute of Technology (MIT) database. Figs. 6-8 give the
original, reconstructed, and the error waveforms, respectively
for three of the subjects. Fig. 6 shows the performance of our
technique on an arthythmic data and one can clearly notice that
the technique really performs very well with variable interbeat
intervals. Figs. 7 and 8 show the results on other types of data.

The performance of the method is evaluated using the
measures discussed below. The compression ratio (CR) has

MBP O—— aasr

Difference

been computed as follows:
CR =

Nr
K)'T;

=1
NT(NRb +a, + ap) + {NR(pbp + bnz) + bap + ba,a}
(16)

where K is the number of b/sample in the original signal, T;
is the period of ith beat, N7 is the total number of beats, Ny
is the number of coefficients whose residuals are transmitted
for each cycle, b, a,, and a, are the number of bits used for
transmitting each residual, scale factor difference, and period
difference, respectively, p is the order of the LP filter, by, b,..,
bap, and b, are the number of bits used for transmitting each
LP parameter, each element of Sy, the MBP, and the AASF,
respectively. The terms within braces in the denominator need
to be sent to the decoder only once.

A. Normalized Root Mean Square Error (NRMSE)

The expression for this common error measure is

N-1
Z [z.(3) — = G)P?
i=0

N-1

> =3)

=0

NRMSE = {n
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Fig. 7. Results of our technique on another subject. (a) Original ECG, (b) reconstructed signal, and (c) reconstruction efror.

where N is the total number of samples, and z,(i} and
z,(i) are the ith samples of original and reconstructed ECG,
respectively. Since NRMSE is only an average measure, it
alone cannot adequately quantify the performance of an ECG
compression algorithm. This is because the QRS complex of
the ECG carries significant morphological information, and
error in this region must not be excessive. NRMSE does not
give any idea about how the error is dispersed within any cycle.

Since the distribution of error within a cycle is also important
in determining the clinical acceptability of the reconstructed

data, we find out the maximum error and determine its position
within each cycle.

B. Normalized Maximum Amplitude Error (NMAE)

The maximum amplitude of reconstruction error in each
cycle is normalized by the dynamic range of the signal. The
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expression for NMAE for the ith cycle is

max ,Xm - X,-i'

NMAEi:maxXoi—minXo;'

(18)

The mean NMAE for a subject is obtained by averaging over
all the cycles.

C. Position of Maximal Reconstruction Errors

It is interesting that the proposed approach entails nearly
uniform distribution of error across the cycle. Besides, the
maximum error in any cycle does not lie in the QRS region.
Fig. 9 shows the positions of maximum errors in different
cycles for a subject, plotted against the cycle number. The
technique has performed well for different types of ECG
waveforms due to:

1) period and amplitude normalization;

2) capability of wavelets to adapt to changes in morphol-

ogy;

3) application of LP on wavelet coefficients across cy-

cles rather than on the consecutive samples or wavelet
coefficients of a cycle.

Table I gives the performance figures for five different
subjects. It can be seen that the bit rate achieved varies from
135-225. The method proposed is elegant. It does not require
any a priori knowledge of the ECG waveform. The significant
‘advantage of the method is that the generally diagnostically vi-
tal QRS complexes are recovered with a fidelity as good as the
other regions. In addition, the maximum error never occurred
in the QRS regions, even while achieving a good CR and an
overall error within limits. The distribution of reconstruction
error is almost uniform, and thus the morphology of all the
components are preserved. Most of the previous authors have

~

0

"300 20 40 60 80 100

cycle number

Fig 9. Position within cycle of peak reconstruction error, plotted as a
function of beat number, for one of the subjects. The PAN ECG beat,
superimposed along the y-axis, aids in identifying the location with respect
to the QRS complex.

not achieved this, with the exception of Philips {25]. Since
the signal amplitude levels in the QRS region are very high,
the QRS complex has been reconstructed with less relative
error, than the other regions of the ECG. Thus the performance
of the method can be considered good because it retains
more.clinically relevant information with high fidelity. This
is because in wavelet based decomposition, multiresolution
analysis is performed and the localized high-frequency region
is reconstructed well, as the wavelet coefficients contributing
to the QRS regions are unaltered (except for quantizatton loss).
Thus, all important morphological information is retained.
Since the beats considered are R-wave to R-wave (R-R),
and the periods are transmitted, and since the wavelet bases
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TABLE 1
PERFORMANCE FIGURES FOR FIVE OF THE SUBJECTS

CR { Bit Rate { NRMSE% | NMAE%
16.76 178.9 10.07 5.03
19.1 157.1 11.27 9.77
15.24 196.8 11.73 5.22
223 134.5 13.34 6.81
13.4 223.8 9389 496

are time-localized, all rhythm information is also preserved.
Normalization (PAN) of ECG cycles leads to LP that performs
better, than is the case with nonnormalized cycles.

The computational complexity of the technique, while being
comparable to those of [11] and [25], is higher than most
methods. Thus, currently, the technique can be utilized for
off-line applications such as patient databases and medical
education systems. However, one can conceive of alternate,
faster techniques for period normalization, in which case, with
suitable dedicated hardware for normalization and DWT, and
parallelization of possible steps (such as LP and amplitude
normalization), real-time implementation of this technique
may become possible.

In unusual circumstances, if the residuals are very high
for an odd cycle, prediction can be avoided and the actual
amplitudes of the top N wavelet coefficients of that cycle
can be sent. However, in the case of the database we used,
this situation did not occur. Nonetheless, in order to evaluate
the technique in such circumstances, we tested all our data with
only this PAN-DWT-truncation technique. The expression for
CR in this case reduces to

Nt
aoz T
i=1
NT[aa +ap+ NR(ﬂa + ﬁp)]

where a,, (g, Op, B,, and B, refer to the number of bits re-
quired for transmitting original sample, scale factor difference,
period difference, the amplitude of each wavelet coefficient,
and the difference between the locations, respectively. The
other symbols are the same as in (16). Applying only this
variation, we could still obtain mean CR values of above
ten. A rigorous evaluation of this technique has been done
in [26). This modified technique is infinitely adaptive in
that it transmits the most significant coefficients of any beat
irrespective of its similarity or otherwise with the rest of the
data.

CR =

(19

V. CONCLUSION

A novel scheme for high fidelity coding of ECG has been
proposed. Handling R-R beats eliminates the ambiguity that
normally arises in deciding the endpoints of a cycle whenever
PQRST beats are used. The method, based on LP of chosen
wavelet coefficients of PAN beats, performs well with both
normal and pathological data. The normalization of beats has
not been attempted-or even conceived of by any other earlier
work, even where each beat is taken as an unit, or intercycle
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correlation is exploited [9], [10]. This preprocessing converts
the ECG data into a near-cyclostationary sequence and enables
the uniform choice of wavelet coefficients to be retained in
each beat, and hence, their prediction. The earlier wavelet
based compression schemes have not attempted this [17], [18].
With the proposed technique, a mean transmission rate of 180
b/s has been achieved (for the data tested) with no compromise
on the fidelity of reconstruction. It exploits both interbeat and
intrabeat correlations. Further, the clinically more significant
QRS complexes are coded with an error equal to that in the
other regions in each cardiac cycle.
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