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Abstract—Features extracted from the electrooculogram
(EOG) or electroencephalogram (EEG) are able to distin-
guish between waking and sleeping states of a person with
95.2% and 97.5% accuracy, respectively. Sleep EEG data
of eight subjects from the Physionet database have been
analyzed using 8th order autoregressive model and the model
parameters have been used as features, along with Higuchi
fractal dimension and sample entropy. Independently, features
derived from EOG such as power in a particular band of
frequencies and sum of absolute differences were also used.
A combination of all these features obtains the maximum
accuracy of 98% using 10-fold cross-validation, employing a
support vector machine classifier with radial basis function
as kernel. Knowing whether a person is awake or asleep
is extremely important before presenting sensory stimuli to
the patients with disorders of consciousness as a part of
neurorehabilitation.

Index Terms—EOG, power, EEG, AR parameters, sleep,
wakefulness, coma, SVM, Higuchi fractal dimension, sample
entropy.

I. INTRODUCTION

Sleep is a natural mode of relaxation and it has a
direct impact on the physical and mental health of human
beings. Lack of sleep or sleep deprivation can lead to
numerous health problems, depression or even death [2].
Therefore, getting a good quality of sleep is of prime impor-
tance. Traditionally, sleep analysis is performed using all-
night polysomnographic (PSG) recording which is visually
scored by the experts based on Rechtschaffen & Kales’s
(R&K) scale or American Academy of Sleep Medicine
(AASM) rules [10, 14]. Visual scoring is an extremely time
consuming and tedious process, and automating it would be
extremely useful.

There are basically two types of sleep: rapid eye move-
ment (REM) and non-rapid eye movement (NREM). The
latter is further subdivided into three stages, namely N1,
N2 and N3. Each of these stages have their associated
characteristics. N1 stage is essentially changeover from
wakefulness to sleep, with slowing down of heartbeat,
breathing, eye movements and even brain waves [2]. As

the sleep deepens towards the N2 and N3 stages, all the
physiological signals further slow down. N2 stage is char-
acterised by the presence of sleep spindles, K-complexes,
or both. N3 is the deepest stage of sleep prominently
characterized by delta waves. REM stage is very similar
to the awake state, also referred to as the dreaming stage.
Utilizing these characteristics, one can distinguish between
the different sleep stages. Many researchers are working
towards accurate and automatic sleep stage classification
[3, 4, 13].

Our aim is to provide a two-stage (sleep or awake) clas-
sification rather than multiple stages of sleep such as N1,
N2, N3 or REM. We are interested to find whether a patient
in coma is asleep or awake. Since there is no specific sleep-
wake cycle present in these patients, it is extremely difficult
to look for sleep characteristics or patterns in EEG [11].
The best option in this case is to accurately classify these
two states (sleep and wake state) of the brain. In this study,
we have explored different features derived from EEG and
EOG for accurately predicting the sleep/wake states of the
brain. We propose a novel algorithm utilizing the non-
linear EEG features namely Higuchi fractal dimension and
sample entropy, and the autoregressive model along with
the spectral features derived from EOG signal to predict
the sleep/wake states.

II. ROLE OF EEG AND EOG SIGNALS IN DERIVING THE
SLEEP/WAKE STATE

EEG is considered to be the most informative signal for
analyzing the different states of the brain such as resting
state, sleep or wake state. Information is being processed
in all these states but the rate and amount of information
varies among the different brain states. Distinct frequency
bands of EEG such as alpha (8-13 Hz), delta (0.5-4 Hz) or
theta (4-8 Hz) can be used to identify the characteristics of
sleep stages. Non-linear dynamics of the EEG signal can be
further employed to improve the prediction of sleep/wake
states.

EOG signal is frequently used in sleep studies to record
the eye movements, which are very prominent in the REM
stage of sleep. Spectral features derived from the EOG978-1-7281-6916-3/20/$31.00 ©2020 IEEE



signal can serve as complementary information that can
further improve the prediction accuracy.

III. MATERIALS AND METHOD

Figure 1 presents the flowchart of the proposed algorithm
to classify the sleep/wake states.

A. Sleep EEG dataset used for the experiments

In this study, we have used sleep EDF dataset from
physionet, which consists of overnight sleep data from 8
subjects, four healthy and four with mild difficulty in falling
asleep [5]. These recordings consist of horizontal EOG,
Fpz-Cz and Pz-Oz EEG channels sampled at 100 Hz. We
have considered EOG and Pz-Oz EEG channel in our study.
Each 30 s epoch has been scored by experts as per R & K
scale [14].

B. Features computed from EEG and EOG

The raw EEG signal is preprocessed using a bandpass
filter with the passband frequencies ranging from 0.1 to
45 Hz. This signal is then segmented into 30s epochs, out
of which the unscored epochs are removed. From these
segmented epochs, different features are extracted which
are provided as input to the classifier for training.

1) Features derived from EEG: Epochs segmented from
a single EEG channel Pz-Oz are fed to an AR model which
provides AR coefficients as features for each epoch. Fur-
ther, nonlinear aspects of EEG are captured using Higuchi
fractal dimension (HFD) and sample entropy.

Autoregressive (AR) model parameters: An Autoregres-
sive model is used to predict the current behavior of a
signal based on its past values. This is one of the most
frequently used techniques in linear predictive modelling
of time series. The number of samples used for prediction
determines the order of the AR model. We have used AR
model of order 8 to predict the EEG samples of each
individual epoch.

x(n) =

p∑
j=1

ajx(n− j) (1)

where p is the order of the AR model and aj are AR
coefficients, which are used as the derived features.

Higuchi fractal dimension (HFD): Fractal dimension is
an important characteristic of a system, because it contains
information about the geometrical structures at multiple
scales [1]. Higuchi’s algorithm [8] is popular for calculating
the fractal dimension. In order to obtain the Higuchi’s
fractal dimension of a non-linear time series, a new set
of series is first generated from the original time series,
defined as follows:

Xm
k : x(m), x(m+ k), x(m+ 2k), ...x(m+ bN −m

k
ck)
(2)

Fig. 1. Flowchart representing the proposed algorithm.

with m = 1, 2, ...k. Then the length of the curve associated
with each of the newly generated time series Xm

k is
calculated as,

Lm
k =

1

k

( bN−m
k c∑

i=1

| x(m+ik)−x(m+(i−1)k) |
)( N − 1

bN−mk ck

)
(3)

〈L(k)〉 ∝ k−D (4)

The average value 〈L(k)〉 of the lengths associated with
the time series following a power law given by (4) provides
the value of Higuchi fractal dimension ’D’.

Sample entropy (SE): Entropy measures the irregularity
of the signal based on the series of patterns embedded in
it. Sample entropy, unlike approximate entropy, is easier



to implement and also independent of the length of data.
Therefore, sample entropy is favored in many studies in-
volving stationary time series analysis [12]. Sample entropy
is defined as:

SE(m, r,N) = − ln

(
Cm+1(r)

Cm(r)

)
(5)

where Cm is given by

Cm(r) =
{number of pairs (i, j) with | xm

i − xm
j |< r, i 6= j }

{number of all probable pairs}
(6)

The parameters m, r and N are defined as the length of
sub-series, tolerance of accepting matches and the total
number of samples in the series, respectively. The values
of the parameters considered in this study are m = 2
and r = 0.15 of the standard deviation of the original
time series. These values are chosen based on the previous
studies [9, 12].

2) Features derived from EOG : EOG signal can effec-
tively measure the eye movements, which form an integral
part of REM i.e rapid eye movement sleep stage. Features
evaluated from EOG signal can therefore distinguish be-
tween the sleep and waking states.

Spectral power (SP): We have calculated the power
content of the EOG signal in the frequency band of 0.2-
2 Hz. This band is chosen since maximum power is
contained within this range. Epochwise power of the signal
is obtained from the power spectral density as follows:

Power =

k2∑
k=k1

Px(k) (7)

where Px is the power spectral density estimated using
Welch’s method and k1 and k2 are the indices of the DFT
corresponding to 0.2 and 2 Hz, respectively.

Sum of absolute differences (SAD): This feature is simple
yet powerful to find a trend in the time series. It is
defined as the sum of the absolute differences between the
consecutive samples in the series.

y =

N∑
n=1

| x(n)− x(n− 1) | (8)

where y is calculated for each epoch as the sum of the
absolute first difference signal and N is number of samples
in an epoch.

C. Epochwise classification into sleep/waking states

The EEG and EOG derived features along with the
binary state information extracted from the hypnogram are
input to different classifier models. We have also compared
the performances of different linear and non-linear clas-
sifiers: linear discriminant analysis (LDA), support vector
machine (SVM) with linear or radial basis function kernel,

k-nearest neighbour (KNN) and decision tree. Further, 10-
fold cross-validation is applied to evaluate the generaliza-
tion capability of each model.

IV. RESULTS

A. Efficacy of EEG derived features in binary state-
prediction

It is evident from Fig. 2 that the first AR coefficient
obtained from the EEG accurately captures the sleep/awake
state information. Further, Fig. 3 shows that the values of
some of the AR coefficients are larger in the waking state
than in the sleep state, while others exhibit the opposite
trend. This pattern is consistent across all the subjects.
The AR coefficients distinctly define the state and provide
an accuracy of 96.9% in 2-state classification using SVM-
RBF.

Nonlinear features such as sample entropy and Higuchi
fractal dimension have been used to capture the non-
linearities embedded in the EEG signal. HFD is a measure
of self- similarity, and as expected, the fractal analysis
enables the identification of these two different states. In
wake state, the EEG signal has a fractal behavior with
higher values of fractal dimension, while in sleep state,
the values get reduced. Similarly, sample entropy, which
assesses the signal complexity, is higher for the wake state.
It gets reduced as soon as the sleep onset begins. This trend
can be seen in all the three EEG features, as shown in Fig
2.

Table I shows the performances in terms of accuracies (in
%) of various EEG derived features, both individually, and
in different combinations. It also compares the recognition
performances of five different classifiers for the different
combinations of EEG features. The best feature and clas-
sifier combination turns out to be all the three features fed
to SVM with RBF kernel. Further, Fig. 4 compares the
statistics of the EEG features for their ability to classify
sleep/wake states. Thus the order of preference would be
the AR coefficients followed by HFD and then sample
entropy.

B. Efficacy of EOG derived features in binary state-
prediction

Figure 5 illustrates that both the SP and SAD features
obtained from the EOG characterize the sleep/wake states
well. Table II summarizes the classification results for the
EOG features using different classifiers. As expected, the
best performance is obtained by SVM-RBF classifier for
all the features. Individually, they achieve recognition rates
of 84.4% and 94.4%, respectively. Combining both the
EOG features provides a good accuracy of 95.2% in 2-
state classification, without utilizing the information from
EEG.



Fig. 2. The hypnogram of subject 1 and the corresponding epochwise values of the EEG features: first AR coefficient, sample entropy and HFD.

Fig. 3. Plots of the values of the first five AR coefficients and the
corresponding hypnogram for subject 1.

C. Performance of the combined EEG and EOG features

We have already seen that the EOG and EEG features
individually provide maximum accuracies of 95.2 and

Fig. 4. Boxplot giving median values, 25th and 75th percentiles and
range of EEG features during sleep and waking states (red: wake;blue:
sleep)



97.5%, respectively. Table III lists the performances of
various combinations of features derived from EEG and
EOG using SVM-RBF classifier. The best accuracy of
98.1% is obtained using all the three EEG features and
both EOG features.

In order to highlight the potency of the proposed al-
gorithm, we have shown the actual and predicted 2-state
hypnograms for two of the subjects. Figures 6 and 7
show that the states of most of the epochs are accurately
predicted. Figure 8 shows the confusion matrix between
the evaluation of the experts and our algorithm. The sen-
sitivities of wake and sleep states are 98.7% and 97.8%,
respectively.

TABLE I
CROSS-VALIDATION RESULTS USING ONLY EEG FEATURES (THE

NUMBERS GIVE OVERALL CLASSIFICATION ACCURACIES IN %)

Features
Classification Models

LDA Linear-SVM SVM-RBF KNN Decision tree
AR 94.73 95.83 96.89 95.77 94.76

HFD 94.34 94.52 94.56 91.31 91.72
SE 91.45 92.37 92.65 88.29 88.87

AR+HFD 95.74 96.32 97.25 96.26 95.47
HFD+SE 94.36 94.53 94.94 93.07 93.30
SE+AR 95.35 95.89 97.38 96.46 95.46

HFD+SE+AR 95.83 96.33 97.53 96.67 95.75

TABLE II
ASLEEP/AWAKE CROSS-VALIDATION RESULTS (OVERALL EPOCHWISE

ACCURACIES IN %) USING ONLY EOG FEATURES

Features
Classification Models

LDA Linear-SVM SVM-RBF KNN Decision tree
SP 79.9 81.64 86.2 79.1 80.1

SAD 89.7 93.7 94.4 91.2 91.7
SP+SAD 89.6 94.4 95.2 92.7 93.1

TABLE III
CROSS-VALIDATION RESULTS (EPOCHWISE) USING BOTH EEG AND

EOG FEATURES AND THE BEST CLASSIFIER: SVM-RBF

Features Accuracy (in %)
EEG (AR) & EOG (SAD) 97.49

EEG (AR) & EOG (SAD+SP) 97.74
EEG (AR+HFD) & EOG (SAD) 97.85

EEG (AR+HFD) & EOG (SAD+SP) 97.86
EEG (AR+HFD+SE) & EOG (SAD) 97.96

EEG (AR+HFD+SE) & EOG (SAD+SP) 98.08

V. CONCLUSION

Combinations of different features extracted from hori-
zontal electrooculogram and Pz-Oz channel EEG were used
with different classifiers to distinguish between waking and
sleeping states of the subjects. The best recognition result
was obtained with the combination of three features from
EEG and two features from EOG using SVM classifier
with RBF kernel. The features extracted from EEG are AR
parameters, Higuchi fractal dimension and sample entropy.
The EOG features are spectral power and sum of absolute

differences. The proposed algorithm provides an accuracy
of 98.08%, which is higher than the results reported in
previous studies on the sleep EDF database for two-state
sleep classification [3, 6, 7, 16, 17, 15].

It is significant that only by using the features from a
single EEG channel, we can get 97.5% accuracy. Similarly,
only by using the features from EOG, one is able to obtain
95.2% accuracy. In the case of patients with disorders of
consciousness, one is not sure which signal can be recorded
reliably. In such cases, it is useful to be able to have
alternate ways (signals) to get good recognition accuracy.

In future, we will work with a much larger database
and other features to identify the best feature-classifier
combination which can classify the unseen test data with
over 99% accuracy.
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