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Abstract4

Nearby scalp channels in multi-channel EEG data exhibit high correlation. A question that naturally arises
is whether it is required to record signals from all the electrodes in a group of closely spaced electrodes
in a typical measurement setup. One could save on the number of channels that are recorded, if it were
possible to reconstruct the omitted channels to the accuracy needed for identifying the relevant information
(say, spectral content in the signal), required to carry out a preliminary diagnosis. We address this problem
from a compressed sensing perspective and propose a measurement and reconstruction scheme. Working
with publicly available EEG database, we have demonstrated that up to 12 channels in the 10-10 system
of electrode placement can be estimated within an average error of 2% from recordings of the remaining
channels. As a limiting case, all the channels of the 10-10 system can be estimated using recordings on the
sparser 10-20 system within an error of less than 20% in each of the significant bands: delta, theta, beta
and alpha.
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1. Introduction7

Nearby scalp channels of multi-channel EEG exhibit high correlation because EEG signals are not pro-8

duced in the scalp or the neurons (brain) directly under the recording electrodes. Instead, as suggested9

in [1], they are a consequence of partial synchrony of local field potentials from distinct cortical domains -10

each domain, in the simplest case, being a patch of cortex of unknown extent. At any electrode, the EEG11

recording is a weighted linear mixture of underlying cortical source signals. The strong correlations observed12

between EEG recordings at nearby electrodes can be attributed to the spatial mixing of EEG source signals13

by volume conduction. Significant research effort has gone into exploring the correlation between EEG14

recordings at electrodes on different areas of the scalp. Heavy correlation, as high as 0.9, has been reported15

between anterior-posterior EEG signals in the alpha band in [2, 3, 4]. Very high coherence in the delta band16

has been reported in [5] between posterior temporal lobe regions. Interhemispheric coherence in the gamma17

band has been studied in normal adults in [6]. Existence of very high correlation, between temporal regions18

of the human brain, in the alpha band has been reported in [7].19

1.1. Motivation20

The primary interest in understanding inter-channel correlation in multi-channel EEG is to identify21

the scope for information redundancy in a measurement involving the full set of electrodes. This has the22

following potential applications:23
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1. If the channels are correlated, is it always mandatory to make recordings at all the electrodes, par-24

ticularly those in close vicinity? For any subject, during the initial training sessions, all the channels25

are monitored. Once the correlation is learnt, one could avoid sampling some of the electrodes and26

yet be able to estimate the EEG spectral signature at the locations of the missing electrodes, for the27

same subject. For instance, using recordings on channels in the international 10-20 system of elec-28

trode placement, it is possible to estimate, with fair accuracy, the spectral content of channels in the29

denser 10-10 system. This could be useful in recording ambulatory EEG [8] which is carried out for30

an extended period (up to 72 hours) in which the patient can move about freely during the recording31

and data is stored in a pocket recorder. Thus, EEG recorded on a subject at rest, using a dense set32

of electrodes, can be used for training. Subsequently when the subject is in motion, all the channels33

need not be monitored.34

2. Small form factor and low power operation are desirable features in a wearable EEG system because35

of its limited volume and battery capacity [9]. A design that supports simultaneous transmission of 3236

channels of broadband data sampled at 30 ks/s is proposed in [10]. Wireless telemonitoring of Fetal37

ECG and epilepsy EEG based on compressed sensing has been proposed in [11]. Such architectures38

could benefit considerably from sub-sampling across EEG channels.39

3. In sleep studies, it is possible that data is missing on some channels, either due to noise or due to40

undesirable movement by the subject. In this case, the loss of data, treated as undersampling, can be41

handled by recovery through compressed sensing. Here there is no intentional sub-sampling.42

4. It is possible that deviation between the signal values estimated through compressed sensing and the43

actual measurements (due to loss of correlation), beyond a threshold, may indicate the onset of seizure44

in epileptic subjects.45

5. In applications such as EEG brain mapping, where we are mainly concerned with the relative signal46

content in various frequency bands, accuracy of signal reconstruction per se, at such locations can be47

relaxed.48

The focus of this work [[12]] is restricted to providing empirical evidence of obtaining approximate signal49

reconstruction and a reasonably good estimate of the spectral content in all channels of EEG by recording50

over limited number of channels. Before exploring the possibility of sub-sampling EEG signals, we present51

a brief introduction to the major standards of electrode placement.52

1.2. Standards for EEG electrode placement53

The first internationally accepted standard for electrode placement is the 10/20 system (figure 1a) that54

describes scalp locations via relative distances over the head surface between cranial landmarks. The primary55

purpose of this standard is to provide a reproducible method for placing a relatively small number of 21 EEG56

electrodes for recording. With the advent of multi-channel EEG systems, the need was felt for extending57

the 10/20 system to higher density electrode settings for use in research and diagnosis. This led to the58

introduction of the 10/10 system [13] (figure 1b) consisting of 64 electrodes, as a logical extension of the59

original 10/20 system. While electrodes are placed at distances of ten and twenty percent along certain60

contours over the scalp in the 10/20 system, they are placed at distances of ten percent along the medial-61

lateral contours in the 10/10 system. Also, new contours are introduced in between the existing ones.62

The 10/5 system with even higher electrode density was proposed in [14]. An elaborate description and63

comparison of all these systems is given in [15].64

Consider the scenario where the electroencaphologram of a patient undergoing treatment or a subject65

voluntarily involved in research, needs to be frequently taken. The first session can constitute the training66

phase in which data from recordings on the 10-10 system is used to compute the inverse KLT matrix. During67

the actual recordings that are carried out subsequently, recording is performed at only those electrodes in68

the 10-10 system that coincide with the positions of the less dense 10-20 electrode placement. Simulation69

results (subsection 5.2) demonstrate that through compressed sensing recovery, signals at the rest of the70

electrodes in the 10/10 system can be reconstructed to a fair level of accuracy.71
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1.3. The Physionet database72

We have applied the proposed method to the EEG signal database from Physionet [16]. A detailed73

description of the database is given in [17]. This data set consists of over 1500 one- and two-minute EEG74

recordings, obtained from 109 volunteers. The subjects performed different motor/imagery tasks (see Table75

1), while 64-channel EEG was recorded at a sampling frequency of 160 Hz using the BCI2000 system [18].76

The placement of the electrodes is as per the international 10-10 system (excluding electrodes Nz, F9, F10,77

FT9, FT10, A1, A2, TP9, TP10, P9, and P10). Each volunteer performed, in a sequence, a set of 14 tasks:78

two baseline tasks followed by four different tasks repeated three times. Thus for each subject there are79

14 records each containg data recorded from 64 channels. We have assumed that the motor/imagery tasks80

performed by the subjects (e.g. opening and closing of fists and imagining doing the same) are benign and,81

on a theoretical basis, unlikely to produce ECG, EOG and EMG artifacts in the recordings. Hence, no82

explicit steps have been taken to filter out these signals, in case they exist.83

(a) 10-20 system. Courtesy: Wikipedia (b) 10-10 system Courtesy: Physionet

Figure 1: EEG electrode placement systems

2. Sub-sampling and reconstruction84

Reduction in the number of EEG recordings involves identification of a suitable subsampling/reconstruction85

architecture, realization of which based on many different paradigms has been an important research area in86

itself. Almost all the subsampling schemes proposed for general signals are based on the assumption of signal87

sparsity in some domain such as time, frequency or space. Many spectral estimation methods have been88

proposed, where the signal is assumed to be sparse in the frequency domain. These methods [19, 20, 21] are89

suited to applications like radar, in which targets act as spatially sparse monotones. Though EEG signals90

exhibit characteristic spectral peaks for various normal and pathological conditions, they are not in general91

sparse in the frequency domain. It is at best possible to exploit the intersignal correlation in such cases92

so that a vector of measurements from a set of electrodes could be transformed into a sparse vector on a93

basis derived from the inter-channel correlation matrix. It is important to mention here that significant94

work has been reported previously on the frequency analysis of EEG signals. Time-frequency analysis of95

EEG data based on adaptive periodogram technique has been proposed in [22]. Identification of the signal96
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Table 1: Motor/Imagery tasks during which the EEG used for the study has been collected. (see [17])

Record no. TASK DESCRIPTION OF THE TASK, DURING WHICH EEG IS RECORDED.

Record 1 Baseline 1 Eyes open DURATION: 1 sec
Record 2 Baseline 2 Eyes closed DURATION: 1 sec
Records 3,7,11 Task 1 A target appears on the left or the right side of the screen. The subject opens

and closes the corresponding fist until the target disappears. Then the subject
relaxes.
DURATION: 2 sec

Records 4,8,12 Task 2 The stimulus is the same as Task 1. However, in this case the subject only
imagines responding to the stimulus the same way as in Task 1 and then relaxes.
DURATION: 2 sec

Records 5,9,13 Task 3 A target appears on the top or the bottom of the screen. The subject opens
and closes both fists if the target is on top and both feet if the target is on the
bottom until the target disappears. Then the subject relaxes.
DURATION: 2 sec

Records 6,10,14 Task 4 The stimulus is the same as Task 3. Again the subject only imagines responding
to the stimulus the same way as in Task 3 and then relaxes.
DURATION: 2 sec

components through decomposition of data into time-frequency-space atoms (based on the Wigner-Ville97

distribution) using parallel factor analysis has been proposed in [23]. Time-frequency spectral estimation of98

multichannel EEG has been attempted [24] using smooth, time-frequency localized versions of the Fourier99

functions. These contributions address the problem of detection and analysis very well.100

In [25], the authors have exploited the joint sparsity of EEG signals on the Gabor frame and have101

achieved a low normalized mean square error. However in this work, the different trials are treated as102

different electrodes with the assumption that in both cases the same underlying activity is measured. In103

[26], the authors have suggested a novel approach of structuring individual signals into groups and exploiting104

the group sparsity by computing the l1, 2 regularization. However their approach involves the use of the105

unconventional random sampling based acquisition architecture and does not exploit the joint sparsity of a106

group of signals. In [27], the authors have demonstrated the use of fast ICA as a preprocessing step before107

compressed acquisition of EEG signals to achieve a low reconstruction error.108

In the approach that we report in this paper, we intend to exploit the inter-channel correlation in EEG and109

in the process do away with some of the channels altogether during later acquisitions. The focus of our efforts110

is more on detecting the signal content in various spectral bands using measurements on limited number of111

channels. Section 4 gives a brief introduction to the well known Karhunen Loeve Transform (KLT), which112

makes available a sparsifying basis for a set of correlated signals. With such a sparsifying basis, a random113

subsampling scheme like compressed sensing could be employed for undersampling and reconstruction of the114

channels. Compressed sensing has made a significant impact in sparse signal processing in the past decade.115

The next section presents a rudimentary introduction to the area.116

3. Compressed sensing paradigm117

In classical compression, signals are Nyquist sampled and transformed into a sparse domain, following
which only the significant coefficients are retained for transmission or storage. The compressed sensing
paradigm [28, 29, 30, 31] provides mechanisms for random sub-sampling of signals that are sparse in an
arbitrary transform domain, and subsequent reconstruction of the original signal from the sub-sampled
measurement. Under compressed sensing schemes, sampling and compression are combined into a single
step, so that only the required smaller number of samples are obtained through non-uniform sampling at
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a sub-Nyquist rate. Let x ∈ RN be a finite length, discrete signal in the time domain which is to be sub-
sampled. Assume that x has a sparse representation in a transform domain, represented by the unitary
matrix Ψ ∈ RN×N . In other words,

x = Ψc (1)

where c is an N × 1 vector that has at most K < N non-zero elements, i.e. it is a K-sparse vector. In
practice, for real world signals x, c has at most K significant elements and the rest are negligibly small.
For signal compression, the negligible coefficients are set to zero and only the significant coefficients are
transmitted (stored). A lossy recovery of the original signal is then obtained using (1). Although the signal
is efficiently compressed, all the Nyquist samples are required initially. Compressed sensing theory suggests
that, M < N linear combinations of the signals be taken using a measurement matrix, Φ ∈ RM×N we have,

f = Φx = ΦΨc (2)

The next step after taking the compressed measurement is to reconstruct the original signal x, given the118

measurement vector f, the inverse transformation Ψ−1, and the measurement matrix Φ. It is clear that119

simple linear algebra does not permit us to do so, due to the fact that the set of equations (2) has more120

number of unknowns than equations.121

The earliest reconstruction algorithms, that were proposed to get around this problem, were geometric122

involving l1 minimization techniques to find the K-sparse vector, c from the measurement f.123

minimize ‖h ‖1, subject to ΦΨh = f

ĉ = h

x̂ = Ψĉ (3)

Also known as the basis pursuit [32], this method has been widely used in various applications of com-124

pressed sensing. It can be extended to the case of noisy signals by altering the first line in (3) as:125

minimize ‖h ‖1, subject to ‖ΦΨh− f‖2 ≤ ε (4)

where ε is a small application specific term bounding the amount of noise in the data.126

l1 minimization technique offers a high reconstruction accuracy. However, its complexity increases sig-127

nificantly with signal dimension. Iterative greedy algorithms have been proposed, which execute faster128

compromising the reconstruction accuracy. The orthogonal matching pursuit [33], along with its many129

variants [34, 35], is a greedy, iterative algorithm which finds the support of the sparse vector progressively.130

4. Karhunen Loeve Transform131

Karhunen Loeve Transform (KLT) [36, 37] is a reversible linear transformation that removes redun-132

dancy in signals by decorrelating them. KLT has been extensively used in image compression, wherein the133

correlation between the pixels is exploited.134

Consider the signal matrix, S ∈ Rτ×N , the rows of which are indexed by τ successive time instants and
the columns are indexed by N correlated signal sources taken from a training set. The covariance matrix
of S denoted by ΣS , is real and symmetric for real valued S and its eigen vectors, ψn, are orthogonal.
Consequently, one can construct an orthogonal matrix, Ψ ≡

[
ψ0,ψ1, ...,ψN−1

]
such that

ΣSΨ = ΨΛ (5)

where Λ is a diagonal matrix consisting of the corresponding eigen values. It is to be noted that Ψ is the135

inverse (or transpose) of the well known KL transform.136

Let x ∈ RN×1 be a test vector comprising samples from N sources. If we assume the inter-signal137

correlation in the test vector does not vary much from that of the training data, then x can be represented138

on the basis Ψ as in (1) and the vector c can be considered to be sparse. This in turn implies that only a subset139
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Ω ⊂ {1...N} (of size |Ω| = M) of the N source signals need to be sampled to form a measurement vector140

and the remaining sources can be estimated through a suitable reconstruction scheme. Such a subsampling141

scheme can be represented by a measurement matrix Φ formed by the down-sized identity matrix2, I
(M)
N142

consisting of those rows of an N ×N identity matrix IN that are indexed by the set Ω. Thus, in equation143

(2) we have Φ = I
(M)
N and an estimate of x can be obtained by solving (3) where Ψ is the inverse of KLT144

of S.145

The name KLT has been synonymously used with principal component analysis (PCA) by the signal146

processing community. In the light of this, it is very pertinent to mention that the method proposed in147

this paper is not the same as the sparse PCA approach [38, 39] which seeks sparse principal components148

that span a low dimensional space where the matrix Ψ is found by solving an optimization problem with a149

sparsity constraint on its entries. Equivalently, one tries to maximize ψTnΣSψn subject to ‖ψn‖2 = 1 and150

also ‖ψn‖0 = K where K is the parameter that controls the sparsity.151

Our work is similar to regular PCA (or KLT), where the matrix Ψ is formed out of the eigen vectors152

of the covariance matrix (5). In other words, one tries to maximize ψTnΣSψn subject to ‖ψn‖ = 1. Thus,153

the sparsity constraint is not imposed on Ψ. Instead, sparsity constraint is applied on the vector c in the154

minimization in the equations (3) that also involve the matrix Ψ formed using the standard PCA with the155

help of plain matrix algebra. Thus, throughout the process of acquisition and reconstruction of the signals,156

the inverse KLT matrix Ψ, calculated previously from the training data set, remains unaltered.157

5. Application to EEG signals158

5.1. The experiments159

Our experiments are performed on fifty five subjects (about half of the total number in the database)160

arbitrarily picked up from 1 to 109 in the Physionet database. The experiment comprises the following161

steps, which are categorized into the training and the testing phases for the sake of clarity:162

163

Training phase164

Step 1: For each subject, two of the records are arbitrarily picked up from 3 to 14 (the baseline records are165

not considered). One of them is used for training and the other is used for testing.166

Step 2: The inverse KLT matrix is computed for the training record using all the 64 channels of the 10-10167

system (see figure 1b).168

169

Testing phase170

Step 3: For each subject, at each successive time instant of the test record, a sub-sampling is carried out.171

That is, only a subset of the 10-10 system, consisting of nineteen channels that coincide with the locations172

of electrodes in the 10-20 system (FP1, FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8,173

O1, O2) are sampled. The samples from the nineteen channels form the measurement vector, y(t). The174

remaining forty five are estimated separately using each of the following reconstruction algorithms:175

• basis pursuit (BP)176

• orthogonal matching pursuit (OMP)177

• compressive sampling matching pursuit (CoSAMP)178

• regularized orthogonal matching pursuit (ROMP)179

The inverse KLT matrix computed on the training record is used as the measurement matrix in each case.180

Step 4: The DFT3 of the original and reconstructed signals is computed for blocks of size 512 samples.181

2Informal arguments in the Appendix justify the use of the downsized identity matrix as the measurement matrix.
3To compute the DFT, the entire signal is divided into segments of length 512, with a 50% overlap. To each segment, a

Hamming window is applied and the DFT of the windowed segment is calculated. The absolute values of the DFT coefficients
are averaged over all the segments. We have chosen 512 as the size of the DFT so as to get a good frequency resolution of
0.3125 Hz in the DFT spectra, given that the sampling frequency is 160 Hz.
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Step 5: The original and the reconstructed signals are compared (as explained in the next section) for each182

of the 45 channels that are compressively reconstructed.183

It is to be noted that, for any subject, all the 64 EEG channels are sampled only during initial training.184

Subsequently, on the same subject, only a subset need to be sampled and the rest can be reconstructed.185

5.2. Results186

In order to quantify the reconstruction quality, the normalized mean square error (NMSE) between
the DFT coefficients, ziorg of the original signal and those, zirec, of the reconstructed signal is computed in
each channel for each of the significant frequency bands - delta, theta, alpha and beta (denoted by i). The
NMSE for the ith band is defined as

NMSE(i) =

∥∥∥z
(i)
rec − z

(i)
org

∥∥∥2

2∥∥∥z
(i)
org

∥∥∥2

2

(6)

where i denotes one of the bands: delta, theta, alpha and beta. Towards this end, the following values,187

taken from [40] have been chosen as the lower and upper limits of each band: delta: 0.1-3.5 Hz; theta: 4-7.5188

Hz; alpha: 8-13 Hz; beta: 14-30 Hz. Experiments have been carried out on records from 55 subjects in the189

physionet database to verify proof of performance. For each subject, two records were arbitrarily picked up;190

one record was used for training and the other for testing.191

Sample results (see figure 2) have been shown for Subject 364 in the interval: 60-80 s. The figure192

gives a time domain comparison of the original and the reconstructed signals for the ‘F2’ (which belongs193

to the 10-10 system) channel along with a comparison of the corresponding log spectrum. As an additional194

assessment of the effectiveness of our method, the Fourier spectrum of the reconstructed signal is compared195

with the spectrum, of the original signal, estimated by linear prediction5 (LP) in the bottom sub-plots each196

of the subfigures: 2a, 2b, 2c, 2d. Comparison with LP spectrum is motivated by [[41]] in which FFT and197

auto-regressive spectra have been compared for heart rate variability studies. However, it is known that the198

fidelity of the LP spectrum depends on the model order chosen and will be a poor approximation to the199

actual spectrum, if the prediction order is low. Hence, a high model order of 50 is chosen. Further, it is200

to be noted that the LP spectrum is computed from the actual signal itself, which is compared with the201

Fourier spectrum of the signal reconstructed from the other channels. The plots clearly show that spectra202

of the compressively reconstructed signals have a reasonably good match with the spectrum of the original203

signal.204

Figure 3 gives the NMSE values, shown as plots, for forty five 10-10 channels, of Subject 36, reconstructed205

using various recovery algorithms. The NMSE values between the linear prediction spectral coefficients and206

the DFT spectra of the original signal are also shown (in blue) in the same figure. Table 2 gives the average207

NMSE across all the reconstructed channels with various recovery methods along with the corresponding208

values for linear prediction spectrum.209

A plot of the NMSE in different EEG bands, averaged over all the reconstructed channels, is shown210

55 subjects in figure 4. Please note that while in figure 4, the plots shown are the average NMSE of 45211

channels for each of the 55 subjects (x-axis) in different bands, in figure 3, the plots shown are the NMSE212

of 45 reconstructed channels (x- axis) of the 10-10 system of a single subject. Although the NMSE for a few213

channels is above 0.2 (mainly in the alpha and beta bands), the average NMSE across all channels for the214

55 subjects (figure 4) is close to 0.1 in all the bands.215

The rationale behind sampling 19 channels and reconstructing all the 64 channels including the 45 that216

are not sampled is to be able to reconstruct EEG signals on the 10-10 grid (which uses 64 channels) using217

measurements on the 10-20 grid (which uses 19-21 channels). However, simulation has been carried out to218

observe the variation of NMSE as the number of sampled channels is altered from 10 to 63. When the number219

4Both the subject and the interval have been arbitrarily chosen
5Order 50 has been used in the simulations
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Table 2: Average NMSE for Subject 36 using various reconstruction methods. For comparison, the corresponding
figures with LPC spectrum of the original signal are given.

Average NMSE(%)
Delta Theta Alpha Beta

BP 3.76 3.26 5.27 4.36
CoSAMP 2.0 1.26 1.87 2.87
OMP 3.35 1.80 2.58 2.53
ROMP 2.52 1.58 3.34 3.86
LPC 7.45 8.26 7.95 8.77

of sampled channels is as low as 10, the number of channels that have to be compressively reconstructed is220

54. When the number of sampled channels is 63, only one channel is recovered through compressed sensing.221

As seen in figure 5 the NMSE steadily decreases as the number of sampled channels increases from 10 to222

63, with all the reconstruction methods. The mean NMSE is less than 3% when nearly 50% of the channels223

are predicted from the remaining 32 channels and it is less than 1% when only 10% of the channels are224

predicted from the remaining 58 channels.225

The simulation has been carried out on 64-bit Matlab operating on a computer with the specifications:226

Intel core i7 processor @3.4 GHz with 4 GB RAM. The mean computation time per subject for the recon-227

struction of 64 channels 6 of 125s duration EEG is 54.7s for OMP, 63.4s for ROMP, 105.7s for CoSAMP228

and 2602s for BP.229

6Although 45 of the 10-10 channels have to be estimated, all the 64 channels (including the 19 belonging to the 10-20 system
that are directly sampled) are involved in compressed sensing recovery.
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(a) Basis Pursuit (b) Compressive Sampling Matching Pursuit

(c) Orthogonal Matching Pursuit (d) Regularized Orthogonal Matching Pursuit

Figure 2: Original (black) and reconstructed (red) signal (upper plot) and log magnitude spectral plots (lower part) of channel F2 (60 - 80 sec) of subject
36, using (a) BP, (b) CoSAMP, (c) OMP and (d) ROMP. The reconstructed signals have a reasonably good fidelity, both in the time and frequency
domains. Also, compared is the power spectrum, estimated using a 50-order linear prediction modeling of the original signal.
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(a) Basis Pursuit (b) Compressive Sampling Matching Pursuit

(c) Orthogonal Matching Pursuit (d) Regularized Orthogonal Matching Pursuit

Figure 3: Plot showing NMSE for 45 different “10-10” channels: Fc5, Fc3, Fc1, Fcz, Fc2, Fc4, Fc6, C5, C1, C2, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6,
FPZ, AF7, AF3, AFz, AF4, AF8, F5, F1, F2, F7, FT7, FT8, T9, T10 TP7, TP8, P5, P1, P2, P6, PO7, PO3, POz, PO4, PO8, Oz and Iz reconstructed
from 19-channel “10-20” data for subject 36, using (a) BP, (b) CoSAMP, (c) OMP and (d) ROMP. Except for a few channels, the NMSE is less than 10%,
using any of the four reconstruction methods. Also, compared are the NMSE values for the power spectra estimated using a 50-order linear prediction
modeling of the original signal. Since NMSE itself is a measure of the error between DFT coefficients of the original and reconstructed signals, there is no
separate plot for the original signal.
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(a) Basis Pursuit (b) Compressive Sampling Matching Pursuit

(c) Orthogonal Matching Pursuit (d) Regularized Orthogonal Matching Pursuit

Figure 4: NMSE between DFT coefficients of original and reconstructed signals. Mean NMSE values across 45 reconstructed channels for each frequency
band are plotted for each of the 55 subjects (x-axis) using (a) BP, (b) CoSAMP, (c) OMP and (d) ROMP
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Figure 5: Mean NMSE (Subject 36) between DFT coefficients of original and reconstructed signals vs the number of measured channels for each frequency
band using BP, CoSAMP, OMP and ROMP
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6. Conclusion and Future work230

In this work, we have presented a novel approach of channel subsampling of EEG, by measuring only231

a subset of electrodes and reconstructing the remainder through compressed sensing. Empirically, we have232

demonstrated that by recording at only a few locations on the scalp, it is possible to estimate the relative233

signal content in different frequency bands within an error of 20%. We propose the idea that if it is a matter234

of only knowing the relative spectral content, measurement of only a few EEG channels suffices, provided235

the correlation is previously captured in the inverse KLT matrix using data recorded in a training session.236

The prediction error is expected to be substantially less (≈ 1%) , if only a missing channel or two are237

predicted from otherwise a complete recording. Such a prediction is eminently useful in sleep studies, where238

occasionally one or two channels may be noisy due to the electrode losing contact with the skin. There are239

studies of hemispherical dominance [[42]] as a function of forced nostril breathing. We have used NMSE as a240

measure of fidelity of reconstruction of the missing channels. However, whenever the EEG is to be used for241

clinical evaluation, it may be desirable to use subjective evaluation of the quality of reconstructed signals242

by neurologists. Suitable subjective measures may also be defined for this purpose.243

As seen from Fig. 5, the prediction error is less than 1%, when only a few channels are predicted from244

all the remaining channels. At this high level of reconstruction quality, the estimated signals can be directly245

used for diagnosis. The mean NMSE only increases to 3% when half the channels (32) are predicted from246

the remaining 32 channels, using any of the matching pursuit based reconstruction algorithms. The mean247

error being very low, again the predicted signals could be clinically useable. However, when the 10-10248

channels are predicted from only the 10-20 data, even though the mean NMSE is still less than 4%, some of249

the channels have a peak error of up to 20%. One needs to study further to determine if these signals are250

sufficient for clinical diagnosis. However, for certain research studies such as effect of forced nostril breathing251

on hemispheric dominance [[42]], one is only looking at the change in the topographic EEG spectral map,252

and the reconstructed EEG, at 4% mean error, is still useable.253

The method proposed is suitable for real time data capture, since the computationally intensive re-254

construction process can be done offline. Also it estimates the signal spectrum equally well with different255

reconstruction algorithms: BP, CoSAMP, OMP and ROMP and better than the linear prediction spectrum.256

Since the probability of successful reconstruction of the EEG signals using our method will be no better257

or worse than the guarantees provided by the respective reconstruction algorithms, we have not attempted258

to present any additional theoretical proof of performance of the proposed method.259

One cannot ignore the fact that the inter-channel correlation may be weak and time varying. It is260

definitely desirable to be able to detect small changes in the correlation pattern, which might have diagnostic261

significance. However, we are not sure that the proposed method can accomplish this and we shall explore262

this in future. Also, we intend to explore the possibility of detecting sudden changes such as epileptic seizures263

manifesting as high reconstruction error in one or more channels, due to lack of correlation.264

7. Appendix: Justification for using the down-sized identity matrix265

One can show that a sufficient condition for stable recovery of a sparse signal is that the matrix product266

ΦΨ in (3) must satisfy the restricted isometry property (RIP) [43, 44]. An alternative approach to stability267

is to ensure that the measurement matrix Φ is incoherent with the sparsifying basis Ψ in the sense that268

the vectors
{
φj

}
cannot sparsely represent the vectors {ψi} and vice versa [28, 33]. Compressed sensing269

literature offers several random matrices like Gaussian and Bernoulli which are supported by adequate proof270

of satisfying RIP, unlike the downsized identity matrix (DSI) that we have used in this work. In the absence271

of strong theoretical evidence, we make the following informal arguments in favour of the DSI matrix:272

1. As suggested in [45] given an M ×N measurement matrix UΩ formed by picking up M rows, indexed273

by the subset Ω ⊂ {1...N} of size |Ω| = M , uniformly at random, from an N -by-N orthonormal matrix274

U, it is possible to recover a signal x ∈ RN that is sparse |x|0 << N from a vector f = UΩx. In the275

scheme we have proposed, UΩ, is formed by picking rows from the orthonormal, inverse KLT matrix,276

Ψ by pre-multiplying with the DSI matrix, Φ.277
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Figure 6: Plot (red color) showing NMSE for 45 different “10-10” channels (as in figure 3) using a Guassian measure-
ment matrix with different reconstruction methods (a) BP, (b) CoSAMP, (c) OMP and (d) ROMP. For comparison,
the corresponding plot (black color) using the down-sized identity matrix (DSI) shown in figure 3 is reproduced.

2. The authors in [45] suggest that although theoretically powerful, the practical relevance of using278

completely random matrices like the Gaussian and Bernoulli is limited since we do not have the279

liberty to choose the type of measurements that will be used to acquire the signals. In the same paper,280

it is also stated that it is quite costly to use random matrices in practical sensing applications due to281

high computational complexity and memory buffering because of the completely unstructured nature.282

For the sake of completeness, we have presented the results of simulation with a Gaussian measurement283

matrix, in place of the down-sized identity matrix (DSI) with different reconstruction methods in figure 6.284
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